mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-19 10:04:58 +08:00
## Summary - Fixes #163548 by replacing the quadratic chunk-overlap scan in `_validate_global_plan` with a sweep-line pass that sorts chunk intervals and keeps an active set via `bisect_right`, giving O(n log n) behavior for metadata validation. - Add focused tests in `TestValidateGlobalPlan` covering overlapping and non-overlapping shard layouts to lock in the faster path. ## Testing - python test/distributed/checkpoint/test_planner.py -k ValidateGlobalPlan ## Benchmarks | chunks | old runtime | new runtime | |--------|-------------|-------------| | 1 024 | 0.121 s | 0.0014 s | | 2 048 | 0.486 s | 0.0027 s | | 4 096 | 2.474 s | 0.0058 s | | 8 192 | 8.014 s | 0.0126 s | | 16 384 | 32.740 s | 0.026 s | @ezyang Pull Request resolved: https://github.com/pytorch/pytorch/pull/166820 Approved by: https://github.com/LucasLLC, https://github.com/Skylion007
644 lines
27 KiB
Python
644 lines
27 KiB
Python
# Owner(s): ["oncall: distributed"]
|
|
|
|
import sys
|
|
|
|
import torch
|
|
import torch.distributed.checkpoint as dcp
|
|
import torch.nn as nn
|
|
from torch.distributed._shard.sharded_tensor import (
|
|
Shard,
|
|
ShardedTensor,
|
|
ShardedTensorMetadata,
|
|
ShardMetadata,
|
|
)
|
|
from torch.distributed._shard.sharded_tensor.metadata import (
|
|
TensorProperties as TensorProperties_Shard,
|
|
)
|
|
from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans
|
|
from torch.distributed.checkpoint.api import CheckpointException
|
|
from torch.distributed.checkpoint.default_planner import (
|
|
_create_default_local_metadata,
|
|
_validate_global_plan,
|
|
create_default_global_save_plan,
|
|
create_default_local_load_plan,
|
|
create_default_local_save_plan,
|
|
DefaultLoadPlanner,
|
|
DefaultSavePlanner,
|
|
)
|
|
from torch.distributed.checkpoint.filesystem import CURRENT_DCP_VERSION
|
|
from torch.distributed.checkpoint.metadata import (
|
|
BytesStorageMetadata,
|
|
ChunkStorageMetadata,
|
|
Metadata,
|
|
MetadataIndex,
|
|
TensorProperties,
|
|
TensorStorageMetadata,
|
|
)
|
|
from torch.distributed.checkpoint.planner import (
|
|
LoadItemType,
|
|
SavePlan,
|
|
SavePlanner,
|
|
WriteItemType,
|
|
)
|
|
from torch.distributed.checkpoint.planner_helpers import (
|
|
_compare_save_plans,
|
|
_merge_delta_local_plans,
|
|
create_read_items_for_chunk_list,
|
|
)
|
|
from torch.testing._internal.common_utils import (
|
|
run_tests,
|
|
TEST_WITH_DEV_DBG_ASAN,
|
|
TestCase,
|
|
)
|
|
from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir
|
|
from torch.testing._internal.distributed.distributed_utils import (
|
|
with_dist,
|
|
with_fake_comms,
|
|
)
|
|
|
|
|
|
if TEST_WITH_DEV_DBG_ASAN:
|
|
print(
|
|
"Skip dev-asan as torch + multiprocessing spawn have known issues",
|
|
file=sys.stderr,
|
|
)
|
|
sys.exit(0)
|
|
|
|
|
|
def create_sharded_tensor(rank, world_size, shards_per_rank, shard_size=8):
|
|
shards_metadata = []
|
|
local_shards = []
|
|
for idx in range(world_size * shards_per_rank):
|
|
shard_rank = idx // shards_per_rank
|
|
shard_md = ShardMetadata(
|
|
shard_offsets=[idx * shard_size],
|
|
shard_sizes=[shard_size],
|
|
placement=f"rank:{shard_rank}/cpu",
|
|
)
|
|
shards_metadata.append(shard_md)
|
|
if shard_rank == rank:
|
|
shard = Shard.from_tensor_and_offsets(
|
|
torch.rand(*shard_md.shard_sizes),
|
|
shard_offsets=shard_md.shard_offsets,
|
|
rank=rank,
|
|
)
|
|
local_shards.append(shard)
|
|
|
|
sharded_tensor_md = ShardedTensorMetadata(
|
|
shards_metadata=shards_metadata,
|
|
size=torch.Size([shard_size * len(shards_metadata)]),
|
|
tensor_properties=TensorProperties_Shard.create_from_tensor(torch.zeros(1)),
|
|
)
|
|
|
|
return ShardedTensor._init_from_local_shards_and_global_metadata(
|
|
local_shards=local_shards, sharded_tensor_metadata=sharded_tensor_md
|
|
)
|
|
|
|
|
|
class TestSavePlan(TestCase):
|
|
@with_fake_comms(rank=1, world_size=4)
|
|
def test_local_plan(self):
|
|
tensor = torch.rand(10)
|
|
val = [1, 2, 3]
|
|
st = create_sharded_tensor(rank=1, world_size=4, shards_per_rank=1)
|
|
state_dict = {"tensor": tensor, "value": val, "st": st}
|
|
plan = create_default_local_save_plan(state_dict, False)
|
|
self.assertEqual(3, len(plan.items))
|
|
wi = plan.items[0]
|
|
self.assertEqual(wi.index, MetadataIndex("tensor", [0]))
|
|
self.assertEqual(wi.type, WriteItemType.TENSOR)
|
|
self.assertEqual(wi.tensor_data.size, tensor.size())
|
|
self.assertEqual(
|
|
wi.tensor_data.properties,
|
|
TensorProperties.create_from_tensor(torch.zeros(1)),
|
|
)
|
|
self.assertEqual(wi.tensor_data.chunk.offsets, torch.Size([0]))
|
|
self.assertEqual(wi.tensor_data.chunk.sizes, torch.Size([10]))
|
|
|
|
st_wi = plan.items[2]
|
|
self.assertEqual(st_wi.index, MetadataIndex("st", [8]))
|
|
self.assertEqual(st_wi.type, WriteItemType.SHARD)
|
|
self.assertEqual(st_wi.tensor_data.size, st.size())
|
|
self.assertEqual(
|
|
st_wi.tensor_data.properties,
|
|
TensorProperties.create_from_tensor(torch.zeros(1)),
|
|
)
|
|
self.assertEqual(st_wi.tensor_data.chunk.offsets, torch.Size([8]))
|
|
self.assertEqual(st_wi.tensor_data.chunk.sizes, torch.Size([8]))
|
|
|
|
# Coordinator rank, should include replicated items as well
|
|
plan = create_default_local_save_plan(state_dict, True)
|
|
self.assertEqual(3, len(plan.items))
|
|
|
|
tensor_wi = next(wi for wi in plan.items if wi.type == WriteItemType.TENSOR)
|
|
self.assertEqual(tensor_wi.index, MetadataIndex("tensor", [0]))
|
|
self.assertEqual(tensor_wi.tensor_data.size, tensor.size())
|
|
self.assertEqual(
|
|
tensor_wi.tensor_data.properties,
|
|
TensorProperties.create_from_tensor(tensor),
|
|
)
|
|
self.assertEqual(tensor_wi.tensor_data.chunk.offsets, torch.Size([0]))
|
|
self.assertEqual(tensor_wi.tensor_data.chunk.sizes, torch.Size([10]))
|
|
|
|
bytes_wi = next(wi for wi in plan.items if wi.type == WriteItemType.BYTE_IO)
|
|
self.assertEqual(bytes_wi.index, MetadataIndex("value"))
|
|
self.assertIsNone(bytes_wi.tensor_data)
|
|
|
|
@with_fake_comms(rank=1, world_size=4)
|
|
def test_local_plan_with_caching(self):
|
|
tensor = torch.rand(10)
|
|
val = [1, 2, 3]
|
|
st = create_sharded_tensor(rank=1, world_size=4, shards_per_rank=1)
|
|
state_dict = {"tensor": tensor, "value": val, "st": st}
|
|
planner = DefaultSavePlanner(enable_plan_caching=True)
|
|
planner.set_up_planner(state_dict, is_coordinator=False)
|
|
# First iteration, should create a new plan
|
|
first_plan = planner.create_local_plan()
|
|
|
|
# Validate that the plan has been cached
|
|
cached_plan = SavePlanner._cached_save_plan[planner._cached_plans_key]
|
|
self.assertEqual(first_plan, cached_plan)
|
|
|
|
# second iteration, should create an empty unusable plan
|
|
second_plan = planner.create_local_plan()
|
|
self.assertFalse(second_plan.usable)
|
|
self.assertEqual(0, len(second_plan.items))
|
|
self.assertIsNone(second_plan.planner_data)
|
|
self.assertIsNone(second_plan.storage_data)
|
|
|
|
def test_global_plan(self):
|
|
def create_data(rank):
|
|
with with_dist(rank=rank, world_size=4):
|
|
tensor = torch.rand(10)
|
|
val = [1, 2, 3]
|
|
st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1)
|
|
state_dict = {"tensor": tensor, "value": val, "st": st}
|
|
return create_default_local_save_plan(state_dict, rank == 0)
|
|
|
|
all_plans = [create_data(0), create_data(1), create_data(2), create_data(3)]
|
|
all_plans = dedup_save_plans(all_plans)
|
|
final_plans, metadata = create_default_global_save_plan(all_plans=all_plans)
|
|
|
|
# The default global plan updates all indexes to include hints
|
|
for new_plan, old_plan in zip(final_plans, all_plans):
|
|
for new_item, old_item in zip(new_plan.items, old_plan.items):
|
|
self.assertEqual(new_item.index, old_item.index)
|
|
self.assertEqual(new_item.type, old_item.type)
|
|
self.assertEqual(new_item.tensor_data, old_item.tensor_data)
|
|
self.assertIn(new_item.index.fqn, metadata.state_dict_metadata)
|
|
|
|
item_md = metadata.state_dict_metadata[new_item.index.fqn]
|
|
if new_item.type == WriteItemType.BYTE_IO:
|
|
self.assertTrue(isinstance(item_md, BytesStorageMetadata))
|
|
else:
|
|
self.assertTrue(isinstance(item_md, TensorStorageMetadata))
|
|
self.assertEqual(item_md.size, old_item.tensor_data.size)
|
|
self.assertEqual(
|
|
item_md.properties, old_item.tensor_data.properties
|
|
)
|
|
|
|
self.assertIsNotNone(new_item.index.index)
|
|
# Make sure the hint is correct
|
|
self.assertEqual(
|
|
item_md.chunks[new_item.index.index], old_item.tensor_data.chunk
|
|
)
|
|
|
|
def test_dedup_plans(self):
|
|
def create_data(rank):
|
|
with with_dist(rank=rank, world_size=4):
|
|
tensor = torch.rand(10)
|
|
val = [1, 2, 3]
|
|
st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1)
|
|
state_dict = {"tensor": tensor, "value": val, "st": st}
|
|
return create_default_local_save_plan(state_dict, rank == 0)
|
|
|
|
all_plans = [create_data(0), create_data(1), create_data(2), create_data(3)]
|
|
deduped_plans = dedup_save_plans(all_plans)
|
|
|
|
# Number of plans should remain unchanged
|
|
self.assertEqual(len(all_plans), len(deduped_plans))
|
|
|
|
# Number of items in the deduped plans should be less than the original plans
|
|
for new_plan, old_plan in zip(deduped_plans, all_plans):
|
|
self.assertFalse(_compare_save_plans(new_plan, old_plan))
|
|
self.assertTrue(len(new_plan.items) < len(old_plan.items))
|
|
|
|
def test_global_plan_with_caching(self):
|
|
def create_data(rank):
|
|
with with_dist(rank=rank, world_size=4):
|
|
planner = DefaultSavePlanner(enable_plan_caching=True)
|
|
tensor = torch.rand(10)
|
|
val = [1, 2, 3]
|
|
st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1)
|
|
state_dict = {"tensor": tensor, "value": val, "st": st}
|
|
planner.set_up_planner(state_dict, is_coordinator=(rank == 0))
|
|
return planner.create_local_plan()
|
|
|
|
all_plans = [create_data(0), create_data(1), create_data(2), create_data(3)]
|
|
planner = DefaultSavePlanner(enable_plan_caching=True)
|
|
# First iteration, should create a new plan
|
|
first_global_plan, first_metadata = planner.create_global_plan(all_plans)
|
|
|
|
# Validate that the plan has been cached
|
|
cached_global_plan = SavePlanner._cached_global_plan[planner._cached_plans_key]
|
|
self.assertEqual(cached_global_plan, first_global_plan)
|
|
|
|
# Validate that all_plans are cached
|
|
cached_all_plans = SavePlanner._cached_all_plans[planner._cached_plans_key]
|
|
self.assertEqual(cached_all_plans, all_plans)
|
|
|
|
# Second iteration, should return empty plans
|
|
# Recreate the plans as the previous ones are deduped.
|
|
all_plans = [create_data(0), create_data(1), create_data(2), create_data(3)]
|
|
second_global_plan, second_metadata = planner.create_global_plan(all_plans)
|
|
# All the plans should be empty and usable
|
|
for plan in second_global_plan:
|
|
self.assertFalse(plan.usable)
|
|
self.assertEqual(0, len(plan.items))
|
|
self.assertIsNone(plan.planner_data)
|
|
self.assertIsNone(plan.storage_data)
|
|
|
|
self.assertEqual(first_metadata, second_metadata)
|
|
self.assertEqual(
|
|
second_metadata, planner._cached_metadata[planner._cached_plans_key]
|
|
)
|
|
|
|
# Validate that all_plans are cached and remain unchanged.
|
|
cached_all_plans = SavePlanner._cached_all_plans[planner._cached_plans_key]
|
|
self.assertEqual(cached_all_plans, all_plans)
|
|
|
|
# Third iteration with changed plans
|
|
def create_data_v2(rank):
|
|
with with_dist(rank=rank, world_size=4):
|
|
planner = DefaultSavePlanner(enable_plan_caching=True)
|
|
tensor = torch.rand(20)
|
|
val = [1, 2, 3]
|
|
st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1)
|
|
state_dict = {"tensor": tensor, "value": val, "st": st}
|
|
planner.set_up_planner(state_dict, is_coordinator=(rank == 0))
|
|
return planner.create_local_plan()
|
|
|
|
all_plans = [
|
|
create_data_v2(0),
|
|
create_data_v2(1),
|
|
create_data_v2(2),
|
|
create_data_v2(3),
|
|
]
|
|
third_global_plan, third_metadata = planner.create_global_plan(all_plans)
|
|
# Only the rank 0 plan should be non-empty. The rest should be empty
|
|
tensor_plan = third_global_plan[0]
|
|
self.assertNotEqual(0, len(tensor_plan.items))
|
|
self.assertTrue(tensor_plan.usable)
|
|
|
|
# Validate that all_plans are updated and cached
|
|
cached_all_plans = SavePlanner._cached_all_plans[planner._cached_plans_key]
|
|
self.assertEqual(cached_all_plans, all_plans)
|
|
|
|
for plan in third_global_plan[1:]:
|
|
self.assertFalse(plan.usable)
|
|
self.assertEqual(0, len(plan.items))
|
|
self.assertIsNone(plan.planner_data)
|
|
self.assertIsNone(plan.storage_data)
|
|
|
|
# Global metadata should be different as one plan has changed
|
|
self.assertNotEqual(second_metadata, third_metadata)
|
|
# Validate that the metadata is cached
|
|
self.assertEqual(
|
|
third_metadata, planner._cached_metadata[planner._cached_plans_key]
|
|
)
|
|
|
|
# Validate that the new plan has been cached
|
|
cached_global_plan = SavePlanner._cached_global_plan[planner._cached_plans_key][
|
|
0
|
|
]
|
|
self.assertEqual(cached_global_plan, tensor_plan)
|
|
|
|
def test_finish_plan_with_caching(self):
|
|
planner = DefaultSavePlanner(enable_plan_caching=True)
|
|
tensor = torch.rand(10)
|
|
val = [1, 2, 3]
|
|
state_dict = {"tensor": tensor, "value": val}
|
|
planner.set_up_planner(state_dict, is_coordinator=True)
|
|
plan = planner.create_local_plan()
|
|
|
|
# First iteration, should create a new plan
|
|
first_finished_plan = planner.finish_plan(plan)
|
|
|
|
# Validate that the plan has been cached
|
|
cached_finished_plan = SavePlanner._cached_final_save_plan[
|
|
planner._cached_plans_key
|
|
]
|
|
self.assertEqual(first_finished_plan, cached_finished_plan)
|
|
|
|
# second iteration, should return the cached plan
|
|
second_finished_plan = planner.finish_plan(SavePlan([], usable=False))
|
|
self.assertEqual(second_finished_plan, first_finished_plan)
|
|
|
|
def test_local_load_plan(self):
|
|
def create_state_dict(rank):
|
|
with with_dist(rank=rank, world_size=4):
|
|
tensor = torch.rand(10)
|
|
val = [1, 2, 3]
|
|
st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1)
|
|
return {"tensor": tensor, "value": val, "st": st}
|
|
|
|
state_dict = create_state_dict(1)
|
|
metadata = _create_default_local_metadata(state_dict)
|
|
|
|
load_plan = create_default_local_load_plan(state_dict, metadata)
|
|
# This will create 3 entries
|
|
self.assertEqual(3, len(load_plan.items))
|
|
st_item = next(ri for ri in load_plan.items if ri.dest_index.fqn == "st")
|
|
tensor_item = next(
|
|
ri for ri in load_plan.items if ri.dest_index.fqn == "tensor"
|
|
)
|
|
bytes_item = next(ri for ri in load_plan.items if ri.dest_index.fqn == "value")
|
|
|
|
self.assertEqual(st_item.type, LoadItemType.TENSOR)
|
|
# This is an exact copy
|
|
self.assertEqual(st_item.dest_index, MetadataIndex("st", [8]))
|
|
self.assertEqual(st_item.dest_offsets, torch.Size([0]))
|
|
self.assertEqual(st_item.storage_index, MetadataIndex("st", [8]))
|
|
self.assertEqual(st_item.storage_offsets, torch.Size([0]))
|
|
self.assertEqual(st_item.lengths, torch.Size([8]))
|
|
|
|
self.assertEqual(tensor_item.type, LoadItemType.TENSOR)
|
|
self.assertEqual(tensor_item.dest_index, MetadataIndex("tensor", [0]))
|
|
self.assertEqual(tensor_item.dest_offsets, torch.Size([0]))
|
|
self.assertEqual(tensor_item.storage_index, MetadataIndex("tensor", [0]))
|
|
self.assertEqual(tensor_item.storage_offsets, torch.Size([0]))
|
|
self.assertEqual(tensor_item.lengths, torch.Size([10]))
|
|
|
|
self.assertEqual(bytes_item.type, LoadItemType.BYTE_IO)
|
|
self.assertEqual(bytes_item.dest_index, MetadataIndex("value"))
|
|
|
|
def test_load_with_resharding(self):
|
|
def create_state_dict(rank, world_size):
|
|
with with_dist(rank=rank, world_size=world_size):
|
|
return {
|
|
"st": create_sharded_tensor(
|
|
rank=rank,
|
|
world_size=world_size,
|
|
shards_per_rank=1,
|
|
shard_size=128 // world_size,
|
|
)
|
|
}
|
|
|
|
# Rank 1 has a 16 bytes shard from [16, 32[
|
|
world8_state_dict = create_state_dict(rank=1, world_size=8)
|
|
world8_metadata = _create_default_local_metadata(world8_state_dict)
|
|
|
|
# Rank 1 has a 32 bytes shard from [32, 64[
|
|
world4_state_dict = create_state_dict(rank=1, world_size=4)
|
|
world4_metadata = _create_default_local_metadata(world4_state_dict)
|
|
|
|
# First scenario, going from world=8 to world=4, need to load 2 shards
|
|
# Each 4-world shard has 32 elements, so it needs to load 2 shards
|
|
load_plan = create_default_local_load_plan(world4_state_dict, world8_metadata)
|
|
self.assertEqual(2, len(load_plan.items))
|
|
low_ri = next(
|
|
ri for ri in load_plan.items if ri.dest_offsets == torch.Size([0])
|
|
)
|
|
high_ri = next(
|
|
ri for ri in load_plan.items if ri.dest_offsets == torch.Size([16])
|
|
)
|
|
|
|
self.assertEqual(low_ri.storage_index, MetadataIndex("st", [32]))
|
|
self.assertEqual(low_ri.storage_offsets, torch.Size([0]))
|
|
self.assertEqual(low_ri.dest_index, MetadataIndex("st", [32]))
|
|
self.assertEqual(low_ri.dest_offsets, torch.Size([0]))
|
|
self.assertEqual(low_ri.lengths, torch.Size([16]))
|
|
|
|
self.assertEqual(high_ri.storage_index, MetadataIndex("st", [48]))
|
|
self.assertEqual(high_ri.storage_offsets, torch.Size([0]))
|
|
self.assertEqual(high_ri.dest_index, MetadataIndex("st", [32]))
|
|
self.assertEqual(high_ri.dest_offsets, torch.Size([16]))
|
|
self.assertEqual(high_ri.lengths, torch.Size([16]))
|
|
|
|
# Second scenario, going from world=4 to world=8, need to load half of 1 shard
|
|
# rank1 on 8-world needs to load the upper half of the rank0 4-world shard
|
|
load_plan = create_default_local_load_plan(world8_state_dict, world4_metadata)
|
|
self.assertEqual(1, len(load_plan.items))
|
|
ri = load_plan.items[0]
|
|
self.assertEqual(ri.storage_index, MetadataIndex("st", [0]))
|
|
self.assertEqual(ri.storage_offsets, torch.Size([16]))
|
|
self.assertEqual(ri.dest_index, MetadataIndex("st", [16]))
|
|
self.assertEqual(ri.dest_offsets, torch.Size([0]))
|
|
self.assertEqual(ri.lengths, torch.Size([16]))
|
|
|
|
def test_load_with_world_size_diff_by_one(self):
|
|
def create_state_dict(rank, world_size):
|
|
with with_dist(rank=rank, world_size=world_size):
|
|
return {
|
|
"st": create_sharded_tensor(
|
|
rank=rank,
|
|
world_size=world_size,
|
|
shards_per_rank=1,
|
|
shard_size=120 // world_size,
|
|
)
|
|
}
|
|
|
|
# rank 1 has a 30 bytes shard from [30, 60[
|
|
world4_state_dict = create_state_dict(rank=1, world_size=4)
|
|
world4_metadata = _create_default_local_metadata(world4_state_dict)
|
|
|
|
# rank 1 has a 40 bytes shard from [40, 80[
|
|
world3_state_dict = create_state_dict(rank=1, world_size=3)
|
|
|
|
load_plan = create_default_local_load_plan(world3_state_dict, world4_metadata)
|
|
self.assertEqual(2, len(load_plan.items))
|
|
# this is [30, 60] to load [40, 60]
|
|
low_ri = next(
|
|
ri for ri in load_plan.items if ri.dest_offsets == torch.Size([0])
|
|
)
|
|
# this is [60, 90] to load [60, 80]
|
|
high_ri = next(
|
|
ri for ri in load_plan.items if ri.dest_offsets == torch.Size([20])
|
|
)
|
|
|
|
self.assertEqual(low_ri.storage_index, MetadataIndex("st", [30]))
|
|
self.assertEqual(low_ri.storage_offsets, torch.Size([10]))
|
|
self.assertEqual(low_ri.dest_index, MetadataIndex("st", [40]))
|
|
self.assertEqual(low_ri.dest_offsets, torch.Size([0]))
|
|
self.assertEqual(low_ri.lengths, torch.Size([20]))
|
|
|
|
self.assertEqual(high_ri.storage_index, MetadataIndex("st", [60]))
|
|
self.assertEqual(high_ri.storage_offsets, torch.Size([0]))
|
|
self.assertEqual(high_ri.dest_index, MetadataIndex("st", [40]))
|
|
self.assertEqual(high_ri.dest_offsets, torch.Size([20]))
|
|
self.assertEqual(high_ri.lengths, torch.Size([20]))
|
|
|
|
|
|
class TestPlannerHelpers(TestCase):
|
|
def test_create_read_item_from_chunks(self):
|
|
tensor_md = TensorStorageMetadata(
|
|
properties=TensorProperties.create_from_tensor(torch.empty([16])),
|
|
size=torch.Size([16]),
|
|
chunks=[
|
|
ChunkStorageMetadata(offsets=torch.Size([0]), sizes=torch.Size([8])),
|
|
ChunkStorageMetadata(offsets=torch.Size([8]), sizes=torch.Size([8])),
|
|
],
|
|
)
|
|
|
|
chunk = ChunkStorageMetadata(offsets=torch.Size([4]), sizes=torch.Size([7]))
|
|
read_items = create_read_items_for_chunk_list("foo", tensor_md, [chunk])
|
|
|
|
self.assertEqual(2, len(read_items))
|
|
self.assertEqual(MetadataIndex("foo", [4]), read_items[0].dest_index)
|
|
self.assertEqual(torch.Size([0]), read_items[0].dest_offsets)
|
|
|
|
self.assertEqual(MetadataIndex("foo", [0]), read_items[0].storage_index)
|
|
self.assertEqual(torch.Size([4]), read_items[0].storage_offsets)
|
|
|
|
self.assertEqual(torch.Size([4]), read_items[0].lengths)
|
|
|
|
self.assertEqual(MetadataIndex("foo", [4]), read_items[1].dest_index)
|
|
self.assertEqual(torch.Size([4]), read_items[1].dest_offsets)
|
|
|
|
self.assertEqual(MetadataIndex("foo", [8]), read_items[1].storage_index)
|
|
self.assertEqual(torch.Size([0]), read_items[1].storage_offsets)
|
|
|
|
self.assertEqual(torch.Size([3]), read_items[1].lengths)
|
|
|
|
def test_merge_delta_local_plans(self):
|
|
def create_data(rank):
|
|
with with_dist(rank=rank, world_size=4):
|
|
tensor = torch.rand(10)
|
|
val = [1, 2, 3]
|
|
st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1)
|
|
state_dict = {"tensor": tensor, "value": val, "st": st}
|
|
return create_default_local_save_plan(state_dict, rank == 0)
|
|
|
|
def _validate_plans(plan1: SavePlan, plan2: SavePlan):
|
|
self.assertEqual(len(plan1.items), len(plan2.items))
|
|
for item1, item2 in zip(plan1.items, plan2.items):
|
|
self.assertEqual(item1.index, item2.index)
|
|
self.assertEqual(item1.type, item2.type)
|
|
self.assertEqual(item1.tensor_data, item2.tensor_data)
|
|
|
|
cached_plans = [create_data(0), create_data(1)]
|
|
delta_plans = [create_data(2), create_data(3)]
|
|
|
|
# Both the plans changed.
|
|
# Merge plan should have both the plans from the delta plans
|
|
merged_plans = _merge_delta_local_plans(cached_plans, delta_plans)
|
|
self.assertEqual(2, len(merged_plans))
|
|
_validate_plans(delta_plans[0], merged_plans[0])
|
|
_validate_plans(delta_plans[1], merged_plans[1])
|
|
|
|
# Only the first plan changed.
|
|
# Merge plan should have the first plan from the delta plans and the second plan from the cached plans
|
|
delta_plans = [create_data(2), SavePlan([], usable=False)]
|
|
merged_plans = _merge_delta_local_plans(cached_plans, delta_plans)
|
|
_validate_plans(delta_plans[0], merged_plans[0])
|
|
_validate_plans(cached_plans[1], merged_plans[1])
|
|
|
|
# Only the second plan changed.
|
|
# Merge plan should have the first plan from the cached plans and the second plan from the delta plans
|
|
delta_plans = [SavePlan([], usable=False), create_data(3)]
|
|
merged_plans = _merge_delta_local_plans(cached_plans, delta_plans)
|
|
_validate_plans(cached_plans[0], merged_plans[0])
|
|
_validate_plans(delta_plans[1], merged_plans[1])
|
|
|
|
# None of the plans changed. Cached plans should be returned
|
|
delta_plans = [SavePlan([], usable=False), SavePlan([], usable=False)]
|
|
merged_plans = _merge_delta_local_plans(cached_plans, delta_plans)
|
|
_validate_plans(cached_plans[0], merged_plans[0])
|
|
_validate_plans(cached_plans[1], merged_plans[1])
|
|
|
|
def test_compare_save_plans(self):
|
|
def create_data(rank):
|
|
with with_dist(rank=rank, world_size=4):
|
|
tensor = torch.rand(10)
|
|
val = [1, 2, 3]
|
|
st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1)
|
|
state_dict = {"tensor": tensor, "value": val, "st": st}
|
|
return create_default_local_save_plan(state_dict, rank == 0)
|
|
|
|
plan1 = create_data(0)
|
|
plan2 = create_data(1)
|
|
self.assertFalse(_compare_save_plans(plan1, plan2))
|
|
self.assertTrue(_compare_save_plans(plan1, plan1))
|
|
self.assertTrue(_compare_save_plans(plan2, plan2))
|
|
|
|
|
|
class TestValidateGlobalPlan(TestCase):
|
|
def _make_metadata(self, chunks, size):
|
|
storage = TensorStorageMetadata(
|
|
properties=TensorProperties(dtype=torch.float32),
|
|
size=torch.Size(size),
|
|
chunks=chunks,
|
|
)
|
|
return Metadata(state_dict_metadata={"param": storage})
|
|
|
|
def test_non_overlapping_chunks(self):
|
|
chunks = [
|
|
ChunkStorageMetadata(offsets=torch.Size([i]), sizes=torch.Size([1]))
|
|
for i in range(4)
|
|
]
|
|
metadata = self._make_metadata(chunks, [4])
|
|
self.assertTrue(_validate_global_plan([SavePlan([])], metadata))
|
|
|
|
def test_detect_overlapping_chunks(self):
|
|
chunks = [
|
|
ChunkStorageMetadata(offsets=torch.Size([0]), sizes=torch.Size([2])),
|
|
ChunkStorageMetadata(offsets=torch.Size([1]), sizes=torch.Size([2])),
|
|
]
|
|
metadata = self._make_metadata(chunks, [4])
|
|
self.assertFalse(_validate_global_plan([SavePlan([])], metadata))
|
|
|
|
|
|
class TestLoadPlanner(TestCase):
|
|
@with_temp_dir
|
|
def test_strict(self):
|
|
original_module = nn.Linear(2, 2)
|
|
dcp.save(state_dict={"module": original_module}, checkpoint_id=self.temp_dir)
|
|
|
|
new_module = nn.Linear(2, 2)
|
|
new_module.extra_param = nn.Parameter(torch.randn(2, 2))
|
|
dcp.load(
|
|
state_dict={"module": new_module},
|
|
checkpoint_id=self.temp_dir,
|
|
planner=DefaultLoadPlanner(allow_partial_load=True),
|
|
)
|
|
|
|
with self.assertRaisesRegex(CheckpointException, "Missing key in checkpoint"):
|
|
dcp.load(
|
|
state_dict={"module": new_module},
|
|
checkpoint_id=self.temp_dir,
|
|
planner=DefaultLoadPlanner(allow_partial_load=False),
|
|
)
|
|
|
|
@with_temp_dir
|
|
def test_load_different_sizes_throws(self):
|
|
original_module = nn.Linear(2, 2)
|
|
dcp.save(state_dict={"module": original_module}, checkpoint_id=self.temp_dir)
|
|
|
|
new_module = nn.Linear(3, 2)
|
|
with self.assertRaisesRegex(CheckpointException, "Size mismatch"):
|
|
dcp.load(
|
|
state_dict={"module": new_module},
|
|
checkpoint_id=self.temp_dir,
|
|
planner=DefaultLoadPlanner(),
|
|
)
|
|
|
|
@with_temp_dir
|
|
def test_version_key_in_planner_data(self):
|
|
original_module = nn.Linear(2, 2)
|
|
|
|
dcp.save(state_dict={"module": original_module}, checkpoint_id=self.temp_dir)
|
|
|
|
new_module = nn.Linear(2, 2)
|
|
planner = DefaultLoadPlanner()
|
|
dcp.load(
|
|
state_dict={"module": new_module},
|
|
checkpoint_id=self.temp_dir,
|
|
planner=planner,
|
|
)
|
|
|
|
self.assertEqual(planner.metadata.version, CURRENT_DCP_VERSION)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|