mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126 Approved by: https://github.com/kit1980 ghstack dependencies: #127122, #127123, #127124, #127125
51 lines
1.3 KiB
Python
51 lines
1.3 KiB
Python
import operator_benchmark as op_bench
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for quantized instancenorm operator."""
|
|
|
|
instancenorm_configs_short = op_bench.cross_product_configs(
|
|
dims=(
|
|
(32, 8, 16),
|
|
(32, 8, 56, 56),
|
|
),
|
|
dtype=(torch.qint8,),
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
class QInstanceNormBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, dims, dtype):
|
|
X = (torch.rand(*dims) - 0.5) * 256
|
|
num_channels = dims[1]
|
|
scale = 1.0
|
|
zero_point = 0
|
|
|
|
self.inputs = {
|
|
"qX": torch.quantize_per_tensor(
|
|
X, scale=scale, zero_point=zero_point, dtype=dtype
|
|
),
|
|
"weight": torch.rand(num_channels, dtype=torch.float),
|
|
"bias": torch.rand(num_channels, dtype=torch.float),
|
|
"eps": 1e-5,
|
|
"Y_scale": 0.1,
|
|
"Y_zero_point": 0,
|
|
}
|
|
|
|
def forward(self, qX, weight, bias, eps: float, Y_scale: float, Y_zero_point: int):
|
|
return torch.ops.quantized.instance_norm(
|
|
qX,
|
|
weight=weight,
|
|
bias=bias,
|
|
eps=eps,
|
|
output_scale=Y_scale,
|
|
output_zero_point=Y_zero_point,
|
|
)
|
|
|
|
|
|
op_bench.generate_pt_test(instancenorm_configs_short, QInstanceNormBenchmark)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|