mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
This reverts commit 3ab08946d5052eaeda11d683d6a58e801a032755. Differential Revision: [D53817852](https://our.internmc.facebook.com/intern/diff/D53817852) Pull Request resolved: https://github.com/pytorch/pytorch/pull/119870 Approved by: https://github.com/khabinov
3073 lines
120 KiB
Python
3073 lines
120 KiB
Python
import collections
|
|
import contextlib
|
|
import dataclasses
|
|
import functools
|
|
import inspect
|
|
import operator
|
|
import os
|
|
import re
|
|
import sys
|
|
from itertools import count
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Optional,
|
|
Set,
|
|
Tuple,
|
|
TYPE_CHECKING,
|
|
Union,
|
|
)
|
|
|
|
import sympy
|
|
from sympy import Expr
|
|
|
|
import torch
|
|
import torch._ops
|
|
from torch._dynamo.utils import counters, dynamo_timed
|
|
|
|
from torch._inductor.codegen.multi_kernel import MultiKernelState
|
|
from torch.fx.experimental.symbolic_shapes import SymTypes
|
|
from torch.fx.node import _get_qualified_name
|
|
from torch.utils._sympy.singleton_int import SingletonInt
|
|
|
|
from .. import codecache, config, ir
|
|
from ..codecache import CudaKernelParamCache
|
|
from ..ir import ReinterpretView
|
|
from ..utils import (
|
|
cache_on_self,
|
|
get_benchmark_name,
|
|
LineContext,
|
|
sympy_product,
|
|
sympy_str,
|
|
)
|
|
from ..virtualized import V
|
|
from .common import CodeGen, DeferredLine, IndentedBuffer, PythonPrinter
|
|
from .triton_utils import config_of, signature_to_meta
|
|
|
|
if TYPE_CHECKING:
|
|
import triton
|
|
|
|
|
|
pexpr = PythonPrinter().doprint
|
|
|
|
|
|
ReuseKey = Tuple[torch.device, torch.dtype, str]
|
|
|
|
|
|
def buffer_reuse_key(node: ir.Buffer) -> ReuseKey:
|
|
return (
|
|
node.get_device(),
|
|
node.get_dtype(),
|
|
# NB: this is symbolic so that we don't try to reuse a buffer
|
|
# for s0 for s1, just because they happen to share the same
|
|
# size hint
|
|
sympy_str(V.graph.sizevars.simplify(node.layout.storage_size())),
|
|
)
|
|
|
|
|
|
def convert_arg_type(arg: torch.Argument) -> str:
|
|
from .cpp import CONTAINER_PYTHON_TO_CPP, PYTHON_TO_CPP
|
|
|
|
# use x.real_type instead of x.type so that we get ScalarType instead of int
|
|
python_type = repr(arg.real_type) # type: ignore[attr-defined]
|
|
|
|
if python_type == "Tensor":
|
|
# Conversions rules follow https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/native#func
|
|
if arg.alias_info is not None and arg.alias_info.is_write:
|
|
return f"at::{python_type}&"
|
|
else:
|
|
return f"at::{python_type} const&"
|
|
|
|
if python_type in PYTHON_TO_CPP:
|
|
cpp_type = PYTHON_TO_CPP[python_type]
|
|
return cpp_type
|
|
|
|
# Convert args of container types e.g. Optional[*]
|
|
for py_container, cpp_container in CONTAINER_PYTHON_TO_CPP.items():
|
|
container_match = re.findall(py_container + r"\[([a-zA-Z_]+)]", python_type)
|
|
if len(container_match) == 1:
|
|
contained_type = container_match[0]
|
|
assert (
|
|
contained_type in PYTHON_TO_CPP
|
|
), f"unsupported {py_container} type in convert_arg_type: {contained_type}"
|
|
cpp_contained_type = PYTHON_TO_CPP[contained_type]
|
|
return f"{cpp_container}<{cpp_contained_type}>"
|
|
|
|
raise AssertionError(f"unsupport python_type: {python_type}")
|
|
|
|
|
|
def convert_return_type(ret: torch.Argument) -> str:
|
|
# use x.real_type instead of x.type so that we get ScalarType instead of int
|
|
python_type = repr(ret.real_type) # type: ignore[attr-defined]
|
|
python_to_cpp = {
|
|
"Tensor": "at::Tensor",
|
|
"List[Tensor]": "std::vector<at::Tensor>",
|
|
}
|
|
|
|
cpp_type = python_to_cpp.get(python_type, None)
|
|
assert cpp_type is not None, f"NYI return type: {python_type}"
|
|
# An output aliasing an input is returned by reference only when it's a
|
|
# Tensor, not when it's a Tensor[]. For example, aten.split.Tensor's output
|
|
# aliases the input tensor, but the op returns a vector by value.
|
|
if python_type == "Tensor" and ret.alias_info is not None:
|
|
cpp_type += "&"
|
|
return cpp_type
|
|
|
|
|
|
def get_cpp_op_schema(kernel: torch._ops.OpOverload) -> str:
|
|
args = kernel._schema.arguments
|
|
returns = kernel._schema.returns
|
|
|
|
num_returns = len(returns)
|
|
assert num_returns > 0, "must have at least one return value"
|
|
|
|
if num_returns == 1:
|
|
cpp_return_value = convert_return_type(returns[0])
|
|
elif num_returns > 1:
|
|
tuple_returns = ", ".join([convert_return_type(r) for r in returns])
|
|
cpp_return_value = f"std::tuple<{tuple_returns}>"
|
|
|
|
cpp_arg_type = [f"{convert_arg_type(arg)} {arg.name}" for arg in args]
|
|
return f"{cpp_return_value}({', '.join(cpp_arg_type)})" # type: ignore[possibly-undefined]
|
|
|
|
|
|
# TODO: Move to a well known place
|
|
TritonMetaParams = Dict[str, int]
|
|
TritonGrid = Union[
|
|
Tuple[Union[int, sympy.Expr], ...], Callable[[TritonMetaParams], Tuple[int, ...]]
|
|
]
|
|
|
|
|
|
def user_defined_kernel_grid_fn_code(
|
|
name: str,
|
|
configs: List["triton.Config"],
|
|
grids: List[TritonGrid],
|
|
wrapper: Optional["WrapperCodeGen"] = None,
|
|
) -> Tuple[str, str]:
|
|
output = IndentedBuffer()
|
|
|
|
def _convert_to_sympy_expr(item: Union[int, sympy.Expr]) -> sympy.Expr:
|
|
return item if isinstance(item, sympy.Expr) else sympy.Integer(item)
|
|
|
|
def determine_grid(grid: TritonGrid):
|
|
if wrapper is None or callable(grid):
|
|
# return as-is when used in eager mode or when grid is callable
|
|
return grid
|
|
# Grid contains ints/Expr, so utilize wrapper's expr printer for codegen
|
|
sympy_grid = tuple(_convert_to_sympy_expr(g) for g in grid)
|
|
return wrapper.codegen_shape_tuple(sympy_grid)
|
|
|
|
fn_name = f"grid_wrapper_for_{name}"
|
|
output.writeline(f"def {fn_name}(meta):")
|
|
with output.indent():
|
|
if len(grids) == 1:
|
|
grid = determine_grid(grids[0])
|
|
output.writeline(f"return {grid}")
|
|
else:
|
|
assert len(grids) > 1
|
|
assert len(grids) == len(configs)
|
|
seen = set()
|
|
for grid, c in zip(grids, configs):
|
|
guards = [f"meta['{name}'] == {val}" for name, val in c.kwargs.items()]
|
|
guards = " and ".join(guards)
|
|
grid = determine_grid(grid)
|
|
statement = f"if {guards}: return {grid}"
|
|
if statement in seen:
|
|
continue
|
|
seen.add(statement)
|
|
output.writeline(statement)
|
|
|
|
return fn_name, output.getvalue()
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class SymbolicCallArg:
|
|
inner: str
|
|
# the original symbolic expression represented by inner
|
|
inner_expr: sympy.Expr
|
|
|
|
def __str__(self):
|
|
return str(self.inner)
|
|
|
|
|
|
# Default thread stack sizes vary by platform:
|
|
# - Linux: 8 MB
|
|
# - macOS: 512 KB
|
|
# - Windows: 1 MB
|
|
# Just pick something comfortably smaller than the smallest for now.
|
|
MAX_STACK_ALLOCATION_SIZE = 1024 * 100
|
|
|
|
|
|
class MemoryPlanningState:
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reuse_pool: Dict[
|
|
ReuseKey, List[FreeIfNotReusedLine]
|
|
] = collections.defaultdict(list)
|
|
self.total_allocated_buffer_size: int = 0
|
|
|
|
def __contains__(self, key: ReuseKey) -> bool:
|
|
return bool(self.reuse_pool.get(key, None))
|
|
|
|
def pop(self, key: ReuseKey) -> "FreeIfNotReusedLine":
|
|
item = self.reuse_pool[key].pop()
|
|
assert not item.is_reused
|
|
return item
|
|
|
|
def push(self, key: ReuseKey, item: "FreeIfNotReusedLine") -> None:
|
|
assert not item.is_reused
|
|
self.reuse_pool[key].append(item)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class EnterDeviceContextManagerLine:
|
|
device_idx: int
|
|
last_seen_device_guard_index: Optional[int]
|
|
|
|
def codegen(self, code: IndentedBuffer) -> None:
|
|
if V.graph.cpp_wrapper:
|
|
code.writeline("\n")
|
|
if V.graph.aot_mode:
|
|
# In AOT mode, we have a stream provided as a param. A stream is
|
|
# associated with a device, so we never expect the device to change.
|
|
# CUDAStreamGuard sets the stream and the device.
|
|
if self.last_seen_device_guard_index is None:
|
|
if config.abi_compatible:
|
|
code.writeline(
|
|
"AOTICudaStreamGuard stream_guard(stream, this->device_idx_);"
|
|
)
|
|
else:
|
|
code.writeline(
|
|
"at::cuda::CUDAStreamGuard stream_guard("
|
|
+ "at::cuda::getStreamFromExternal(stream, this->device_idx_));"
|
|
)
|
|
else:
|
|
assert (
|
|
self.last_seen_device_guard_index == self.device_idx
|
|
), "AOTInductor only supports running on one CUDA device"
|
|
else:
|
|
if self.last_seen_device_guard_index is None:
|
|
code.writeline(
|
|
f"at::cuda::CUDAGuard device_guard({self.device_idx});"
|
|
)
|
|
else:
|
|
code.writeline(f"device_guard.set_index({self.device_idx});")
|
|
else:
|
|
# Note _DeviceGuard has less overhead than device, but only accepts
|
|
# integers
|
|
code.writeline(f"with {V.graph.device_ops.device_guard(self.device_idx)}:")
|
|
code.do_indent()
|
|
code.writeline(V.graph.device_ops.set_device(self.device_idx))
|
|
|
|
|
|
class ExitDeviceContextManagerLine:
|
|
def codegen(self, code: IndentedBuffer) -> None:
|
|
if not V.graph.cpp_wrapper:
|
|
code.do_unindent()
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class MemoryPlanningLine:
|
|
wrapper: "WrapperCodeGen"
|
|
|
|
def plan(self, state: MemoryPlanningState) -> "MemoryPlanningLine":
|
|
"""First pass to find reuse"""
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer) -> None:
|
|
"""Second pass to output code"""
|
|
pass
|
|
|
|
def __str__(self) -> str:
|
|
"""
|
|
Emits a string representation that fits on one line.
|
|
"""
|
|
args: List[str] = []
|
|
for field in dataclasses.fields(self):
|
|
if field.name == "wrapper":
|
|
continue
|
|
val = getattr(self, field.name)
|
|
args.append(
|
|
f"{field.name}={val.get_name() if field.type is ir.Buffer else val}"
|
|
)
|
|
return f"{type(self).__name__}({', '.join(args)})"
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class AllocateLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
|
|
def plan(self, state: MemoryPlanningState) -> MemoryPlanningLine:
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
return NullLine(self.wrapper)
|
|
|
|
# try to reuse a recently freed buffer
|
|
key = buffer_reuse_key(self.node)
|
|
if config.allow_buffer_reuse and key in state:
|
|
free_line = state.pop(key)
|
|
free_line.is_reused = True
|
|
return ReuseLine(self.wrapper, free_line.node, self.node)
|
|
|
|
if self.node.get_device().type == "cpu":
|
|
static_shape = self.wrapper.static_shape_for_buffer_or_none(self.node)
|
|
if static_shape is not None:
|
|
state.total_allocated_buffer_size += int(
|
|
functools.reduce(operator.mul, static_shape, 1)
|
|
)
|
|
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer) -> None:
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
line = self.wrapper.make_buffer_allocation(self.node)
|
|
code.writeline(line)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class FreeIfNotReusedLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
is_reused: bool = False
|
|
|
|
def plan(self, state: MemoryPlanningState) -> MemoryPlanningLine:
|
|
if isinstance(self.node.layout, (ir.AliasedLayout, ir.MultiOutputLayout)):
|
|
return self
|
|
assert not self.is_reused
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
return NullLine(self.wrapper)
|
|
if config.allow_buffer_reuse:
|
|
state.push(buffer_reuse_key(self.node), self)
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer) -> None:
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
if not self.is_reused:
|
|
code.writeline(self.wrapper.make_buffer_free(self.node))
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ReuseLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
reused_as: ir.Buffer
|
|
delete_old: bool = True
|
|
|
|
def plan(self, state: MemoryPlanningState) -> MemoryPlanningLine:
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
assert self.reused_as.get_name() in V.graph.removed_buffers
|
|
return NullLine(self.wrapper)
|
|
assert self.reused_as.get_name() not in V.graph.removed_buffers
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer) -> None:
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
assert self.reused_as.get_name() not in V.graph.removed_buffers
|
|
code.writeline(
|
|
self.wrapper.make_buffer_reuse(self.node, self.reused_as, self.delete_old)
|
|
)
|
|
|
|
|
|
class NullLine(MemoryPlanningLine):
|
|
pass
|
|
|
|
|
|
BufferName = str
|
|
|
|
|
|
class WrapperCodeGen(CodeGen):
|
|
"""
|
|
Generate outer wrapper in Python that calls the kernels.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self._names_iter: Iterator[int] = count()
|
|
self.header = IndentedBuffer()
|
|
self.prefix = IndentedBuffer()
|
|
self.suffix = IndentedBuffer()
|
|
self.wrapper_call = IndentedBuffer()
|
|
# If the generated source code is exactly the same, reuse the
|
|
# pre-existing kernel for it
|
|
self.src_to_kernel: Dict[str, str] = {}
|
|
self.kernel_numel_expr: Set[str] = set()
|
|
self.lines: List[Union[MemoryPlanningLine, LineContext]] = []
|
|
self.declare = ""
|
|
self.declare_maybe_reference = ""
|
|
self.ending = ""
|
|
self.open_bracket = "["
|
|
self.closed_bracket = "]"
|
|
self.comment = "#"
|
|
self.namespace = ""
|
|
self.none_str = "None"
|
|
self.size = "size()"
|
|
self.stride = "stride()"
|
|
self.last_seen_device_guard_index: Optional[int] = None
|
|
self.supports_intermediate_hooks = True
|
|
self.expr_printer = pexpr
|
|
self.user_defined_kernel_cache: Dict[Tuple[Any, ...], str] = {}
|
|
self.unbacked_symbol_decls: Set[str] = set() # str of sympy.Symbol
|
|
self.allow_stack_allocation: Optional[bool] = None
|
|
self.stack_allocated_buffers: Dict[BufferName, ir.Buffer] = {}
|
|
self.computed_sizes: Set[sympy.Symbol] = set()
|
|
|
|
self.write_header()
|
|
self.write_prefix()
|
|
|
|
if not V.graph.aot_mode:
|
|
for name, hashed in V.graph.constant_reprs.items():
|
|
# include a hash so our code cache puts different constants into different files
|
|
self.write_constant(name, hashed)
|
|
|
|
self.allocated: Set[BufferName] = set()
|
|
self.freed: Set[BufferName] = set()
|
|
|
|
# maps from reusing buffer to reused buffer
|
|
self.reuses: Dict[BufferName, BufferName] = dict()
|
|
|
|
self.write_get_raw_stream = functools.lru_cache(None)( # type: ignore[assignment]
|
|
self.write_get_raw_stream
|
|
)
|
|
|
|
@functools.lru_cache(None)
|
|
def add_import_once(line: str) -> None:
|
|
self.header.writeline(line)
|
|
|
|
self.add_import_once = add_import_once
|
|
self._metas: Dict[str, str] = {}
|
|
self.multi_kernel_state = MultiKernelState()
|
|
|
|
def write_constant(self, name: str, hashed: str) -> None:
|
|
self.header.writeline(f"{name} = None # {hashed}")
|
|
|
|
def write_header(self) -> None:
|
|
self.header.splice(
|
|
f"""
|
|
from ctypes import c_void_p, c_long
|
|
import torch
|
|
import math
|
|
import random
|
|
import os
|
|
import tempfile
|
|
from math import inf, nan
|
|
from torch._inductor.hooks import run_intermediate_hooks
|
|
from torch._inductor.utils import maybe_profile
|
|
from torch._inductor.codegen.memory_planning import _align as align
|
|
|
|
from torch import device, empty_strided
|
|
from {codecache.__name__} import AsyncCompile
|
|
from torch._inductor.select_algorithm import extern_kernels
|
|
from torch._inductor.codegen.multi_kernel import MultiKernelCall
|
|
|
|
aten = torch.ops.aten
|
|
inductor_ops = torch.ops.inductor
|
|
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
|
|
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
|
|
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
|
|
alloc_from_pool = torch.ops.inductor._alloc_from_pool
|
|
reinterpret_tensor = torch.ops.inductor._reinterpret_tensor
|
|
async_compile = AsyncCompile()
|
|
|
|
"""
|
|
)
|
|
|
|
@cache_on_self
|
|
def write_triton_header_once(self) -> None:
|
|
self.header.splice(
|
|
"""
|
|
import triton
|
|
import triton.language as tl
|
|
from torch._inductor.triton_heuristics import grid, split_scan_grid, start_graph, end_graph
|
|
{}
|
|
""".format(
|
|
V.graph.device_ops.import_get_raw_stream_as("get_raw_stream")
|
|
)
|
|
)
|
|
|
|
def add_meta_once(self, meta: TritonMetaParams) -> str:
|
|
meta = repr(meta)
|
|
if meta not in self._metas:
|
|
var = f"meta{len(self._metas)}"
|
|
self._metas[meta] = var
|
|
self.header.writeline(f"{var} = {meta}")
|
|
return self._metas[meta]
|
|
|
|
@cache_on_self
|
|
def get_output_refs(self) -> List[str]:
|
|
return [x.codegen_reference(self.wrapper_call) for x in V.graph.graph_outputs]
|
|
|
|
def mark_output_type(self) -> None:
|
|
return
|
|
|
|
def codegen_input_size_asserts(self) -> None:
|
|
for name, buf in V.graph.graph_inputs.items():
|
|
if isinstance(buf, sympy.Expr):
|
|
continue
|
|
|
|
# comparing strides for 0 size tensor is tricky. Ignore them for now.
|
|
if sympy_product(buf.get_size()) == 0:
|
|
continue
|
|
size = self.codegen_shape_tuple(buf.get_size())
|
|
stride = self.codegen_shape_tuple(buf.get_stride())
|
|
self.prefix.writeline(f"assert_size_stride({name}, {size}, {stride})")
|
|
|
|
def codegen_input_nan_asserts(self) -> None:
|
|
self.prefix.writeline("# make sure graph inputs are not nan/inf")
|
|
for name, buf in V.graph.graph_inputs.items():
|
|
if isinstance(buf, sympy.Expr):
|
|
continue
|
|
|
|
line = f"assert not {name}.isnan().any().item()"
|
|
self.prefix.writeline(line)
|
|
line = f"assert not {name}.isinf().any().item()"
|
|
self.prefix.writeline(line)
|
|
|
|
def write_prefix(self) -> None:
|
|
self.prefix.splice(
|
|
"""
|
|
|
|
async_compile.wait(globals())
|
|
del async_compile
|
|
|
|
def call(args):
|
|
"""
|
|
)
|
|
with self.prefix.indent():
|
|
if config.triton.debug_sync_graph:
|
|
self.prefix.writeline(V.graph.device_ops.synchronize())
|
|
inp_len = len(V.graph.graph_inputs.keys())
|
|
if inp_len != 0:
|
|
lhs = f"{', '.join(V.graph.graph_inputs.keys())}{'' if inp_len != 1 else ','}"
|
|
self.prefix.writeline(f"{lhs} = args")
|
|
self.prefix.writeline("args.clear()")
|
|
|
|
self.codegen_inputs(self.prefix, V.graph.graph_inputs)
|
|
if config.size_asserts:
|
|
self.codegen_input_size_asserts()
|
|
if config.nan_asserts:
|
|
self.codegen_input_nan_asserts()
|
|
|
|
def write_get_raw_stream(self, device_idx: int) -> str:
|
|
self.write_triton_header_once()
|
|
name = f"stream{device_idx}"
|
|
self.writeline(f"{name} = get_raw_stream({device_idx})")
|
|
return name
|
|
|
|
def next_kernel_suffix(self) -> str:
|
|
return f"{next(self._names_iter)}"
|
|
|
|
def codegen_device_guard_enter(self, device_idx: int) -> None:
|
|
self.writeline(
|
|
EnterDeviceContextManagerLine(device_idx, self.last_seen_device_guard_index)
|
|
)
|
|
self.last_seen_device_guard_index = device_idx
|
|
|
|
def codegen_device_guard_exit(self) -> None:
|
|
self.writeline(ExitDeviceContextManagerLine())
|
|
|
|
def generate_return(self, output_refs: List[str]) -> None:
|
|
if output_refs:
|
|
self.wrapper_call.writeline("return (" + ", ".join(output_refs) + ", )")
|
|
else:
|
|
self.wrapper_call.writeline("return ()")
|
|
|
|
def generate_before_suffix(self, result: IndentedBuffer) -> None:
|
|
return
|
|
|
|
def generate_end(self, result: IndentedBuffer) -> None:
|
|
return
|
|
|
|
def generate_fallback_kernel(self, fallback_kernel, args):
|
|
self.generate_extern_kernel_alloc(fallback_kernel, args)
|
|
|
|
def generate_extern_kernel_alloc(self, extern_kernel, args):
|
|
output_name = extern_kernel.get_name()
|
|
origin_node = extern_kernel.get_origin_node()
|
|
kernel_name = extern_kernel.get_kernel_name()
|
|
ending = self.ending
|
|
if config.memory_planning and "view_as_complex" in kernel_name:
|
|
# view operation fallbacks cause issues since inductor
|
|
# doesn't know the memory is still needed and might reuse it.
|
|
ending = f".clone(){ending}"
|
|
self.writeline(
|
|
f"{self.declare}{output_name} = {kernel_name}({', '.join(args)}){ending}"
|
|
)
|
|
if (
|
|
self.supports_intermediate_hooks
|
|
and config.generate_intermediate_hooks
|
|
and origin_node is not None
|
|
):
|
|
counters["inductor"]["intermediate_hooks"] += 1
|
|
self.writeline(
|
|
f"run_intermediate_hooks({origin_node.name!r}, {output_name})"
|
|
)
|
|
|
|
def generate_extern_kernel_out(self, output_view, codegen_reference, args, kernel):
|
|
if output_view:
|
|
args.append(f"out={output_view.codegen_reference()}")
|
|
else:
|
|
args.append(f"out={codegen_reference}")
|
|
self.writeline(f"{kernel}({', '.join(args)})")
|
|
|
|
def generate_user_defined_triton_kernel(self, kernel_name, grid, configs, args):
|
|
grid, code = user_defined_kernel_grid_fn_code(
|
|
kernel_name, configs, grid, wrapper=self
|
|
)
|
|
# Must happen after free symbols are already codegened
|
|
with self.prefix.indent():
|
|
self.prefix.splice(code)
|
|
|
|
stream_name = self.write_get_raw_stream(V.graph.scheduler.current_device.index)
|
|
self.writeline(
|
|
f"{kernel_name}.run({', '.join(args)}, grid={grid}, stream={stream_name})"
|
|
)
|
|
|
|
def generate_scatter_fallback(
|
|
self, output, inputs, kernel, python_kernel_name, src_is_tensor, reduce, kwargs
|
|
):
|
|
line = f"{kernel}({','.join(map(str, inputs))}"
|
|
if kernel == "aten.scatter_":
|
|
if reduce:
|
|
line += f", reduce={repr(reduce)}"
|
|
else:
|
|
line += ", ".join([""] + kwargs)
|
|
line += f"){self.ending}"
|
|
self.writeline(line)
|
|
|
|
def generate_index_put_fallback(self, kernel, x, indices, values, accumulate):
|
|
indices_str = f"{self.open_bracket}{', '.join(indices)}{self.closed_bracket}"
|
|
args = [x, indices_str, values, accumulate]
|
|
self.writeline(self.wrap_kernel_call(kernel, args))
|
|
|
|
def generate_extern_kernel_alloc_and_find_schema_if_needed(
|
|
self,
|
|
name,
|
|
kernel,
|
|
codegen_args,
|
|
cpp_op_schema,
|
|
cpp_kernel_key,
|
|
cpp_kernel_overload_name="",
|
|
op_overload=None,
|
|
raw_args=None,
|
|
outputs=None,
|
|
):
|
|
self.writeline(f"{name} = {kernel}({', '.join(codegen_args)})")
|
|
|
|
def generate_inf_and_nan_checker(self, node):
|
|
# TODO: Add check for python too.
|
|
pass
|
|
|
|
@dynamo_timed
|
|
def generate(self, is_inference):
|
|
if config.profile_bandwidth:
|
|
self.write_triton_header_once()
|
|
result = IndentedBuffer()
|
|
result.splice(self.header)
|
|
|
|
with contextlib.ExitStack() as stack:
|
|
stack.enter_context(self.wrapper_call.indent())
|
|
if config.profiler_mark_wrapper_call:
|
|
self.generate_profiler_mark_wrapper_call(stack)
|
|
if config.profile_bandwidth:
|
|
self.generate_start_graph()
|
|
|
|
# We disable planning during training because it presently increases peak memory consumption.
|
|
if is_inference and config.memory_planning:
|
|
self.memory_plan()
|
|
# TODO: integrate memory planning & stack allocation?
|
|
self.allow_stack_allocation = False
|
|
else:
|
|
self.memory_plan_reuse()
|
|
|
|
for line in self.lines:
|
|
if isinstance(
|
|
line,
|
|
(
|
|
MemoryPlanningLine,
|
|
EnterDeviceContextManagerLine,
|
|
ExitDeviceContextManagerLine,
|
|
),
|
|
):
|
|
line.codegen(self.wrapper_call)
|
|
else:
|
|
self.wrapper_call.writeline(line)
|
|
|
|
output_refs = self.get_output_refs()
|
|
self.mark_output_type()
|
|
if config.triton.debug_sync_graph:
|
|
self.wrapper_call.writeline(V.graph.device_ops.synchronize())
|
|
|
|
if config.profile_bandwidth:
|
|
self.generate_end_graph()
|
|
|
|
self.generate_return(output_refs)
|
|
|
|
self.finalize_prefix()
|
|
result.splice(self.prefix)
|
|
|
|
with result.indent():
|
|
result.splice(self.wrapper_call)
|
|
|
|
self.generate_before_suffix(result)
|
|
result.splice(self.suffix)
|
|
|
|
self.generate_end(result)
|
|
|
|
self.add_benchmark_harness(result)
|
|
|
|
return result.getvaluewithlinemap()
|
|
|
|
def memory_plan(self):
|
|
from .memory_planning import MemoryPlanner
|
|
|
|
self.lines = MemoryPlanner(self).plan(self.lines)
|
|
|
|
def memory_plan_reuse(self):
|
|
out_names = V.graph.get_output_names()
|
|
|
|
while (
|
|
self.lines
|
|
and isinstance(self.lines[-1], MemoryPlanningLine)
|
|
# TODO: this seems legit, NullLine has no node
|
|
and self.lines[-1].node.name not in out_names # type: ignore[attr-defined]
|
|
):
|
|
# these lines will be pointless
|
|
self.lines.pop()
|
|
|
|
# codegen allocations in two passes
|
|
planning_state = MemoryPlanningState()
|
|
for i in range(len(self.lines)):
|
|
line = self.lines[i]
|
|
if isinstance(line, MemoryPlanningLine):
|
|
self.lines[i] = line.plan(planning_state)
|
|
|
|
self.allow_stack_allocation = (
|
|
self.allow_stack_allocation is not False
|
|
and config.allow_stack_allocation
|
|
and planning_state.total_allocated_buffer_size <= MAX_STACK_ALLOCATION_SIZE
|
|
)
|
|
|
|
def codegen_input_size_var_decl(self, code: IndentedBuffer, name):
|
|
code.writeline(f"{self.declare}{name}_size = {name}.{self.size}{self.ending}")
|
|
|
|
def codegen_input_stride_var_decl(self, code: IndentedBuffer, name):
|
|
code.writeline(
|
|
f"{self.declare}{name}_stride = {name}.{self.stride}{self.ending}"
|
|
)
|
|
|
|
def codegen_inputs(
|
|
self, code: IndentedBuffer, graph_inputs: Dict[str, ir.TensorBox]
|
|
):
|
|
"""Assign all symbolic shapes to locals"""
|
|
|
|
@functools.lru_cache(None)
|
|
def sizeof(name):
|
|
self.codegen_input_size_var_decl(code, name)
|
|
return f"{name}_size"
|
|
|
|
@functools.lru_cache(None)
|
|
def strideof(name):
|
|
self.codegen_input_stride_var_decl(code, name)
|
|
return f"{name}_stride"
|
|
|
|
# Assign all symbolic shapes needed to local variables
|
|
needed = V.graph.sizevars.free_symbols()
|
|
|
|
def is_expr(x):
|
|
return isinstance(x[1], sympy.Expr)
|
|
|
|
graph_inputs_expr = list(filter(is_expr, graph_inputs.items()))
|
|
graph_inputs_tensors = list(
|
|
filter(lambda x: not is_expr(x), graph_inputs.items())
|
|
)
|
|
|
|
for name, shape in graph_inputs_expr:
|
|
shape = V.graph.sizevars.simplify(shape) # type: ignore[arg-type]
|
|
if shape in needed:
|
|
needed.remove(shape) # type: ignore[arg-type]
|
|
code.writeline(f"{self.declare}{shape} = {name}{self.ending}")
|
|
|
|
for name, value in graph_inputs_tensors:
|
|
shapes = value.get_size()
|
|
for dim, shape in enumerate(shapes):
|
|
shape = V.graph.sizevars.simplify(shape) # type: ignore[arg-type]
|
|
if shape in needed:
|
|
needed.remove(shape) # type: ignore[arg-type]
|
|
code.writeline(
|
|
f"{self.declare}{shape} = {sizeof(name)}[{dim}]{self.ending}"
|
|
)
|
|
|
|
for name, value in graph_inputs_tensors:
|
|
shapes = value.get_stride()
|
|
for dim, shape in enumerate(shapes):
|
|
shape = V.graph.sizevars.simplify(shape) # type: ignore[arg-type]
|
|
if shape in needed:
|
|
needed.remove(shape) # type: ignore[arg-type]
|
|
code.writeline(
|
|
f"{self.declare}{shape} = {strideof(name)}[{dim}]{self.ending}"
|
|
)
|
|
|
|
def ensure_size_computed(self, sym: sympy.Symbol):
|
|
if isinstance(sym, sympy.Symbol) and sym.name.startswith("ps"):
|
|
if sym in self.computed_sizes:
|
|
return
|
|
self.computed_sizes.add(sym)
|
|
expr = V.graph.sizevars.inv_precomputed_replacements[sym]
|
|
self.writeline(
|
|
f"{self.declare}{sym} = {self.expr_printer(expr)}{self.ending}"
|
|
)
|
|
|
|
def finalize_prefix(self):
|
|
pass
|
|
|
|
def codegen_python_sizevar(self, x: Expr) -> str:
|
|
return pexpr(V.graph.sizevars.simplify(x))
|
|
|
|
def codegen_sizevar(self, x: Expr) -> str:
|
|
return self.codegen_python_sizevar(x)
|
|
|
|
def codegen_tuple_access(self, basename: str, name: str, index: str) -> str:
|
|
return f"{basename}[{index}]"
|
|
|
|
def codegen_python_shape_tuple(self, shape: Tuple[Expr, ...]) -> str:
|
|
parts = list(map(self.codegen_python_sizevar, shape))
|
|
if len(parts) == 0:
|
|
return "()"
|
|
if len(parts) == 1:
|
|
return f"({parts[0]}, )"
|
|
return f"({', '.join(parts)})"
|
|
|
|
def codegen_shape_tuple(self, shape: Tuple[Expr, ...]) -> str:
|
|
return self.codegen_python_shape_tuple(shape)
|
|
|
|
def codegen_alloc_from_pool(self, name, offset, dtype, shape, stride) -> str:
|
|
return "alloc_from_pool({})".format(
|
|
", ".join(
|
|
[
|
|
name,
|
|
pexpr(offset), # bytes not numel
|
|
str(dtype),
|
|
self.codegen_shape_tuple(shape),
|
|
self.codegen_shape_tuple(stride),
|
|
]
|
|
)
|
|
)
|
|
|
|
def codegen_reinterpret_view(self, data, size, stride, offset, writer) -> str:
|
|
size = self.codegen_shape_tuple(size)
|
|
stride = self.codegen_shape_tuple(stride)
|
|
offset = self.codegen_sizevar(offset)
|
|
return f"reinterpret_tensor({data.get_name()}, {size}, {stride}, {offset})"
|
|
|
|
def codegen_device_copy(self, src, dst):
|
|
self.writeline(f"{dst}.copy_({src})")
|
|
|
|
def codegen_multi_output(self, name, value):
|
|
self.writeline(f"{self.declare}{name} = {value}{self.ending}")
|
|
|
|
def codegen_dynamic_scalar(self, node):
|
|
(data,) = (t.codegen_reference() for t in node.inputs)
|
|
if node.is_bool:
|
|
self.writeline(f"{node.sym} = 1 if {data}.item() else 0")
|
|
else:
|
|
self.writeline(f"{node.sym} = {data}.item()")
|
|
# No one should ever use this buffer, but for uniformity
|
|
# define the variable and assign it None
|
|
self.writeline(f"{node.get_name()} = None")
|
|
|
|
def benchmark_compiled_module(self, output):
|
|
def add_fake_input(name, shape, stride, device, dtype):
|
|
output.writeline(
|
|
f"{name} = rand_strided("
|
|
f"{self.codegen_python_shape_tuple(shape)}, "
|
|
f"{self.codegen_python_shape_tuple(stride)}, "
|
|
f"device='{device}', dtype={dtype})"
|
|
)
|
|
|
|
def add_expr_input(name, val):
|
|
output.writeline(f"{name} = {val}")
|
|
|
|
output.writelines(
|
|
["", "", "def benchmark_compiled_module(times=10, repeat=10):"]
|
|
)
|
|
with output.indent():
|
|
output.splice(
|
|
"""
|
|
from torch._dynamo.testing import rand_strided
|
|
from torch._inductor.utils import print_performance
|
|
""",
|
|
strip=True,
|
|
)
|
|
|
|
for name, value in V.graph.constants.items():
|
|
# all the constants are global variables, that's why we need
|
|
# these 'global var_name' lines
|
|
output.writeline(f"global {name}")
|
|
add_fake_input(
|
|
name, value.size(), value.stride(), value.device, value.dtype
|
|
)
|
|
|
|
for name, value in V.graph.graph_inputs.items():
|
|
if isinstance(value, sympy.Symbol) and isinstance(
|
|
V.graph.sizevars.var_to_val.get(value, None), SingletonInt
|
|
):
|
|
# Inductor should only work with dense -> dense graph, and
|
|
# SingletonInts belong to metadata that should only live on
|
|
# the subclass.
|
|
continue
|
|
if isinstance(value, sympy.Expr): # Don't need to add symbolic
|
|
add_expr_input(name, V.graph.sizevars.size_hint(value))
|
|
else:
|
|
shape = [V.graph.sizevars.size_hint(x) for x in value.get_size()]
|
|
stride = [V.graph.sizevars.size_hint(x) for x in value.get_stride()]
|
|
add_fake_input(
|
|
name, shape, stride, value.get_device(), value.get_dtype()
|
|
)
|
|
|
|
call_str = f"call([{', '.join(V.graph.graph_inputs.keys())}])"
|
|
output.writeline(f"fn = lambda: {call_str}")
|
|
output.writeline("return print_performance(fn, times=times, repeat=repeat)")
|
|
|
|
def add_benchmark_harness(self, output):
|
|
"""
|
|
Append a benchmark harness to generated code for debugging
|
|
"""
|
|
if not config.benchmark_harness:
|
|
return
|
|
|
|
self.benchmark_compiled_module(output)
|
|
|
|
output.writelines(["", "", 'if __name__ == "__main__":'])
|
|
with output.indent():
|
|
output.writelines(
|
|
[
|
|
"from torch._inductor.wrapper_benchmark import compiled_module_main",
|
|
f"compiled_module_main('{get_benchmark_name()}', benchmark_compiled_module)",
|
|
]
|
|
)
|
|
|
|
def define_kernel(
|
|
self, name: str, kernel: str, metadata: Optional[str] = None, cuda=True
|
|
):
|
|
metadata_comment = f"{metadata}\n" if metadata else ""
|
|
self.header.splice(f"\n\n{metadata_comment}{name} = {kernel}")
|
|
|
|
def define_user_defined_triton_kernel(self, kernel, configs, kwargs):
|
|
original_name = kernel.__name__
|
|
|
|
# Distinguish between different functions using function id
|
|
cache_key = [id(kernel.fn)]
|
|
for arg in kwargs.values():
|
|
if isinstance(arg, (ir.Buffer, ir.ReinterpretView)):
|
|
cache_key.append(arg.get_dtype())
|
|
elif len(configs) > 0:
|
|
# We need to key on non tensor arg only in autotune mode
|
|
cache_key.append(arg)
|
|
cache_key = tuple(cache_key)
|
|
|
|
if cache_key in self.user_defined_kernel_cache:
|
|
return self.user_defined_kernel_cache[cache_key]
|
|
|
|
name = f"{original_name}_{len(self.user_defined_kernel_cache)}"
|
|
# Add to the cache for the next use
|
|
self.user_defined_kernel_cache[cache_key] = name
|
|
|
|
compile_wrapper = IndentedBuffer()
|
|
compile_wrapper.writeline(f"async_compile.triton({original_name!r}, '''")
|
|
|
|
compile_wrapper.splice(
|
|
"""
|
|
import triton
|
|
import triton.language as tl
|
|
from torch._inductor.utils import instance_descriptor
|
|
from torch._inductor.triton_heuristics import user_autotune
|
|
""",
|
|
strip=True,
|
|
)
|
|
from .triton import TritonKernel
|
|
|
|
if TritonKernel.gen_attr_descriptor_import():
|
|
compile_wrapper.splice(TritonKernel.gen_attr_descriptor_import())
|
|
compile_wrapper.newline()
|
|
|
|
from .common import KernelArgType, SizeArg, TensorArg
|
|
|
|
signature: List[KernelArgType] = []
|
|
constants = {}
|
|
for key, arg in kwargs.items():
|
|
idx = kernel.arg_names.index(key)
|
|
if idx in kernel.constexprs:
|
|
constants[key] = arg
|
|
elif isinstance(arg, ir.Buffer):
|
|
signature.append(
|
|
TensorArg(
|
|
name=key,
|
|
buffer=arg.get_name(),
|
|
dtype=arg.get_dtype(),
|
|
)
|
|
)
|
|
elif isinstance(arg, ir.ReinterpretView):
|
|
# for ReinterpretView we use the underlying
|
|
# buffer name and note the (possibly non-zero)
|
|
# offset relative to the underlying buffer
|
|
signature.append(
|
|
TensorArg(
|
|
name=key,
|
|
buffer=arg.data.get_name(),
|
|
dtype=arg.get_dtype(),
|
|
offset=arg.layout.offset,
|
|
)
|
|
)
|
|
else:
|
|
signature.append(SizeArg(key, arg))
|
|
index_dtype = "tl.int32"
|
|
inductor_meta = {
|
|
"kernel_name": name,
|
|
}
|
|
triton_meta = {
|
|
"signature": signature_to_meta(signature, size_dtype=index_dtype),
|
|
"device": V.graph.scheduler.current_device.index,
|
|
"device_type": V.graph.scheduler.current_device.type,
|
|
"constants": constants,
|
|
"configs": [config_of(signature)],
|
|
}
|
|
configs = [
|
|
{
|
|
"kwargs": config.kwargs,
|
|
"num_warps": config.num_warps,
|
|
"num_stages": config.num_stages,
|
|
}
|
|
for config in configs
|
|
]
|
|
compile_wrapper.splice(
|
|
f"""
|
|
@user_autotune(
|
|
configs={configs!r},
|
|
inductor_meta={inductor_meta!r},
|
|
triton_meta={triton_meta!r},
|
|
filename=__file__,
|
|
custom_kernel=True,
|
|
)
|
|
@triton.jit
|
|
"""
|
|
)
|
|
compile_wrapper.splice(kernel.src, strip=True)
|
|
|
|
# Also include any possible kernel being called indirectly
|
|
from triton import JITFunction
|
|
|
|
symbols_included = {original_name}
|
|
|
|
def traverse(cur_kernel):
|
|
for symbol_name in cur_kernel.fn.__code__.co_names:
|
|
if symbol_name in symbols_included:
|
|
continue
|
|
if symbol_name in cur_kernel.fn.__globals__:
|
|
symbol = cur_kernel.fn.__globals__[symbol_name]
|
|
if isinstance(symbol, JITFunction):
|
|
compile_wrapper.newline()
|
|
compile_wrapper.writeline("@triton.jit")
|
|
compile_wrapper.splice(symbol.src, strip=True)
|
|
symbols_included.add(symbol_name)
|
|
traverse(symbol)
|
|
elif isinstance(symbol, (int, str, bool)):
|
|
compile_wrapper.newline()
|
|
compile_wrapper.writeline(f"{symbol_name} = {symbol!r}")
|
|
symbols_included.add(symbol_name)
|
|
|
|
traverse(kernel)
|
|
|
|
compile_wrapper.writeline("''')")
|
|
_, lineno = inspect.getsourcelines(kernel.fn)
|
|
srcfile = inspect.getsourcefile(kernel.fn)
|
|
metadata = f"# Original path: {srcfile}:{lineno}"
|
|
self.define_kernel(
|
|
name,
|
|
compile_wrapper.getvalue(),
|
|
metadata,
|
|
)
|
|
return name
|
|
|
|
def generate_numel_expr(self, kernel_name: str, tree):
|
|
expr = f"{kernel_name}_{tree.prefix}numel"
|
|
if expr not in self.kernel_numel_expr:
|
|
self.kernel_numel_expr.add(expr)
|
|
self.writeline(
|
|
f"{self.declare}{expr} = {self.expr_printer(tree.numel)}{self.ending}"
|
|
)
|
|
else:
|
|
self.writeline(f"{expr} = {self.expr_printer(tree.numel)}{self.ending}")
|
|
# We can get symbolic expressions here, like s0*64
|
|
# It is fine to have them here, but we need to handle them correctly as their own type
|
|
# This is tricky to do, so we wrap in a custom type, distinct from scalars, but also from sympy*
|
|
# scalars as well.
|
|
# This is handled in `generate_args_decl` which has a correct comment of: TODO: only works for
|
|
# constant now, need type info. I agree, this needs type info, and while this is not true type info
|
|
# it suffices as a type hint for the purposes of producing the correct code for this type.
|
|
return SymbolicCallArg(expr, tree.numel)
|
|
|
|
def generate_workspace_allocation(self, nbytes, device, zero_fill):
|
|
line = self.make_allocation(
|
|
"workspace", device, torch.uint8, shape=(nbytes,), stride=(1,)
|
|
)
|
|
self.writeline(line)
|
|
if zero_fill:
|
|
self.writeline(f"workspace.zero_(){self.ending}")
|
|
|
|
def wrap_kernel_call(self, name, call_args):
|
|
return f"{name}({', '.join(call_args)}){self.ending}"
|
|
|
|
def generate_profiler_mark_wrapper_call(self, stack):
|
|
self.wrapper_call.writeline("from torch.profiler import record_function")
|
|
self.wrapper_call.writeline(
|
|
f"with record_function('graph_{V.graph.graph_id}_inductor_wrapper_call'):"
|
|
)
|
|
stack.enter_context(self.wrapper_call.indent())
|
|
|
|
def generate_start_graph(self):
|
|
self.wrapper_call.writeline("start_graph()")
|
|
|
|
def generate_end_graph(self):
|
|
self.wrapper_call.writeline("end_graph()")
|
|
|
|
def generate_default_grid(self, name: str, grid_args: List[Any]):
|
|
return grid_args
|
|
|
|
def generate_kernel_call(
|
|
self,
|
|
name,
|
|
call_args,
|
|
grid=None,
|
|
device_index=None,
|
|
cuda=True,
|
|
triton=True,
|
|
arg_types=None,
|
|
grid_fn: str = "grid",
|
|
):
|
|
"""
|
|
Generates kernel call code.
|
|
|
|
cuda: Defines whether the backend is GPU. Otherwise the backend is CPU.
|
|
|
|
triton: Defines whether the GPU backend uses Triton for codegen.
|
|
Otherwise it uses the CUDA language for codegen.
|
|
Only valid when cuda == True.
|
|
"""
|
|
if cuda:
|
|
call_args_str = ", ".join(pexpr(item) for item in call_args)
|
|
stream_name = self.write_get_raw_stream(
|
|
V.graph.scheduler.current_device.index
|
|
)
|
|
if triton:
|
|
grid_str = ", ".join(pexpr(item) for item in grid)
|
|
grid_str = f"{grid_fn}({grid_str})"
|
|
self.writeline(
|
|
f"{name}.run({call_args_str}, grid={grid_str}, stream={stream_name})"
|
|
)
|
|
else:
|
|
stream_ptr = f"c_void_p({stream_name})"
|
|
self.writeline(f"{name}.{name}({call_args_str}, {stream_ptr})")
|
|
else:
|
|
self.writeline(self.wrap_kernel_call(name, call_args))
|
|
|
|
def writeline(self, line):
|
|
self.lines.append(line)
|
|
|
|
def enter_context(self, ctx):
|
|
self.lines.append(LineContext(ctx))
|
|
|
|
def val_to_cpp_arg_str(self, type_, val, is_legacy_abi) -> str:
|
|
raise NotImplementedError()
|
|
|
|
def val_to_arg_str(self, s):
|
|
if isinstance(s, SymTypes):
|
|
return pexpr(sympy.expand(repr(s)))
|
|
elif isinstance(s, sympy.Expr):
|
|
return pexpr(s)
|
|
elif isinstance(s, (tuple, list)):
|
|
|
|
@dataclasses.dataclass
|
|
class Shim:
|
|
ref: Any
|
|
|
|
def __repr__(self):
|
|
return self.ref
|
|
|
|
return repr(type(s)(Shim(self.val_to_arg_str(a)) for a in s))
|
|
elif isinstance(s, torch._ops.OpOverload):
|
|
return _get_qualified_name(s)
|
|
elif isinstance(s, (ir.Buffer, ReinterpretView)):
|
|
return s.codegen_reference()
|
|
else:
|
|
return repr(s)
|
|
|
|
# The following methods are for memory management
|
|
def make_buffer_allocation(self, buffer):
|
|
device = buffer.get_device()
|
|
dtype = buffer.get_dtype()
|
|
shape = tuple(buffer.get_size())
|
|
stride = tuple(buffer.get_stride())
|
|
return self.make_allocation(buffer.get_name(), device, dtype, shape, stride)
|
|
|
|
def make_allocation(self, name, device, dtype, shape, stride):
|
|
if device.type in ("cpu", "cuda"):
|
|
# optimized path for faster allocations, saving ~2us versus the stuff below
|
|
return (
|
|
f"{name} = empty_strided_{device.type}("
|
|
f"{self.codegen_shape_tuple(shape)}, "
|
|
f"{self.codegen_shape_tuple(stride)}, "
|
|
f"{dtype})"
|
|
)
|
|
# all other devices:
|
|
return (
|
|
f"{name} = empty_strided("
|
|
f"{self.codegen_shape_tuple(shape)}, "
|
|
f"{self.codegen_shape_tuple(stride)}, "
|
|
f"device='{device.type}', dtype={dtype})"
|
|
)
|
|
|
|
def make_tensor_alias(self, new_name, old_name, comment=""):
|
|
return f"{self.declare}{new_name} = {old_name}{self.ending} {self.comment} {comment}"
|
|
|
|
def make_buffer_free(self, buffer):
|
|
return f"del {buffer.get_name()}"
|
|
|
|
def make_free_by_names(self, names_to_del: List[str]):
|
|
return f"del {', '.join(name for name in names_to_del)}"
|
|
|
|
def codegen_exact_buffer_reuse(self, old_name: str, new_name: str, del_line: str):
|
|
return f"{self.declare_maybe_reference}{new_name} = {old_name}{del_line}{self.ending} {self.comment} reuse"
|
|
|
|
def make_buffer_reuse(self, old, new, delete_old: bool):
|
|
assert old.get_dtype() == new.get_dtype()
|
|
old_name = old.get_name()
|
|
new_name = new.get_name()
|
|
del_line = ";"
|
|
if old_name not in V.graph.get_output_names() and delete_old:
|
|
del_line = f"; {self.make_buffer_free(old)}"
|
|
|
|
if old.get_size() == new.get_size() and old.get_stride() == new.get_stride():
|
|
if old_name in self.stack_allocated_buffers:
|
|
self.stack_allocated_buffers[new_name] = new
|
|
return self.codegen_exact_buffer_reuse(old_name, new_name, del_line)
|
|
|
|
reinterpret_view = self.codegen_reinterpret_view(
|
|
old, new.get_size(), new.get_stride(), 0, self.wrapper_call
|
|
)
|
|
if reinterpret_view in self.stack_allocated_buffers:
|
|
self.stack_allocated_buffers[new_name] = new
|
|
return f"{self.declare_maybe_reference}{new_name} = {reinterpret_view}{del_line} {self.comment} reuse"
|
|
|
|
def codegen_deferred_allocation(self, name, layout):
|
|
self.writeline(
|
|
DeferredLine(
|
|
name,
|
|
f"{self.declare_maybe_reference}{name} = {layout.view.codegen_reference()}{self.ending} "
|
|
f"{self.comment} alias",
|
|
)
|
|
)
|
|
|
|
def codegen_allocation(self, buffer):
|
|
assert (
|
|
buffer.get_workspace_size() == 0
|
|
), "Only support zero workspace size for now!"
|
|
|
|
name = buffer.get_name()
|
|
|
|
if name in V.graph.removed_buffers or name in self.allocated:
|
|
return
|
|
self.allocated.add(name)
|
|
if isinstance(
|
|
buffer,
|
|
(ir.ExternKernelAlloc, ir.MultiOutput),
|
|
):
|
|
return
|
|
|
|
layout = buffer.get_layout()
|
|
if isinstance(layout, ir.MutationLayout):
|
|
return
|
|
if isinstance(layout, ir.AliasedLayout):
|
|
assert isinstance(
|
|
layout.view, ir.ReinterpretView
|
|
), f"unexpected {type(layout.view)}: {layout.view}"
|
|
self.codegen_allocation(layout.view.data)
|
|
self.codegen_deferred_allocation(name, layout)
|
|
return
|
|
|
|
self.writeline(AllocateLine(self, buffer))
|
|
|
|
def codegen_free(self, buffer):
|
|
assert (
|
|
buffer.get_workspace_size() == 0
|
|
), "Only support zero workspace size for now!"
|
|
|
|
name = buffer.get_name()
|
|
|
|
# can be freed but not reused
|
|
if isinstance(buffer, ir.InputBuffer):
|
|
self.writeline(self.make_buffer_free(buffer))
|
|
return
|
|
|
|
if not self.can_reuse(buffer):
|
|
return
|
|
self.freed.add(name)
|
|
|
|
self.writeline(FreeIfNotReusedLine(self, buffer))
|
|
|
|
def can_reuse(self, input_buffer, output_buffer=None):
|
|
name = input_buffer.get_name()
|
|
if (
|
|
name in V.graph.removed_buffers
|
|
or name in V.graph.graph_inputs
|
|
or name in V.graph.constants
|
|
or name in V.graph.never_reuse_buffers
|
|
or name in self.freed
|
|
):
|
|
return False
|
|
|
|
return True
|
|
|
|
def did_reuse(self, buffer, reused_buffer):
|
|
# Check whether a given buffer was reused by a possible reuser in the wrapper codegen
|
|
# Can be consulted from inside ir codegen, e.g. to determine whether a copy is needed
|
|
return (
|
|
buffer.get_name() in self.reuses
|
|
and self.reuses[buffer.get_name()] == reused_buffer.get_name()
|
|
)
|
|
|
|
def codegen_inplace_reuse(self, input_buffer, output_buffer):
|
|
assert buffer_reuse_key(input_buffer) == buffer_reuse_key(output_buffer)
|
|
self.codegen_allocation(input_buffer)
|
|
self.freed.add(input_buffer.get_name())
|
|
self.allocated.add(output_buffer.get_name())
|
|
self.reuses[output_buffer.get_name()] = input_buffer.get_name()
|
|
self.writeline(ReuseLine(self, input_buffer, output_buffer))
|
|
|
|
def codegen_unbacked_symbol_decl(self, symbol):
|
|
name = str(symbol)
|
|
if name in self.unbacked_symbol_decls:
|
|
return name
|
|
else:
|
|
# When in CppWrapperCodeGen, we should only generate the declaration once
|
|
self.unbacked_symbol_decls.add(name)
|
|
return self.declare + name
|
|
|
|
@staticmethod
|
|
def statically_known_int_or_none(x):
|
|
try:
|
|
val = V.graph._shape_env._maybe_evaluate_static(x)
|
|
return int(x)
|
|
except Exception:
|
|
return None
|
|
|
|
@staticmethod
|
|
def statically_known_list_of_ints_or_none(lst):
|
|
result = []
|
|
for x in lst:
|
|
num = WrapperCodeGen.statically_known_int_or_none(x)
|
|
if num is None:
|
|
return None
|
|
result.append(num)
|
|
return result
|
|
|
|
@staticmethod
|
|
def is_statically_known_list_of_ints(lst):
|
|
return WrapperCodeGen.statically_known_list_of_ints_or_none(lst) is not None
|
|
|
|
@staticmethod
|
|
def static_shape_for_buffer_or_none(buffer):
|
|
return WrapperCodeGen.statically_known_list_of_ints_or_none(buffer.get_size())
|
|
|
|
@staticmethod
|
|
def can_prove_buffer_has_static_shape(buffer):
|
|
return WrapperCodeGen.static_shape_for_buffer_or_none(buffer) is not None
|
|
|
|
|
|
class CppWrapperCodeGen(WrapperCodeGen):
|
|
"""
|
|
Generates cpp wrapper for running on CPU and calls cpp kernels
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.declare = "auto "
|
|
self.declare_maybe_reference = "decltype(auto) "
|
|
self.ending = ";"
|
|
self.open_bracket = "{"
|
|
self.closed_bracket = "}"
|
|
self.comment = "//"
|
|
self.namespace = "at::"
|
|
self.none_str = "nullptr" if config.abi_compatible else "at::Tensor()"
|
|
self.extern_call_ops = set()
|
|
self.size = "sizes()"
|
|
self.stride = "strides()"
|
|
self.cuda = False
|
|
self.supports_intermediate_hooks = False
|
|
self.outputs_need_copy = set()
|
|
self.kernel_callsite_id = count()
|
|
self.int_array_id = count() # for int array local variable declarations
|
|
self.declared_int_array_vars = set()
|
|
self.tmp_tensor_id = count() # for tmp tensor local variable declarations
|
|
self.arg_var_id = count()
|
|
self.used_cached_devices = set()
|
|
self.used_cached_dtypes = set()
|
|
self.cached_output_id = count()
|
|
self.scalar_to_tensor_id = count()
|
|
|
|
from .cpp import cexpr, CppPrinter
|
|
|
|
self.expr_printer = cexpr
|
|
|
|
# CppPrinter sometimes calls at::native functions which causes problems in
|
|
# the ABI-compatible mode. Currently we are hitting this problem when codegen
|
|
# Grid computation expressions, but we my need to fix other size computation
|
|
# as well.
|
|
class GridExprCppPrinter(CppPrinter):
|
|
def _print_FloorDiv(self, expr):
|
|
x, div = expr.args
|
|
x = self.paren(self.doprint(x))
|
|
div = self.paren(self.doprint(div))
|
|
assert expr.is_integer, "Expect integers in GridExprPrinter"
|
|
return f"({x}/{div})"
|
|
|
|
self.grid_expr_printer = GridExprCppPrinter().doprint
|
|
|
|
def generate_kernel_call(
|
|
self,
|
|
name,
|
|
call_args,
|
|
grid=None,
|
|
device_index=None,
|
|
cuda=True,
|
|
triton=True,
|
|
arg_types=None,
|
|
grid_fn: str = "grid",
|
|
):
|
|
"""
|
|
Generates kernel call code.
|
|
|
|
cuda: Defines whether the backend is GPU. Otherwise the backend is CPU.
|
|
|
|
triton: Defines whether the GPU backend uses Triton for codegen.
|
|
Otherwise it uses the CUDA language for codegen.
|
|
Only valid when cuda == True.
|
|
"""
|
|
if cuda:
|
|
return super().generate_kernel_call(
|
|
name,
|
|
call_args,
|
|
grid,
|
|
device_index,
|
|
cuda,
|
|
triton,
|
|
arg_types,
|
|
grid_fn,
|
|
)
|
|
else:
|
|
if V.graph.aot_mode and config.abi_compatible:
|
|
assert arg_types is not None and len(call_args) == len(
|
|
arg_types
|
|
), "Mismatch call_args and arg_types in generate_kernel_call"
|
|
new_args = []
|
|
for idx, arg in enumerate(call_args):
|
|
if "*" in arg_types[idx]:
|
|
var_name = f"var_{next(self.arg_var_id)}"
|
|
self.writeline(
|
|
f"auto* {var_name} = get_data_ptr_wrapper({arg});"
|
|
)
|
|
new_args.append(f"({arg_types[idx]})({var_name})")
|
|
else:
|
|
# arg is a scalar
|
|
new_args.append(arg)
|
|
self.writeline(self.wrap_kernel_call(name, new_args))
|
|
else:
|
|
self.writeline(self.wrap_kernel_call(name, call_args))
|
|
|
|
def write_constant(self, name, hashed):
|
|
# include a hash so our code cache gives different constants different files
|
|
self.header.writeline(f"// {name} {hashed}")
|
|
|
|
def write_header(self):
|
|
if V.graph.is_const_graph:
|
|
# We do not write header for constant graph, it will be written by main module.
|
|
return
|
|
|
|
if V.graph.aot_mode:
|
|
for header_cpp_file in ("interface.cpp", "implementation.cpp"):
|
|
with open(
|
|
os.path.join(
|
|
os.path.dirname(__file__), "aoti_runtime", header_cpp_file
|
|
)
|
|
) as f:
|
|
self.header.splice(f.read())
|
|
else:
|
|
self.header.splice(
|
|
"""
|
|
import torch
|
|
from torch._inductor.codecache import CppWrapperCodeCache
|
|
|
|
cpp_wrapper_src = (
|
|
'''
|
|
"""
|
|
)
|
|
|
|
if config.abi_compatible:
|
|
self.header.splice("#include <torch/csrc/inductor/aoti_torch/c/shim.h>")
|
|
else:
|
|
if not V.graph.aot_mode:
|
|
self.header.splice("#include <pybind11/pybind11.h>")
|
|
self.header.splice(
|
|
"""
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/core/dispatch/Dispatcher.h>
|
|
#include <ATen/native/BinaryOps.h>
|
|
#include <torch/csrc/inductor/aoti_runtime/utils.h>
|
|
#include <torch/csrc/inductor/aoti_torch/tensor_converter.h>
|
|
#include <torch/csrc/inductor/inductor_ops.h>
|
|
#include <torch/types.h>
|
|
#include <ATen/ops/bernoulli_native.h>
|
|
|
|
#define reinterpret_tensor torch::inductor::_reinterpret_tensor
|
|
#define alloc_from_pool torch::inductor::_alloc_from_pool
|
|
"""
|
|
)
|
|
if V.graph.cuda:
|
|
self.header.splice(
|
|
"""
|
|
#include <ATen/cuda/EmptyTensor.h>
|
|
"""
|
|
)
|
|
|
|
self.header.splice("#include <c10/util/generic_math.h>")
|
|
|
|
from .memory_planning import ALIGN_BYTES
|
|
|
|
# Round up to the nearest multiple of ALIGN_BYTES
|
|
# ALIGN_BYTES must be a power of 2
|
|
self.header.splice(
|
|
f"""
|
|
[[maybe_unused]] static int64_t align(int64_t nbytes) {{
|
|
return (nbytes + {ALIGN_BYTES} - 1) & -{ALIGN_BYTES};
|
|
}}
|
|
"""
|
|
)
|
|
|
|
def mark_output_type(self):
|
|
# mark output type to unwrap tensor back to python scalar
|
|
from ..ir import ShapeAsConstantBuffer
|
|
|
|
output_is_tensor = dict()
|
|
for idx, x in enumerate(V.graph.graph_outputs):
|
|
if isinstance(x, ShapeAsConstantBuffer):
|
|
output_is_tensor[idx] = False
|
|
else:
|
|
output_is_tensor[idx] = True
|
|
|
|
self.output_is_tensor = output_is_tensor
|
|
|
|
def write_prefix(self):
|
|
if V.graph.is_const_graph:
|
|
# We do not write prefix for constant graph, it will be written by main module.
|
|
return
|
|
|
|
if V.graph.aot_mode:
|
|
self.prefix.writeline("namespace torch {")
|
|
self.prefix.writeline("namespace aot_inductor {")
|
|
|
|
def write_input_output_info(
|
|
self,
|
|
info_kind: str,
|
|
idx: int,
|
|
name: str,
|
|
):
|
|
self.prefix.writeline(f"""{info_kind}[{idx}].name = "{name}";""")
|
|
|
|
@staticmethod
|
|
def get_input_cpp_type(input):
|
|
assert config.use_minimal_arrayref_interface
|
|
from .cpp import DTYPE_TO_CPP
|
|
|
|
if isinstance(input, sympy.Expr):
|
|
from ..graph import may_get_constant_buffer_dtype
|
|
|
|
dtype = may_get_constant_buffer_dtype(input)
|
|
assert dtype is not None, f"Failed to get the dtype of sympy.Expr: {input}"
|
|
return DTYPE_TO_CPP[dtype]
|
|
return f"ArrayRefTensor<{DTYPE_TO_CPP[input.get_dtype()]}>"
|
|
|
|
def write_wrapper_decl(self):
|
|
inputs_len = len(V.graph.graph_inputs.keys())
|
|
if V.graph.aot_mode:
|
|
if config.use_minimal_arrayref_interface and not V.graph.is_const_graph:
|
|
from .cpp import DTYPE_TO_CPP
|
|
|
|
input_cpp_types = ", ".join(
|
|
f"{CppWrapperCodeGen.get_input_cpp_type(x)}"
|
|
for x in V.graph.graph_inputs.values()
|
|
)
|
|
|
|
output_arrayref_types = ", ".join(
|
|
f"ArrayRefTensor<{DTYPE_TO_CPP[x.get_dtype()]}>"
|
|
for x in V.graph.graph_outputs
|
|
)
|
|
|
|
self.prefix.splice(
|
|
f"""
|
|
using AOTInductorModelInputs = std::tuple<{input_cpp_types}>;
|
|
using AOTInductorModelOutputs = std::tuple<{output_arrayref_types}>;
|
|
"""
|
|
)
|
|
|
|
if V.graph.const_module:
|
|
self.header.splice(V.graph.const_module.wrapper_code.header)
|
|
self.prefix.splice(V.graph.const_code)
|
|
|
|
if V.graph.is_const_graph:
|
|
self.prefix.splice(
|
|
"""
|
|
void AOTInductorModel::_const_run_impl(
|
|
std::vector<AtenTensorHandle>& output_handles,
|
|
DeviceStreamType stream,
|
|
AOTIProxyExecutorHandle proxy_executor
|
|
) {
|
|
"""
|
|
)
|
|
else:
|
|
if not config.aot_inductor.use_runtime_constant_folding:
|
|
# If we do not split the constant graph, we'll just create
|
|
# an empty implementation when wrapping the main module.
|
|
self.prefix.splice(
|
|
"""
|
|
void AOTInductorModel::_const_run_impl(
|
|
std::vector<AtenTensorHandle>& output_handles,
|
|
DeviceStreamType stream,
|
|
AOTIProxyExecutorHandle proxy_executor
|
|
) {}
|
|
|
|
"""
|
|
)
|
|
|
|
run_impl_proto = """
|
|
void AOTInductorModel::run_impl(
|
|
AtenTensorHandle*
|
|
input_handles, // array of input AtenTensorHandle; handles
|
|
// are stolen; the array itself is borrowed
|
|
AtenTensorHandle*
|
|
output_handles, // array for writing output AtenTensorHandle; handles
|
|
// will be stolen by the caller; the array itself is
|
|
// borrowed
|
|
DeviceStreamType stream,
|
|
AOTIProxyExecutorHandle proxy_executor
|
|
) {
|
|
"""
|
|
if config.use_minimal_arrayref_interface:
|
|
self.prefix.splice(
|
|
"""
|
|
template <>
|
|
AOTInductorModelOutputs AOTInductorModel::run_impl_minimal_arrayref_interface<
|
|
AOTInductorModelInputs, AOTInductorModelOutputs>(
|
|
const AOTInductorModelInputs& inputs,
|
|
DeviceStreamType stream,
|
|
AOTIProxyExecutorHandle proxy_executor
|
|
) {
|
|
"""
|
|
)
|
|
self.suffix.splice(run_impl_proto)
|
|
self.suffix.splice(
|
|
"""
|
|
AOTInductorModelInputs inputs;
|
|
convert_handles_to_inputs(input_handles, inputs);
|
|
auto outputs = run_impl_minimal_arrayref_interface<AOTInductorModelInputs, AOTInductorModelOutputs>(
|
|
inputs, stream, proxy_executor);
|
|
// NOTE: outputs is full of ArrayRef to thread_local storage. If in the future we need this
|
|
// interface to perform well for a DSO using the minimal arrayref interface, all we need
|
|
// to do is provide ThreadLocalCachedTensor for each one!
|
|
convert_outputs_to_handles(outputs, output_handles);
|
|
}
|
|
"""
|
|
)
|
|
|
|
self.suffix.splice(
|
|
"""
|
|
extern "C" AOTIRuntimeError AOTInductorModelRunMinimalArrayrefInterface(
|
|
AOTInductorModelHandle model_handle,
|
|
const AOTInductorModelInputs& inputs,
|
|
AOTInductorModelOutputs& outputs) {
|
|
auto model = reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(model_handle);
|
|
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
|
outputs = model->run_impl_minimal_arrayref_interface<AOTInductorModelInputs, AOTInductorModelOutputs>(
|
|
inputs,
|
|
(torch::aot_inductor::DeviceStreamType)nullptr,
|
|
nullptr);
|
|
})
|
|
}
|
|
"""
|
|
)
|
|
else:
|
|
self.prefix.splice(run_impl_proto)
|
|
else:
|
|
self.prefix.splice(
|
|
"""
|
|
void inductor_entry_impl(
|
|
AtenTensorHandle*
|
|
input_handles, // array of input AtenTensorHandle; handles
|
|
// are stolen; the array itself is borrowed
|
|
AtenTensorHandle*
|
|
output_handles // array for writing output AtenTensorHandle; handles
|
|
// will be stolen by the caller; the array itself is
|
|
// borrowed)
|
|
) {
|
|
"""
|
|
)
|
|
with self.prefix.indent():
|
|
# assign inputs and outputs in both cases so the later codegen can be simplified
|
|
if not config.use_minimal_arrayref_interface:
|
|
if V.graph.aot_mode:
|
|
if not V.graph.is_const_graph:
|
|
if config.abi_compatible:
|
|
self.prefix.splice(
|
|
"""
|
|
auto inputs = steal_from_raw_handles_to_raii_handles(input_handles, num_inputs());
|
|
"""
|
|
)
|
|
else:
|
|
# This looks dumb, but can avoid creating two versions of code in the AOTInductor runtime.
|
|
self.prefix.splice(
|
|
"""
|
|
auto inputs = alloc_tensors_by_stealing_from_handles(input_handles, num_inputs());
|
|
"""
|
|
)
|
|
else:
|
|
# The use of alloc_tensors_by_stealing_from_handles will be consolidated
|
|
num_args = len(V.graph.graph_inputs) + len(V.graph.constants)
|
|
self.prefix.splice(
|
|
f"""
|
|
pybind11::gil_scoped_release release;
|
|
|
|
auto inputs = torch::aot_inductor::alloc_tensors_by_stealing_from_handles(input_handles, {num_args});
|
|
"""
|
|
)
|
|
|
|
if inputs_len != 0:
|
|
for idx, input_key in enumerate(V.graph.graph_inputs.keys()):
|
|
if config.use_minimal_arrayref_interface:
|
|
self.prefix.writeline(
|
|
f"auto {input_key} = std::get<{idx}>(inputs);"
|
|
)
|
|
continue
|
|
# unwrap input tensor back to scalar
|
|
if isinstance(V.graph.graph_inputs[input_key], sympy.Expr):
|
|
from ..graph import may_get_constant_buffer_dtype
|
|
from .cpp import DTYPE_TO_CPP
|
|
|
|
dtype = may_get_constant_buffer_dtype(
|
|
V.graph.graph_inputs[input_key]
|
|
)
|
|
assert (
|
|
dtype is not None
|
|
), "Fails to get the dtype of the sympy.Expr"
|
|
cpp_dtype = DTYPE_TO_CPP[dtype]
|
|
assert (
|
|
not config.abi_compatible
|
|
), "Need to add .item support for abi_compatible AOTInductor codegen"
|
|
self.prefix.writeline(
|
|
f"{cpp_dtype} {input_key} = inputs[{idx}].item<{cpp_dtype}>();"
|
|
)
|
|
else:
|
|
self.prefix.writeline(
|
|
f"auto {input_key} = std::move(inputs[{idx}]);"
|
|
)
|
|
|
|
assert all(
|
|
isinstance(v, torch.Tensor) for v in list(V.graph.constants.values())
|
|
), "Expect all constants to be Tensor"
|
|
for idx, constants_key in enumerate(V.graph.constants.keys()):
|
|
if V.graph.aot_mode:
|
|
# Weights are stored in constants_ and owned by RAIIAtenTensorHandle there.
|
|
# Don't call std::move here because it will cause constants_ to lose the ownership.
|
|
if config.abi_compatible:
|
|
self.prefix.writeline(
|
|
f"""auto {constants_key} = constants_->at({idx});"""
|
|
)
|
|
else:
|
|
self.prefix.writeline(
|
|
f"auto {constants_key} = *tensor_handle_to_tensor_pointer("
|
|
+ f"""constants_->at({idx}));"""
|
|
)
|
|
else:
|
|
# Append constants as inputs to the graph
|
|
constants_idx = inputs_len + idx
|
|
self.prefix.writeline(
|
|
f"auto {constants_key} = inputs[{constants_idx}];"
|
|
)
|
|
|
|
self.codegen_inputs(self.prefix, V.graph.graph_inputs)
|
|
|
|
if V.graph.aot_mode:
|
|
if not V.graph.is_const_graph:
|
|
if config.use_minimal_arrayref_interface:
|
|
# TODO: input shape checking for regular tensor interface as well?
|
|
self.codegen_input_numel_asserts()
|
|
else:
|
|
self.prefix.writeline("inputs.clear();")
|
|
self.prefix.writeline(
|
|
"auto& kernels = static_cast<AOTInductorModelKernels&>(*this->kernels_.get());"
|
|
)
|
|
|
|
def codegen_input_numel_asserts(self):
|
|
for name, buf in V.graph.graph_inputs.items():
|
|
if isinstance(buf, sympy.Expr):
|
|
continue
|
|
|
|
# comparing strides for 0 size tensor is tricky. Ignore them for now.
|
|
if sympy_product(buf.get_size()) == 0:
|
|
continue
|
|
numel = buf.get_numel()
|
|
self.prefix.writeline(f"assert_numel({name}, {numel});")
|
|
|
|
def codegen_input_size_var_decl(self, code: IndentedBuffer, name):
|
|
if config.abi_compatible:
|
|
code.writeline(f"int64_t* {name}_size;")
|
|
code.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_sizes({name}, &{name}_size));"
|
|
)
|
|
else:
|
|
super().codegen_input_size_var_decl(code, name)
|
|
|
|
def codegen_input_stride_var_decl(self, code: IndentedBuffer, name):
|
|
if config.abi_compatible:
|
|
code.writeline(f"int64_t* {name}_stride;")
|
|
code.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_strides({name}, &{name}_stride));"
|
|
)
|
|
else:
|
|
super().codegen_input_stride_var_decl(code, name)
|
|
|
|
def codegen_model_kernels(self):
|
|
self.prefix.writeline("namespace {")
|
|
self.prefix.writeline(
|
|
"class AOTInductorModelKernels : public AOTInductorModelKernelsBase {"
|
|
)
|
|
self.prefix.writeline(" public:")
|
|
declare_kernel = set(self.src_to_kernel.values())
|
|
declare_kernel.update(self.user_defined_kernel_cache.values())
|
|
if V.graph.const_module:
|
|
declare_kernel.update(
|
|
V.graph.const_module.wrapper_code.src_to_kernel.values()
|
|
)
|
|
for kernel in declare_kernel:
|
|
self.prefix.writeline(f" CUfunction {kernel}{{nullptr}};")
|
|
self.prefix.writeline("};")
|
|
self.prefix.writeline("} // namespace")
|
|
|
|
def codegen_model_constructor(self):
|
|
"""
|
|
// Generated code example
|
|
AOTInductorModel::AOTInductorModel()
|
|
: AOTInductorModelBase(4, 1) {
|
|
inputs_info_[0].name = "input0";
|
|
inputs_info_[0].dtype = "torch.float16";
|
|
...
|
|
constants_info_[0].name = "L__self___weight";
|
|
constants_info_[0].dtype = at::kFloat;
|
|
constants_info_[0].offset = 0;
|
|
constants_info_[0].data_size = 8192;
|
|
constants_info_[0].shape = {64, 32};
|
|
constants_info_[0].stride = {32, 1};
|
|
...
|
|
outputs_info_[0].name = "output0";
|
|
outputs_info_[0].dtype = "torch.float16";
|
|
}
|
|
"""
|
|
|
|
num_inputs = len(V.graph.graph_inputs)
|
|
num_outputs = len(V.graph.graph_outputs)
|
|
num_constants = len(V.graph.constants)
|
|
self.prefix.splice(
|
|
f"""
|
|
AOTInductorModel::AOTInductorModel(std::shared_ptr<ConstantMap> constants_map,
|
|
std::shared_ptr<std::vector<ConstantHandle>> constants_array,
|
|
const std::string& device_str,
|
|
std::optional<std::string> cubin_dir)
|
|
: AOTInductorModelBase({num_inputs}, {num_outputs}, {num_constants}, device_str, cubin_dir) {{
|
|
"""
|
|
)
|
|
|
|
with self.prefix.indent():
|
|
for idx, (name, inp) in enumerate(V.graph.graph_inputs.items()):
|
|
assert not isinstance(
|
|
inp, sympy.Expr
|
|
), f"input {name=} cannot be symbolic"
|
|
self.write_input_output_info("inputs_info_", idx, name)
|
|
|
|
for idx, (name, tensor) in enumerate(V.graph.constants.items()):
|
|
assert isinstance(tensor, torch.Tensor)
|
|
self.prefix.writeline(f"""constants_info_[{idx}].name = "{name}";""")
|
|
self.prefix.writeline(
|
|
f"constants_info_[{idx}].dtype = static_cast<int32_t>({self.codegen_dtype(tensor.dtype)});"
|
|
)
|
|
self.prefix.writeline(
|
|
f"constants_info_[{idx}].offset = {tensor.storage_offset()};"
|
|
)
|
|
self.prefix.writeline(
|
|
f"constants_info_[{idx}].data_size = {tensor.untyped_storage().nbytes()};"
|
|
)
|
|
from_folded = "true" if name in V.graph.folded_constants else "false"
|
|
self.prefix.writeline(
|
|
f"constants_info_[{idx}].from_folded = {from_folded};"
|
|
)
|
|
|
|
size_str = ", ".join([str(s) for s in tensor.size()])
|
|
self.prefix.writeline(f"constants_info_[{idx}].shape = {{{size_str}}};")
|
|
|
|
stride_str = ", ".join([str(s) for s in tensor.stride()])
|
|
self.prefix.writeline(
|
|
f"constants_info_[{idx}].stride = {{{stride_str}}};"
|
|
)
|
|
if name in V.graph.dynamo_flat_name_to_original_fqn:
|
|
self.prefix.writeline(
|
|
f"""constants_info_[{idx}].original_fqn = "{V.graph.dynamo_flat_name_to_original_fqn[name]}";"""
|
|
)
|
|
|
|
self.prefix.writeline("update_constants_map(std::move(constants_map));")
|
|
self.prefix.writeline("update_constants_array(std::move(constants_array));")
|
|
|
|
def escape_string(x):
|
|
return (
|
|
x.replace("\\", "\\\\")
|
|
.replace('"', '\\"')
|
|
.replace("\n", "\\n")
|
|
.replace("\t", "\\t")
|
|
)
|
|
|
|
self.prefix.writeline(
|
|
f'in_spec_ = "{escape_string(config.aot_inductor.serialized_in_spec)}";'
|
|
)
|
|
self.prefix.writeline(
|
|
f'out_spec_ = "{escape_string(config.aot_inductor.serialized_out_spec)}";'
|
|
)
|
|
|
|
for idx, output in enumerate(V.graph.graph_outputs):
|
|
assert not isinstance(
|
|
output, sympy.Expr
|
|
), f"output {name=} cannot be symbolic"
|
|
name = f"output{idx}"
|
|
self.write_input_output_info("outputs_info_", idx, name)
|
|
|
|
self.prefix.writeline(
|
|
"this->kernels_ = std::make_unique<AOTInductorModelKernels>();"
|
|
)
|
|
|
|
self.prefix.writeline("}")
|
|
|
|
def codegen_const_run_driver(self):
|
|
"""
|
|
// Generated code example
|
|
std::unordered_map<std::string, AtenTensorHandle> AOTInductorModel::const_run_impl(
|
|
DeviceStreamType stream,
|
|
AOTIProxyExecutorHandle proxy_executor,
|
|
bool initialization
|
|
) {
|
|
std::unordered_map<std::string, AtenTensorHandle> folded_constants_map;
|
|
std::vector<AtenTensorHandle> output_handles;
|
|
// build up output_handles over here.
|
|
_const_run_impl(output_handles, stream, proxy_executor);
|
|
// build up folded_constants_map
|
|
return folded_constants_map;
|
|
}
|
|
"""
|
|
|
|
self.prefix.splice(
|
|
"""
|
|
std::unordered_map<std::string, AtenTensorHandle> AOTInductorModel::const_run_impl(
|
|
DeviceStreamType stream,
|
|
AOTIProxyExecutorHandle proxy_executor,
|
|
bool initialization
|
|
) {
|
|
"""
|
|
)
|
|
if not config.aot_inductor.use_runtime_constant_folding:
|
|
self.prefix.splice(
|
|
"""
|
|
if (!initialization) {
|
|
throw std::runtime_error(std::string("use_runtime_constant_folding is not set."));
|
|
}
|
|
return {};
|
|
}
|
|
"""
|
|
)
|
|
return
|
|
|
|
with self.prefix.indent():
|
|
# This is a mapping to the index of constant folding graph's output
|
|
const_index_mapping: List[Optional[Tuple[int, str]]] = [None] * len(
|
|
V.graph.const_output_index
|
|
)
|
|
for idx, (name, _) in enumerate(V.graph.constants.items()):
|
|
if name in V.graph.const_output_index:
|
|
const_index_mapping[V.graph.const_output_index[name]] = (idx, name) # type: ignore[call-overload]
|
|
assert (
|
|
None not in const_index_mapping
|
|
), "Not all constant gets mapped for constant folding graph."
|
|
|
|
self.prefix.writeline(
|
|
f"""
|
|
std::unordered_map<std::string, AtenTensorHandle> folded_constants_map;
|
|
folded_constants_map.reserve({len(const_index_mapping)});
|
|
std::vector<AtenTensorHandle> output_handles({len(const_index_mapping)});
|
|
"""
|
|
)
|
|
|
|
self.prefix.splice(
|
|
"""
|
|
// The below assignment of output_handles to constants is not used directly.
|
|
// It's only used to memo the correspondence of handle and constants.
|
|
"""
|
|
)
|
|
|
|
for output_idx, (const_idx, _) in enumerate(const_index_mapping): # type: ignore[misc]
|
|
self.prefix.writeline(
|
|
f"output_handles[{output_idx}] = constants_->at({const_idx});"
|
|
)
|
|
|
|
self.prefix.writeline(
|
|
"_const_run_impl(output_handles, stream, proxy_executor);"
|
|
)
|
|
|
|
for output_idx, (_, const_name) in enumerate(const_index_mapping): # type: ignore[misc]
|
|
self.prefix.writeline(
|
|
f'folded_constants_map["{const_name}"] = output_handles[{output_idx}];'
|
|
)
|
|
self.prefix.writeline("return folded_constants_map;")
|
|
|
|
self.prefix.writeline("}")
|
|
|
|
def generate(self, is_inference):
|
|
if V.graph.aot_mode and not V.graph.is_const_graph:
|
|
self.codegen_model_kernels()
|
|
self.codegen_model_constructor()
|
|
self.codegen_const_run_driver()
|
|
self.write_wrapper_decl()
|
|
return super().generate(is_inference)
|
|
|
|
def finalize_prefix(self):
|
|
cached_dtypes_buffer = IndentedBuffer()
|
|
if config.abi_compatible:
|
|
for dtype in self.used_cached_dtypes:
|
|
cached_dtypes_buffer.writeline(f"CACHE_TORCH_DTYPE({dtype});")
|
|
for device in self.used_cached_devices:
|
|
cached_dtypes_buffer.writeline(f"CACHE_TORCH_DEVICE({device});")
|
|
cached_dtypes_buffer.splice(self.prefix)
|
|
self.prefix = cached_dtypes_buffer
|
|
|
|
def define_kernel(
|
|
self, name: str, kernel: str, metadata: Optional[str] = None, cuda=False
|
|
):
|
|
self.header.splice(f"\n{kernel}\n")
|
|
|
|
def codegen_scalar_to_tensor(self, output: str):
|
|
name = f"scalar_to_tensor_{next(self.scalar_to_tensor_id)}"
|
|
self.wrapper_call.writeline(
|
|
f"RAIIAtenTensorHandle {name} = scalar_to_tensor_handle({output});"
|
|
)
|
|
return name
|
|
|
|
@cache_on_self
|
|
def get_output_refs(self):
|
|
return [
|
|
f"at::scalar_tensor({x.codegen_reference(self.wrapper_call)})"
|
|
if isinstance(x, ir.ShapeAsConstantBuffer) and not config.abi_compatible
|
|
else x.codegen_reference(self.wrapper_call)
|
|
for x in V.graph.graph_outputs
|
|
]
|
|
|
|
def generate_return(self, output_refs):
|
|
cst_names = V.graph.constants.keys()
|
|
arr_iface = (
|
|
not V.graph.is_const_graph and config.use_minimal_arrayref_interface
|
|
) # For brevity.
|
|
|
|
def use_thread_local_cached_output_tensor(idx, output):
|
|
cached_output_name = f"cached_output_{next(self.cached_output_id)}"
|
|
cache_type = "Array" if arr_iface else "Tensor"
|
|
self.wrapper_call.writeline(
|
|
f"thread_local ThreadLocalCachedOutput{cache_type}<std::decay_t<decltype({output})>> "
|
|
f"{cached_output_name}({output});"
|
|
)
|
|
if arr_iface:
|
|
self.wrapper_call.writeline(
|
|
f"{cached_output_name}.copy_data_from({output});"
|
|
)
|
|
output_entry = f"std::get<{idx}>(output_arrayref_tensors)"
|
|
element_type = f"std::decay_t<decltype({output_entry}.data()[0])>"
|
|
self.wrapper_call.writeline(
|
|
f"{output_entry} = {cached_output_name}.arrayref_tensor<{element_type}>();"
|
|
)
|
|
else:
|
|
self.wrapper_call.writeline(
|
|
f"{cached_output_name}.copy_data_from({output});"
|
|
)
|
|
self.wrapper_call.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_new_uninitialized_tensor(&output_handles[{idx}]));"
|
|
)
|
|
self.wrapper_call.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_assign_tensors({cached_output_name}.tensor(), "
|
|
f"output_handles[{idx}]));"
|
|
)
|
|
|
|
if arr_iface:
|
|
self.wrapper_call.writeline(
|
|
"AOTInductorModelOutputs output_arrayref_tensors;"
|
|
)
|
|
for idx, output in enumerate(output_refs):
|
|
if config.abi_compatible:
|
|
output_buffer = V.graph.graph_outputs[idx]
|
|
if isinstance(output_buffer, ir.ShapeAsConstantBuffer):
|
|
# Need to wrap scalar into tensor as the main function returns a vector of tensors
|
|
output_tensor = self.codegen_scalar_to_tensor(output)
|
|
self.wrapper_call.writeline(
|
|
f"output_handles[{idx}] = {output_tensor}.release();"
|
|
)
|
|
continue
|
|
|
|
output_is_tensor_handle_expr = (
|
|
f"std::is_same_v<std::decay_t<decltype({output})>,"
|
|
"RAIIAtenTensorHandle> || "
|
|
f"std::is_same_v<std::decay_t<decltype({output})>,"
|
|
"AtenTensorHandle> || "
|
|
f"std::is_same_v<std::decay_t<decltype({output})>,"
|
|
"ConstantHandle>"
|
|
)
|
|
self.wrapper_call.writeline(
|
|
f"if constexpr ({output_is_tensor_handle_expr}) {{"
|
|
)
|
|
with self.wrapper_call.indent():
|
|
if arr_iface:
|
|
cached_output_name = (
|
|
f"cached_output_{next(self.cached_output_id)}"
|
|
)
|
|
output_value_type = f"std::decay_t<decltype(std::get<{idx}>(output_arrayref_tensors).data()[0])>"
|
|
self.wrapper_call.writeline(
|
|
f"thread_local RAIIAtenTensorHandle {cached_output_name};"
|
|
)
|
|
if output in cst_names:
|
|
# NOTE(return_constant): In some rare cases where we return
|
|
# a constant, we have to return a copy of this constant,
|
|
# because (1) constants are not owned by the Model instance
|
|
# (2) constants remain the same cross inference runs,
|
|
# assuming they are not updated at runtime Basically, we
|
|
# cannot release or transfer the ownership of any original
|
|
# constant to the user.
|
|
self.wrapper_call.writeline(
|
|
f"AtenTensorHandle {cached_output_name}_tmp;"
|
|
)
|
|
self.wrapper_call.writeline(
|
|
f"aoti_torch_clone({output}, &{cached_output_name}_tmp);"
|
|
)
|
|
self.wrapper_call.writeline(
|
|
f"{cached_output_name} = {cached_output_name}_tmp;"
|
|
)
|
|
else:
|
|
self.wrapper_call.writeline(
|
|
f"{cached_output_name} = {output}.release();"
|
|
)
|
|
self.wrapper_call.writeline(
|
|
f"convert_handle_to_arrayref_tensor({cached_output_name}, "
|
|
f"std::get<{idx}>(output_arrayref_tensors));"
|
|
)
|
|
else:
|
|
if output in cst_names:
|
|
# See NOTE(return_constant) above.
|
|
self.wrapper_call.writeline(
|
|
f"aoti_torch_clone({output}, &output_handles[{idx}]);"
|
|
)
|
|
else:
|
|
self.wrapper_call.writeline(
|
|
f"output_handles[{idx}] = {output}.release();"
|
|
)
|
|
self.wrapper_call.writeline("} else {")
|
|
with self.wrapper_call.indent():
|
|
use_thread_local_cached_output_tensor(idx, output)
|
|
self.wrapper_call.writeline("}")
|
|
|
|
else:
|
|
assert (
|
|
not arr_iface
|
|
), "minimal ArrayRef interface is only supported in ABI-compatible mode"
|
|
if output in cst_names:
|
|
output_expr = f"{output}.clone()"
|
|
# See NOTE(return_constant) above.
|
|
else:
|
|
output_expr = output
|
|
self.wrapper_call.writeline(
|
|
f"output_handles[{idx}] = reinterpret_cast<AtenTensorHandle>("
|
|
+ f"new at::Tensor({output_expr}));"
|
|
)
|
|
if arr_iface:
|
|
self.wrapper_call.writeline("return output_arrayref_tensors;")
|
|
|
|
def generate_before_suffix(self, result):
|
|
if not V.graph.is_const_graph:
|
|
if V.graph.aot_mode:
|
|
result.writeline("} // AOTInductorModel::run_impl")
|
|
else:
|
|
result.writeline("} // inductor_entry_impl")
|
|
|
|
def generate_end(self, result):
|
|
if V.graph.aot_mode:
|
|
if V.graph.is_const_graph:
|
|
result.writeline("} // AOTInductorModel::_const_run_impl")
|
|
else:
|
|
result.writeline("} // namespace aot_inductor")
|
|
result.writeline("} // namespace torch")
|
|
return
|
|
|
|
result.writeline("'''\n)")
|
|
result.splice(
|
|
f"""
|
|
inductor_entry = CppWrapperCodeCache.load_pybinding(
|
|
["std::vector<at::Tensor>"], cpp_wrapper_src, {self.cuda}, {len(V.graph.graph_outputs)})
|
|
"""
|
|
)
|
|
|
|
# unwrap output tensor back to python scalar
|
|
if all(x for x in self.output_is_tensor.values()):
|
|
# If no ShapeAsConstantBuffer in the output, directly return the output as tensors
|
|
return_str = "return f(args_tensor)"
|
|
else:
|
|
outputs = [
|
|
f"outputs[{i}]" if self.output_is_tensor[i] else f"outputs[{i}].item()"
|
|
for i in range(len(V.graph.graph_outputs))
|
|
]
|
|
outputs_str = f"[{', '.join(outputs)}]"
|
|
return_str = f"""
|
|
outputs = f(args_tensor)
|
|
return {outputs_str}
|
|
"""
|
|
|
|
args_str = "args_tensor = [arg if isinstance(arg, torch.Tensor) else torch.tensor(arg) for arg in args]"
|
|
if V.graph.constants:
|
|
# Append constants to the input args for cpp wrapper.
|
|
# Python wrapper directly gets the value inside the wrapper call
|
|
# as a global variable passed when calling exec(code, mod.__dict__, mod.__dict__).
|
|
# For cpp wrapper, we need to pass this python value to the inductor_entry_cpp function explicitly.
|
|
assert all(
|
|
isinstance(v, torch.Tensor) for v in list(V.graph.constants.values())
|
|
), "Expect all constants to be Tensor"
|
|
constants_str = f"[{', '.join(V.graph.constants.keys())}]"
|
|
args_str += f"""
|
|
constants_tensor = {constants_str}
|
|
args_tensor.extend(constants_tensor)
|
|
"""
|
|
|
|
# Wrap the func to support setting result._boxed_call = True
|
|
result.splice(
|
|
f"""
|
|
def _wrap_func(f):
|
|
def g(args):
|
|
{args_str}
|
|
{return_str}
|
|
return g
|
|
call = _wrap_func(inductor_entry)
|
|
"""
|
|
)
|
|
|
|
def generate_c_shim_extern_kernel_call(self, kernel, args):
|
|
# In the abi_compatible mode, we call fallback aten ops through a C shim layer
|
|
self.allow_stack_allocation = False
|
|
kernel_tokens = kernel.split("::")
|
|
kernel_suffix = kernel_tokens[-1]
|
|
if kernel_suffix == "call":
|
|
kernel_suffix = kernel_tokens[-2]
|
|
shim_fn = f"aoti_torch_{kernel_suffix}"
|
|
# HACK: val_to_arg_str jams multiple arguments together using a comma. If that
|
|
# ever breaks, it needs to be reworked to be able to return multiple arguments,
|
|
# and the split-on-comma code here needs to be removed.
|
|
wrapped_args = []
|
|
for x in args:
|
|
pieces = x.split(", ")
|
|
for piece in pieces:
|
|
# We only really *need* convert_arrayref_tensor_to_tensor for
|
|
# ArrayRefTensors. The code flowing into here uses `0` for nullptr,
|
|
# which convert_arrayref_tensor_to_tensor would blindly coerce to int,
|
|
# so just avoid wrapping integers.
|
|
if not piece.isdigit():
|
|
piece = f"convert_arrayref_tensor_to_tensor({piece})"
|
|
wrapped_args.append(piece)
|
|
self.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK({shim_fn}({', '.join(wrapped_args)}));"
|
|
)
|
|
|
|
def generate_c_shim_extern_kernel_alloc(self, extern_kernel, args):
|
|
# registered output buffer name
|
|
name = extern_kernel.name
|
|
output_handle_name = f"{name}_handle"
|
|
self.writeline(f"AtenTensorHandle {output_handle_name};")
|
|
output_arg = f"&{output_handle_name}"
|
|
self.generate_c_shim_extern_kernel_call(
|
|
extern_kernel.get_kernel_name(), args + [output_arg]
|
|
)
|
|
self.writeline(f"RAIIAtenTensorHandle {name}({output_handle_name});")
|
|
|
|
def generate_extern_kernel_alloc(self, extern_kernel, args):
|
|
if V.graph.aot_mode and config.abi_compatible:
|
|
self.generate_c_shim_extern_kernel_alloc(extern_kernel, args)
|
|
else:
|
|
super().generate_extern_kernel_alloc(extern_kernel, args)
|
|
|
|
def generate_c_shim_fallback_kernel(self, fallback_kernel, args):
|
|
output_args = []
|
|
output_raii_handles = []
|
|
output_name_base = fallback_kernel.get_name()
|
|
for idx, output in enumerate(fallback_kernel.outputs):
|
|
if isinstance(output, ir.MultiOutput):
|
|
name = f"{output.get_name()}"
|
|
output_handle_name = f"{name}_handle"
|
|
if output.indices:
|
|
assert (
|
|
output.indices[0][1] == idx
|
|
), f"expected {output.indices[0][1]=} == {idx=} for {output_name_base=}"
|
|
self.writeline(f"AtenTensorHandle {output_handle_name};")
|
|
output_args.append(f"&{output_handle_name}")
|
|
output_raii_handles.append(
|
|
f"RAIIAtenTensorHandle {name}({output_handle_name});"
|
|
)
|
|
elif isinstance(output, int):
|
|
output_name = f"{output_name_base}_{idx}"
|
|
self.writeline(f"int64_t {output_name} = {output};")
|
|
output_args.append(f"&{output_name}")
|
|
elif output is None:
|
|
output_args.append("nullptr")
|
|
else:
|
|
raise NotImplementedError("unsupported type of {output=}")
|
|
args = args + output_args
|
|
assert (
|
|
fallback_kernel.abi_compatible_kernel is not None
|
|
), f"abi_compatible_kernel is None for {fallback_kernel.python_kernel_name=}"
|
|
self.generate_c_shim_extern_kernel_call(
|
|
fallback_kernel.abi_compatible_kernel, args
|
|
)
|
|
for raii_handle in output_raii_handles:
|
|
self.writeline(raii_handle)
|
|
|
|
def generate_fallback_kernel(self, fallback_kernel, args):
|
|
if V.graph.aot_mode and config.abi_compatible:
|
|
self.generate_c_shim_fallback_kernel(fallback_kernel, args)
|
|
else:
|
|
super().generate_fallback_kernel(fallback_kernel, args)
|
|
|
|
def generate_extern_kernel_out(self, output_view, codegen_reference, args, kernel):
|
|
if output_view:
|
|
output_as_strided = f"{output_view.codegen_reference()}"
|
|
output_name = f"{output_view.get_name()}_as_strided"
|
|
self.writeline(f"auto {output_name} = {output_as_strided};")
|
|
|
|
args.insert(0, output_name)
|
|
else:
|
|
args.insert(0, f"{codegen_reference}")
|
|
|
|
if V.graph.aot_mode and config.abi_compatible:
|
|
self.generate_c_shim_extern_kernel_call(kernel, args)
|
|
else:
|
|
self.writeline(self.wrap_kernel_call(kernel, args))
|
|
|
|
def generate_user_defined_triton_kernel(self, kernel_name, grid, configs, args):
|
|
assert len(grid) != 0
|
|
if len(grid) == 1:
|
|
grid_decision = grid[0]
|
|
else:
|
|
meta = CudaKernelParamCache.get(kernel_name)
|
|
assert meta is not None
|
|
grid_decision = None
|
|
for i, c in enumerate(configs):
|
|
if all(arg == meta["meta"][key] for key, arg in c.kwargs.items()):
|
|
grid_decision = grid[i]
|
|
break
|
|
assert grid_decision is not None
|
|
|
|
self.generate_kernel_call(
|
|
kernel_name,
|
|
args,
|
|
grid=grid_decision,
|
|
device_index=V.graph.scheduler.current_device.index,
|
|
cuda=True,
|
|
triton=True,
|
|
)
|
|
|
|
def generate_scatter_fallback(
|
|
self, output, inputs, kernel, python_kernel_name, src_is_tensor, reduce, kwargs
|
|
):
|
|
# TODO: support other overload for cpp wrapper and remove the below assertions
|
|
if V.graph.aot_mode and config.abi_compatible:
|
|
# call the ABI shim function instead of the ATen one
|
|
kernel = kernel.replace("at::", "aoti_torch_")
|
|
line = f"{kernel}({output}, {','.join(map(str, inputs))}"
|
|
if python_kernel_name == "aten.scatter_":
|
|
if src_is_tensor:
|
|
if reduce:
|
|
line += f", {V.graph.wrapper_code.val_to_arg_str(reduce)}"
|
|
else:
|
|
assert (
|
|
reduce is None
|
|
), "Expect reduce to be None for aten.scatter_ with scalar src"
|
|
else:
|
|
line += f", {','.join(kwargs)}"
|
|
line += f"){self.ending}"
|
|
self.writeline(line)
|
|
|
|
def generate_index_put_fallback(self, kernel, x, indices, values, accumulate):
|
|
if V.graph.aot_mode and V.graph.cpp_wrapper and config.abi_compatible:
|
|
# See the comment in codegen_reinterpret_view about why having something like
|
|
# RAIIAtenTensorHandle(tmp_tensor_handle_2) in a tmp array can cause the correponding
|
|
# tensor prematurely deallocated, thus this std:vector().data() trick here.
|
|
indices_str = (
|
|
f"std::vector<AtenTensorHandle>{{{', '.join(indices)}}}.data()"
|
|
)
|
|
args = [x, indices_str, str(len(indices)), values, accumulate]
|
|
else:
|
|
indices_str = (
|
|
f"{self.open_bracket}{', '.join(indices)}{self.closed_bracket}"
|
|
)
|
|
args = [x, indices_str, values, accumulate]
|
|
|
|
args.insert(0, x) # set x as the output tensor, this fallback mutates x.
|
|
self.writeline(self.wrap_kernel_call(kernel, args))
|
|
|
|
def add_benchmark_harness(self, output):
|
|
if V.graph.aot_mode:
|
|
return
|
|
super().add_benchmark_harness(output)
|
|
|
|
def codegen_sizevar(self, x: Expr) -> str:
|
|
return self.expr_printer(V.graph.sizevars.simplify(x))
|
|
|
|
def codegen_tuple_access(self, basename: str, name: str, index: str) -> str:
|
|
if V.graph.aot_mode and config.abi_compatible:
|
|
# in the abi_compatible mode, outputs are returned via arguments
|
|
return name
|
|
else:
|
|
return f"std::get<{index}>({basename})"
|
|
|
|
def codegen_shape_tuple(self, shape: Tuple[Expr, ...]) -> str:
|
|
parts = list(map(self.codegen_sizevar, shape))
|
|
if len(parts) == 0:
|
|
return "{}"
|
|
if len(parts) == 1:
|
|
return f"{{{parts[0]}, }}"
|
|
return f"{{{', '.join(parts)}}}"
|
|
|
|
def codegen_dynamic_scalar(self, node):
|
|
from .cpp import DTYPE_TO_ATEN, DTYPE_TO_CPP
|
|
|
|
(data,) = (t.codegen_reference() for t in node.inputs)
|
|
if config.abi_compatible:
|
|
dtype = node.inputs[0].get_dtype()
|
|
dtype_str = str(dtype).split(".")[-1]
|
|
self.writeline(f"{DTYPE_TO_CPP[dtype]} {node.sym};")
|
|
self.writeline(f"aoti_torch_item_{dtype_str}({data}, &{node.sym});")
|
|
# record in unbacked_symbol_decls so we won't generate a declaration of the symbol again
|
|
self.unbacked_symbol_decls.add(str(node.sym))
|
|
else:
|
|
if node.is_bool:
|
|
self.writeline(f"bool {node.sym} = {data}.item() ? 1 : 0;")
|
|
else:
|
|
convert_type = DTYPE_TO_ATEN[node.inputs[0].get_dtype()].replace(
|
|
"at::k", "to"
|
|
)
|
|
self.writeline(f"auto {node.sym} = {data}.item().{convert_type}();")
|
|
|
|
def can_stack_allocate_buffer(self, buffer):
|
|
return (
|
|
self.allow_stack_allocation
|
|
and buffer.get_device().type == "cpu"
|
|
and self.can_prove_buffer_has_static_shape(buffer)
|
|
and ir.is_contiguous_strides_for_shape(
|
|
buffer.get_stride(), buffer.get_size()
|
|
)
|
|
)
|
|
|
|
def make_buffer_free(self, buffer):
|
|
return (
|
|
""
|
|
if isinstance(buffer.get_layout(), ir.MultiOutputLayout)
|
|
or (V.graph.aot_mode and buffer.get_name() in self.stack_allocated_buffers)
|
|
or (
|
|
config.use_minimal_arrayref_interface
|
|
and V.graph.aot_mode
|
|
and buffer.get_name() in V.graph.graph_inputs
|
|
)
|
|
else f"{buffer.get_name()}.reset();"
|
|
)
|
|
|
|
def make_free_by_names(self, names_to_del: List[str]):
|
|
return " ".join(f"{name}.reset();" for name in names_to_del)
|
|
|
|
def codegen_exact_buffer_reuse(self, old_name: str, new_name: str, del_line: str):
|
|
if config.abi_compatible:
|
|
return f"auto {new_name} = std::move({old_name}); // reuse"
|
|
else:
|
|
return super().codegen_exact_buffer_reuse(old_name, new_name, del_line)
|
|
|
|
def generate_profiler_mark_wrapper_call(self, stack):
|
|
self.wrapper_call.writeline(
|
|
'RECORD_FUNCTION("inductor_wrapper_call", c10::ArrayRef<c10::IValue>());'
|
|
)
|
|
|
|
def write_triton_header_once(self):
|
|
pass
|
|
|
|
def generate_start_graph(self):
|
|
pass
|
|
|
|
def generate_end_graph(self):
|
|
pass
|
|
|
|
def generate_inf_and_nan_checker(self, nodes):
|
|
for buf in nodes.get_names():
|
|
# TODO: Add buf name directly into check_inf_and_nan.
|
|
self.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_check_inf_and_nan({buf}));"
|
|
)
|
|
|
|
def codegen_device(self, device):
|
|
if config.abi_compatible:
|
|
self.used_cached_devices.add(device.type)
|
|
return f"cached_torch_device_type_{device.type},{device.index if device.index else 0}"
|
|
else:
|
|
from .cpp import DEVICE_TO_ATEN
|
|
|
|
return (
|
|
f"c10::Device({DEVICE_TO_ATEN[device.type]}, {device.index})"
|
|
if device.index is not None
|
|
else f"{DEVICE_TO_ATEN[device.type]}"
|
|
)
|
|
|
|
def codegen_dtype(self, dtype):
|
|
if config.abi_compatible:
|
|
dtype_str = str(dtype).split(".")[-1]
|
|
self.used_cached_dtypes.add(dtype_str)
|
|
return f"cached_torch_dtype_{dtype_str}"
|
|
else:
|
|
from .cpp import DTYPE_TO_ATEN
|
|
|
|
return DTYPE_TO_ATEN[dtype]
|
|
|
|
@functools.lru_cache(None)
|
|
def codegen_int_array_var(
|
|
self, int_array: str, writer=None, known_statically=False
|
|
):
|
|
# Because the memory planning is done in two passes (see the implementation
|
|
# of self.generate), the writeline behavior is different in the two passes.
|
|
# As a result, the emitted int array declarations may appear in a later
|
|
# position of the generated code, so the second pass codegen should not
|
|
# reuse int array declarations generated in the first pass
|
|
if writer is None:
|
|
# The first pass codegen uses `self` as the writer
|
|
writer = self
|
|
|
|
var = f"int_array_{next(self.int_array_id)}"
|
|
if var not in self.declared_int_array_vars:
|
|
self.declared_int_array_vars.add(var)
|
|
if known_statically:
|
|
writer.writeline(f"static constexpr int64_t {var}[] = {int_array};")
|
|
else:
|
|
writer.writeline(f"int64_t {var}[] = {int_array};")
|
|
return var
|
|
|
|
def make_buffer_allocation(self, buffer):
|
|
return self.make_allocation(
|
|
buffer.get_name(),
|
|
buffer.get_device(),
|
|
buffer.get_dtype(),
|
|
buffer.get_size(),
|
|
buffer.get_stride(),
|
|
buffer if self.can_stack_allocate_buffer(buffer) else None,
|
|
)
|
|
|
|
def make_allocation(
|
|
self, name, device, dtype, shape, stride, buffer_if_can_stack_allocate=None
|
|
):
|
|
orig_stride = stride
|
|
device_str = self.codegen_device(device)
|
|
dtype_code = self.codegen_dtype(dtype)
|
|
size = self.codegen_shape_tuple(shape)
|
|
stride = self.codegen_shape_tuple(orig_stride)
|
|
if config.abi_compatible:
|
|
size_array_var = self.codegen_int_array_var(
|
|
size,
|
|
self.wrapper_call,
|
|
known_statically=self.is_statically_known_list_of_ints(shape),
|
|
)
|
|
stride_array_var = self.codegen_int_array_var(
|
|
stride,
|
|
self.wrapper_call,
|
|
known_statically=self.is_statically_known_list_of_ints(orig_stride),
|
|
)
|
|
device_type, device_id = device_str.split(",")
|
|
device_idx = "this->device_idx_" if V.graph.aot_mode else device_id
|
|
if buffer_if_can_stack_allocate is not None:
|
|
from .cpp import DTYPE_TO_CPP
|
|
|
|
self.stack_allocated_buffers[name] = buffer_if_can_stack_allocate
|
|
cpp_type = DTYPE_TO_CPP[dtype]
|
|
numel = buffer_if_can_stack_allocate.get_numel()
|
|
# Note: we don't zero storage because empty_strided doesn't zero either.
|
|
self.wrapper_call.writeline(f"{cpp_type} {name}_storage[{numel}];")
|
|
args = [
|
|
f"{name}_storage",
|
|
size_array_var,
|
|
stride_array_var,
|
|
device_type,
|
|
device_idx,
|
|
]
|
|
return f"ArrayRefTensor<{cpp_type}> {name}({', '.join(args)});"
|
|
|
|
args = [
|
|
str(len(shape)),
|
|
size_array_var,
|
|
stride_array_var,
|
|
dtype_code,
|
|
device_type,
|
|
device_idx,
|
|
f"&{name}_handle",
|
|
]
|
|
|
|
self.wrapper_call.writeline(f"AtenTensorHandle {name}_handle;")
|
|
self.wrapper_call.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided({', '.join(args)}));"
|
|
)
|
|
|
|
return f"RAIIAtenTensorHandle {name}({name}_handle);"
|
|
|
|
if V.graph.aot_mode and device_str.startswith("c10::Device("):
|
|
tensor_device = f"{device_str.split(',')[0]}, this->device_idx_)"
|
|
else:
|
|
tensor_device = device_str
|
|
|
|
if device.type == "cpu":
|
|
return f"at::Tensor {name} = at::detail::empty_strided_cpu({size}, {stride}, {dtype_code});"
|
|
if device.type == "cuda":
|
|
return (
|
|
f"at::Tensor {name} = at::detail::empty_strided_cuda("
|
|
f"{size}, {stride}, {dtype_code}, c10::DeviceType::CUDA);"
|
|
)
|
|
return (
|
|
f"{self.declare}{name} = {self.namespace}empty_strided("
|
|
f"{size}, {stride}, at::TensorOptions({tensor_device}).dtype({dtype_code})){self.ending}"
|
|
)
|
|
|
|
def codegen_alloc_from_pool(self, name, offset, dtype, shape, stride) -> str:
|
|
if config.abi_compatible:
|
|
size = self.codegen_shape_tuple(shape)
|
|
stride = self.codegen_shape_tuple(stride)
|
|
tmp_name = f"tmp_tensor_handle_{next(self.tmp_tensor_id)}"
|
|
args = [
|
|
name,
|
|
pexpr(offset), # bytes not numel
|
|
self.codegen_dtype(dtype),
|
|
str(len(shape)),
|
|
self.codegen_int_array_var(size, self.wrapper_call),
|
|
self.codegen_int_array_var(stride, self.wrapper_call),
|
|
f"&{tmp_name}",
|
|
]
|
|
self.wrapper_call.writeline(f"AtenTensorHandle {tmp_name};")
|
|
self.wrapper_call.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch__alloc_from_pool({', '.join(args)}));"
|
|
)
|
|
return f"RAIIAtenTensorHandle({tmp_name})"
|
|
|
|
return "alloc_from_pool({})".format(
|
|
", ".join(
|
|
[
|
|
name,
|
|
pexpr(offset), # bytes not numel
|
|
self.codegen_dtype(dtype),
|
|
self.codegen_shape_tuple(shape),
|
|
self.codegen_shape_tuple(stride),
|
|
]
|
|
)
|
|
)
|
|
|
|
def codegen_reinterpret_view(
|
|
self, data, size_list, stride_list, offset, writer
|
|
) -> str:
|
|
dim = str(len(size_list))
|
|
size = self.codegen_shape_tuple(size_list)
|
|
stride = self.codegen_shape_tuple(stride_list)
|
|
offset = self.codegen_sizevar(offset)
|
|
|
|
if config.abi_compatible:
|
|
tmp_name = f"tmp_tensor_handle_{next(self.tmp_tensor_id)}"
|
|
# Because the memory planning is done in two passes (see the implementation
|
|
# of self.generate), the writeline behavior is different in the two passes.
|
|
if writer is None:
|
|
writer = self
|
|
|
|
args = [
|
|
f"{data.get_name()}",
|
|
dim,
|
|
self.codegen_int_array_var(
|
|
size,
|
|
writer,
|
|
known_statically=self.is_statically_known_list_of_ints(size_list),
|
|
),
|
|
self.codegen_int_array_var(
|
|
stride,
|
|
writer,
|
|
known_statically=self.is_statically_known_list_of_ints(stride_list),
|
|
),
|
|
offset,
|
|
]
|
|
|
|
def gen_reinterpret_call(writer, args):
|
|
writer.writeline(
|
|
f"auto {tmp_name} = reinterpret_tensor_wrapper({', '.join(args)});"
|
|
)
|
|
|
|
if (
|
|
self.can_stack_allocate_buffer(data)
|
|
and self.is_statically_known_list_of_ints(size_list)
|
|
and self.is_statically_known_list_of_ints(stride_list)
|
|
and ir.is_contiguous_strides_for_shape(stride_list, size_list)
|
|
):
|
|
gen_reinterpret_call(writer, args)
|
|
return tmp_name
|
|
|
|
gen_reinterpret_call(writer, args)
|
|
|
|
# NB, the return handle here represents a temporary tensor, which will be automatically
|
|
# released.
|
|
# Here's a sample usage in the cpp wrapper code:
|
|
# ```
|
|
# aoti_torch_addmm_out(
|
|
# buf1,
|
|
# arg1_1,
|
|
# RAIIAtenTensorHandle(tmp_tensor_handle_0),
|
|
# buf0,
|
|
# 1L,
|
|
# 1L));
|
|
# ```
|
|
# RAIIAtenTensorHandle(tmp_tensor_handle_0) will be released after the call to addmm_out.
|
|
# This could be problematic when it's used in a different pattern, for example:
|
|
# ````
|
|
# AtenTensorHandle tensor_args[] = {RAIIAtenTensorHandle(tmp_tensor_handle_2), buf5, buf6};
|
|
# aoti_torch_proxy_executor_call_function(..., tensor_args);
|
|
# ````
|
|
# RAIIAtenTensorHandle(tmp_tensor_handle_2) will be invalid when it's used in the latter
|
|
# kernel call.
|
|
#
|
|
# This is solved by updating the proxy_executor invocation to
|
|
# ```
|
|
# aoti_torch_proxy_executor_call_function(...,
|
|
# std::vector<AtenTensorHandle>{
|
|
# RAIIAtenTensorHandle(tmp_tensor_handle_2), buf5, buf6
|
|
# }.data()
|
|
# );
|
|
# ```
|
|
return f"wrap_with_raii_handle_if_needed({tmp_name})"
|
|
else:
|
|
args = [data.get_name(), size, stride, offset]
|
|
return f"reinterpret_tensor({', '.join(args)})"
|
|
|
|
def codegen_device_copy(self, src, dst):
|
|
if config.abi_compatible:
|
|
self.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_tensor_copy_(expensive_copy_to_tensor_if_needed({src}), {dst}));"
|
|
)
|
|
else:
|
|
self.writeline(f"{dst}.copy_({src});")
|
|
|
|
def codegen_multi_output(self, name, value):
|
|
# in the abi_compatible mode, outputs are retrieved by passing
|
|
# output pointers, so we skip its codegen here.
|
|
if not config.abi_compatible:
|
|
super().codegen_multi_output(name, value)
|
|
|
|
def generate_extern_kernel_args_decl_if_needed(
|
|
self, op_overload, raw_args, output_args
|
|
):
|
|
arg_types = [x.real_type for x in op_overload._schema.arguments]
|
|
return_types = [x.type for x in op_overload._schema.returns]
|
|
|
|
new_tensor_args = []
|
|
new_int_args = []
|
|
|
|
def fill_args(arg, arg_type):
|
|
static_arg_types = (
|
|
torch.FloatType,
|
|
torch.BoolType,
|
|
torch.StringType,
|
|
torch.Type,
|
|
torch.DeviceObjType,
|
|
)
|
|
inductor_tensor_buffers = (
|
|
ir.Buffer,
|
|
ir.ReinterpretView,
|
|
)
|
|
|
|
if isinstance(arg_type, torch.TensorType):
|
|
assert isinstance(arg, inductor_tensor_buffers), f"got {type(arg)}"
|
|
new_tensor_args.append(f"{arg.codegen_reference()}")
|
|
elif isinstance(arg_type, torch.IntType):
|
|
# int
|
|
new_int_args.append(str(arg))
|
|
elif isinstance(arg_type, torch.SymIntType):
|
|
# SymInt
|
|
expr = arg.node.expr if isinstance(arg, torch.SymInt) else arg
|
|
new_int_args.append(self.expr_printer(expr))
|
|
elif isinstance(arg_type, torch.NumberType):
|
|
# Scalar of type int
|
|
assert isinstance(arg, (int, float, bool))
|
|
# Only treat int Scalar as dynamic
|
|
if isinstance(arg, int):
|
|
new_int_args.append(str(arg))
|
|
elif isinstance(arg_type, torch.ListType):
|
|
assert isinstance(arg, (list, tuple))
|
|
|
|
# List[Tensor]
|
|
if isinstance(arg_type.getElementType(), torch.TensorType):
|
|
new_tensor_args.extend([f"{a.codegen_reference()}" for a in arg])
|
|
# List[Optional[Tensor]]
|
|
elif isinstance(
|
|
arg_type.getElementType(), torch.OptionalType
|
|
) and isinstance(
|
|
arg_type.getElementType().getElementType(), torch.TensorType
|
|
):
|
|
new_tensor_args.extend(
|
|
[f"{a.codegen_reference()}" for a in arg if a is not None]
|
|
)
|
|
# List[int]
|
|
elif isinstance(arg_type.getElementType(), torch.IntType):
|
|
new_int_args.extend([str(a) for a in arg])
|
|
# List[SymInt]
|
|
elif isinstance(arg_type.getElementType(), torch.SymIntType):
|
|
expressions = [
|
|
a.node.expr if isinstance(a, torch.SymInt) else a for a in arg
|
|
]
|
|
new_int_args.extend(
|
|
[self.expr_printer(expr) for expr in expressions]
|
|
)
|
|
# List[Scalar]
|
|
elif isinstance(arg_type.getElementType(), torch.NumberType):
|
|
# Only treat int Scalar as dynamic
|
|
is_int_type = [isinstance(a, int) for a in arg]
|
|
if any(is_int_type):
|
|
assert all(
|
|
is_int_type
|
|
), "AOTInductor only supports int scalars of the same type"
|
|
new_int_args.extend([str(a) for a in arg])
|
|
else:
|
|
assert isinstance(
|
|
arg_type.getElementType(), static_arg_types # type: ignore[arg-type]
|
|
), f"Fall through arguments must be one of static_arg_types, got {type(arg_type)}"
|
|
else:
|
|
assert isinstance(
|
|
arg_type, static_arg_types # type: ignore[arg-type]
|
|
), f"Fall through arguments must be one of static_arg_types, got {type(arg_type)}"
|
|
|
|
for arg, arg_type in zip(raw_args, arg_types):
|
|
if arg is not None:
|
|
if isinstance(arg_type, torch.OptionalType):
|
|
fill_args(arg, arg_type.getElementType())
|
|
else:
|
|
fill_args(arg, arg_type)
|
|
|
|
def fill_output_arg(arg, return_type):
|
|
if isinstance(return_type, torch.TensorType):
|
|
self.writeline(f"AtenTensorHandle {arg}_handle; // output buffer")
|
|
self.writeline(
|
|
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_new_uninitialized_tensor(&{arg}_handle));"
|
|
)
|
|
self.writeline(f"RAIIAtenTensorHandle {arg}({arg}_handle);")
|
|
new_tensor_args.append(f"{arg}")
|
|
elif isinstance(return_type, torch.SymIntType):
|
|
raise NotImplementedError("NYI support for return type: SymInt")
|
|
elif isinstance(return_type, torch.ListType) and isinstance(
|
|
return_type.getElementType(), torch.SymIntType
|
|
):
|
|
raise NotImplementedError("NYI support for return type: List[SymInt]")
|
|
else:
|
|
raise AssertionError(f"Unsupported return type found: {return_type}")
|
|
|
|
# TODO: Only support tensor(s) returns for now, SymInt is not implemented yet
|
|
for return_type in return_types:
|
|
if isinstance(return_type, (torch.TensorType)):
|
|
pass
|
|
elif isinstance(return_type, torch.OptionalType):
|
|
assert isinstance(return_type.getElementType(), torch.TensorType)
|
|
elif isinstance(return_type, torch.ListType):
|
|
assert isinstance(return_type.getElementType(), torch.TensorType)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"return type {return_type} is not yet supported."
|
|
)
|
|
|
|
for output_arg in output_args:
|
|
assert output_arg is not None, "Optional return types are not yet supported"
|
|
if isinstance(output_arg, (list, tuple)):
|
|
for out in output_arg:
|
|
fill_output_arg(out, torch.TensorType.get())
|
|
else:
|
|
fill_output_arg(output_arg, torch.TensorType.get())
|
|
|
|
return new_tensor_args, new_int_args
|
|
|
|
def generate_extern_kernel_alloc_and_find_schema_if_needed(
|
|
self,
|
|
name,
|
|
kernel,
|
|
codegen_args,
|
|
cpp_op_schema,
|
|
cpp_kernel_key,
|
|
cpp_kernel_overload_name="",
|
|
op_overload=None,
|
|
raw_args=None,
|
|
outputs=None,
|
|
):
|
|
if config.is_fbcode():
|
|
assert op_overload is not None
|
|
assert raw_args is not None
|
|
assert outputs is not None
|
|
|
|
return self.generate_extern_kernel_alloc_and_find_schema_if_needed_fbcode(
|
|
name,
|
|
cpp_kernel_key,
|
|
op_overload,
|
|
raw_args,
|
|
outputs,
|
|
)
|
|
else:
|
|
return self.generate_extern_kernel_alloc_and_find_schema_if_needed_oss(
|
|
name,
|
|
kernel,
|
|
codegen_args,
|
|
cpp_op_schema,
|
|
cpp_kernel_key,
|
|
cpp_kernel_overload_name,
|
|
)
|
|
|
|
def generate_extern_kernel_alloc_and_find_schema_if_needed_oss(
|
|
self,
|
|
name,
|
|
kernel,
|
|
codegen_args,
|
|
cpp_op_schema,
|
|
cpp_kernel_key,
|
|
cpp_kernel_overload_name="",
|
|
):
|
|
if cpp_kernel_key not in self.extern_call_ops:
|
|
self.writeline(
|
|
f"static auto op_{cpp_kernel_key} = c10::Dispatcher::singleton()"
|
|
)
|
|
self.writeline(
|
|
f'\t.findSchemaOrThrow("{kernel}", "{cpp_kernel_overload_name}")'
|
|
)
|
|
self.writeline(f"\t.typed<{cpp_op_schema}>();")
|
|
self.extern_call_ops.add(cpp_kernel_key)
|
|
|
|
self.writeline(
|
|
f"auto {name} = op_{cpp_kernel_key}.call({', '.join(codegen_args)});"
|
|
)
|
|
|
|
def generate_extern_kernel_alloc_and_find_schema_if_needed_fbcode(
|
|
self,
|
|
name,
|
|
cpp_kernel_key,
|
|
op_overload,
|
|
raw_args, # contains both args and flatten kwargs
|
|
outputs,
|
|
):
|
|
def extract_output_name(out):
|
|
assert out is not None, "None, i.e. optional output is not supported"
|
|
if isinstance(out, ir.MultiOutput):
|
|
return out.get_name()
|
|
elif isinstance(out, (list, tuple)):
|
|
return type(out)(extract_output_name(o) for o in out)
|
|
else:
|
|
raise AssertionError(f"Unexpected output: {type(out)}")
|
|
|
|
# output_args has the same pytree structure as outputs
|
|
output_args = extract_output_name(outputs)
|
|
if isinstance(output_args, str):
|
|
output_args = [output_args]
|
|
|
|
(
|
|
tensor_call_args,
|
|
int_call_args,
|
|
) = self.generate_extern_kernel_args_decl_if_needed(
|
|
op_overload, raw_args, output_args
|
|
)
|
|
|
|
tensor_call_args_str = ", ".join(tensor_call_args)
|
|
int_call_args_str = ", ".join(int_call_args)
|
|
|
|
extern_kernel_node_index = len(V.graph.extern_kernel_nodes) - 1
|
|
|
|
self.writeline(
|
|
f"aoti_torch_proxy_executor_call_function(proxy_executor, "
|
|
f"{extern_kernel_node_index}, "
|
|
f"{len(int_call_args)}, "
|
|
f"std::vector<int64_t>{{{int_call_args_str}}}.data(), "
|
|
f"{len(tensor_call_args)}, "
|
|
f"std::vector<AtenTensorHandle>{{{tensor_call_args_str}}}.data());"
|
|
)
|
|
|
|
self.extern_call_ops.add(cpp_kernel_key)
|
|
|
|
def val_to_cpp_arg_str(self, type_, val, is_legacy_abi) -> str:
|
|
if (
|
|
config.abi_compatible
|
|
and not is_legacy_abi
|
|
and isinstance(type_, torch.OptionalType)
|
|
):
|
|
if val is None:
|
|
return "0" # nullptr is not available in C
|
|
if isinstance(val, (bool, int, str, float)):
|
|
var_name = f"var_{next(self.arg_var_id)}"
|
|
self.writeline(f"auto {var_name} = {self.val_to_arg_str(val)};")
|
|
return f"&{var_name}"
|
|
if not isinstance(type_.getElementType(), torch.TensorType):
|
|
return f"&{self.val_to_arg_str(val)}"
|
|
|
|
return self.val_to_arg_str(val)
|
|
|
|
def val_to_arg_str(self, val) -> str:
|
|
if val is None:
|
|
# When None is passed as an argument, it represents an optional that does not contain a value.
|
|
if config.abi_compatible:
|
|
return "0" # nullptr is not available in C
|
|
return "c10::nullopt"
|
|
elif isinstance(val, bool):
|
|
if config.abi_compatible:
|
|
return "1" if val else "0"
|
|
else:
|
|
return "true" if val else "false"
|
|
elif isinstance(val, int):
|
|
# uint64_t is long on Linux, but long long on MacOS
|
|
return f"{val}LL" if sys.platform == "darwin" else f"{val}L"
|
|
elif isinstance(val, str):
|
|
return f'"{val}"'
|
|
elif isinstance(val, (ir.Buffer, ReinterpretView)):
|
|
return val.codegen_reference()
|
|
elif isinstance(val, torch.device):
|
|
return self.codegen_device(val)
|
|
elif isinstance(val, torch.dtype):
|
|
return self.codegen_dtype(val)
|
|
elif isinstance(val, float) and val in [float("inf"), float("-inf")]:
|
|
if val == float("inf"):
|
|
return "std::numeric_limits<float>::infinity()"
|
|
else:
|
|
return "-std::numeric_limits<float>::infinity()"
|
|
elif isinstance(val, (list, tuple)):
|
|
# FIXME handle embedded optional types?
|
|
result = f"{{{', '.join(self.val_to_arg_str(x) for x in val)}}}"
|
|
if config.abi_compatible:
|
|
static = self.is_statically_known_list_of_ints(val)
|
|
# Need to pass the array length because we can't use std::vector
|
|
return f"{self.codegen_int_array_var(result, known_statically=static)}, {len(val)}"
|
|
else:
|
|
return result
|
|
else:
|
|
return repr(val)
|