Files
pytorch/benchmarks/operator_benchmark/pt/qlinear_test.py
Xuehai Pan 7763c83af6 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
ghstack dependencies: #127122, #127123, #127124, #127125
2024-05-27 04:22:18 +00:00

61 lines
1.8 KiB
Python

from pt import configs
import operator_benchmark as op_bench
import torch
import torch.ao.nn.quantized as nnq
import torch.ao.nn.quantized.dynamic as nnqd
"""
Microbenchmarks for Quantized Linear operators.
"""
class _QLinearBenchmarkBase(op_bench.TorchBenchmarkBase):
def init(self, N, IN, OUT, linear_under_test):
scale = torch.tensor(1.0 / 255)
zero_point = torch.tensor(0)
self.X = torch.randn(N, IN, dtype=torch.float32)
self.qX = torch.quantize_per_tensor(
self.X, scale=scale, zero_point=zero_point, dtype=torch.quint8
)
W = torch.randn(OUT, IN, dtype=torch.float32)
qW = torch.quantize_per_tensor(W, scale=scale, zero_point=0, dtype=torch.qint8)
# Assume that the `self.qlinear` is set in the child
self.qlinear = linear_under_test
self.qlinear.weight = qW
self.qlinear.scale = scale
self.qlinear.zero_point = zero_point
def forward(self, input):
# Assume that the `self.input` is set in the child
return self.qlinear(input)
class QLinearBenchmark(_QLinearBenchmarkBase):
def init(self, N, IN, OUT, device):
super().init(N, IN, OUT, nnq.Linear(IN, OUT))
self.inputs = {"input": self.qX}
self.set_module_name("QLinear")
class QDynamicLinearBenchmark(_QLinearBenchmarkBase):
def init(self, N, IN, OUT, device):
super().init(N, IN, OUT, nnqd.Linear(IN, OUT))
self.inputs = {"input": self.X}
self.set_module_name("QDynamicLinear")
op_bench.generate_pt_test(
configs.remove_cuda(configs.linear_configs_short + configs.linear_configs_long),
QLinearBenchmark,
)
op_bench.generate_pt_test(
configs.remove_cuda(configs.linear_configs_short + configs.linear_configs_long),
QDynamicLinearBenchmark,
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()