Files
pytorch/docs/source/future_mod.rst
Mikayla Gawarecki d5a718d27b Add swap_tensors path to nn.Module._apply (#117167)
Added `torch.__future__.{get/set}_swap_module_params_on_conversion` that defaults to `False` for now, but we probably want to modify  to override this and default to `True` in `nn.Module._apply` if input is a tensor subclass.

From offline discussion, for now we are **not** allowing `swap_tensor` after the first module forward has been run*** if the autograd graph is still alive. The reason being that `torch.utils.swap_tensors(t1, t2)` requires the `use_count` of both `TensorImpl`s associated with `t1` and `t2` to be 1.  The first forward pass will install `AccumulateGrad` nodes on each param, which [bump the refcount of the associated TensorImpl](6cf1fc66e3/torch/csrc/autograd/variable.cpp (L307)). **Future work might be to swap the refs that the `AccumulateGrad` nodes hold if it is necessary.**

***From this, it might seem like we don't need to handle gradients. However, I still handle the grads for the edge case that the grads are set via `p.grad = grad` OR the autograd graph is no longer alive because the output has been garbage collected.

If any `swap_tensors` fails on any of the parameters in the `nn.Module` we raise an error.

**`RNNBase` overrides `nn.Module._apply()` and installs weakrefs on some parameters. As a result, all modules that inherit from `RNNBase` (`RNN`, `GRU` and `LSTM`) cannot use the`swap_tensors` path as of now**

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117167
Approved by: https://github.com/albanD
ghstack dependencies: #118028
2024-02-07 18:55:44 +00:00

11 lines
354 B
ReStructuredText

torch.__future__
===================================
.. automodule:: torch.__future__
.. currentmodule:: torch.__future__
.. autofunction:: set_overwrite_module_params_on_conversion
.. autofunction:: get_overwrite_module_params_on_conversion
.. autofunction:: set_swap_module_params_on_conversion
.. autofunction:: get_swap_module_params_on_conversion