Files
pytorch/torch/csrc/autograd/function.cpp
Edward Z. Yang 794e52bb1c Make cloneFrom() copy all metadata; use createClone() as much as possible.
To be honest, this was the whole point of this refactor set.

I noticed that in a lot of code, we were repeatedly copying lots of metadata
from old nodes to new nodes.  This was quite concerning because I wanted to
add some more metadata (alias information) and I didn't want to have to
get it right in all cases.  Plus, in a lot of cases we were forgetting
to set more optional properties like debug names when we "copied".

To solve this, I first made cloneFrom() copy all of this metadata.  Then,
I searched for all occurrences of setType() (a proxy for "I'm cloning this
node), looked for cases where we really were morally doing a copy, and rewrote
the code to use cloneFrom() instead, allowing us to drop explicit setType()
(and getting more metadata preservation in the process.)

Finally, I refactored tryToMoveChunk.  The code is modestly longer,
but the new version has the nice property that the initialization of
selects for input_chunk are next to the creation of the node (as opposed
to delayed for later.)  I also added a lot more comments for invariants
I noticed when I was working on the code.

One minor extra change: TensorType grew a new constructor and a withSizesStride
"immutable setter" which returns a new copy of TensorType with different info.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-09-20 12:24:27 -04:00

112 lines
3.9 KiB
C++

#include "function.h"
#include <string>
#include "variable.h"
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/autograd/functions/special.h"
namespace torch { namespace autograd {
auto Function::flags(const variable_list& inputs) -> FunctionFlags {
int num_inputs = inputs.size();
FunctionFlags f;
f.is_executable = false;
f.is_volatile = false;
f.next_functions.resize(num_inputs);
for (int i = 0; i != num_inputs; ++i) {
if (inputs[i].defined()) {
auto& var = inputs[i];
f.is_executable |= var.requires_grad();
f.is_volatile |= var.is_volatile();
if (var.grad_fn()) {
f.next_functions[i] = std::make_pair<>(var.grad_fn(), var.output_nr());
} else {
f.next_functions[i] = std::make_pair<>(var.grad_accumulator(), 0);
}
}
}
f.is_executable &= !f.is_volatile;
return f;
}
auto Function::name() -> std::string {
return std::string(typeid(*this).name());
}
// This function is analogous to make_trace which operates on PythonOp, but this
// function instead works for C++ implemented autograd Functions, which don't
// actually have any backing Python class. We still need to trace them!
variable_list Function::tracedApply(variable_list inputs) {
using namespace torch::jit;
// Traceable Functions are completely transparent to the JIT.
if (is_traceable()) {
return apply(inputs);
}
auto state = tracer::getTracingState(inputs);
auto state_lock = state->lock();
// Insert a CppOp in the trace.
auto& graph = state->graph;
auto* this_node = graph->createCppOp(getSharedPtr());
for (auto& input: inputs) {
this_node->addInput(tracer::getValueTrace(state, input));
}
graph->appendNode(this_node);
// Finally apply this Function.
state_lock.unlock();
variable_list outputs = apply(inputs);
state_lock.lock();
// Set up output traces.
int num_outputs = outputs.size();
for (int i = 0; i < num_outputs; ++i) {
auto& output = outputs[i];
Node* sel = graph->appendNode(graph->createSelect(this_node, i));
// TODO: At the moment, C++ does not track shared storage. It
// should. Update this when that happens.
if (output.defined()) {
sel->inferTypeFrom(output.data());
tracer::setValueTrace(state, output, sel);
}
}
if (!passes_state_transparently()) {
auto this_eval = dynamic_cast<Eval*>(this);
// Evals consume handle from a context edge of forward node
if (this_eval)
this_node->addInput(this_eval->forward_ctx_select);
// There's no point in wrapping functions in Eval, if we know they already are
// part of another Eval subgraph. This is both a small optimization, and
// it allows us to not implement saved_variables() in many functions.
bool should_trace_backward = tracing_state->in_eval_subgraph;
if (!should_trace_backward) {
auto saved_vars = saved_variables();
if (!saved_vars)
throw std::runtime_error(std::string("saved_variables() needed but not implemented in ") + name());
variable_list bw_subgraph_inputs(inputs);
for (auto& saved_var : *saved_vars) {
bw_subgraph_inputs.emplace_back(saved_var.unpack(getSharedPtr()));
}
tracer::nontraceableBackwardSubgraph(bw_subgraph_inputs, outputs);
}
bool has_backwards_eval = !should_trace_backward || this_eval;
if (has_backwards_eval)
setUpContextEdge(this_node, num_outputs, inputs, outputs);
}
return outputs;
}
void Function::setUpContextEdge(jit::Node* node, int ctx_output_nr,
const variable_list& inputs, const variable_list& outputs) {
jit::Graph* graph = node->owningGraph();
jit::Node* ctx_select = graph->appendNode(graph->createSelect(node, ctx_output_nr));
ctx_select->setType(std::make_shared<jit::HandleType>());
auto backward_eval = Eval::getBackwardEval(inputs, outputs);
if (backward_eval)
backward_eval->forward_ctx_select = ctx_select;
}
}} // namespace torch::autograd