mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126 Approved by: https://github.com/kit1980 ghstack dependencies: #127122, #127123, #127124, #127125
133 lines
4.1 KiB
Python
133 lines
4.1 KiB
Python
from pt import configs
|
|
|
|
import operator_benchmark as op_bench
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
"""
|
|
Microbenchmarks for Conv1d and ConvTranspose1d operators.
|
|
"""
|
|
|
|
|
|
class Conv1dBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, IC, OC, kernel, stride, N, L, device):
|
|
self.inputs = {
|
|
"input": torch.rand(N, IC, L, device=device, requires_grad=self.auto_set())
|
|
}
|
|
self.conv1d = nn.Conv1d(IC, OC, kernel, stride=stride).to(device=device)
|
|
self.set_module_name("Conv1d")
|
|
|
|
def forward(self, input):
|
|
return self.conv1d(input)
|
|
|
|
|
|
class ConvTranspose1dBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, IC, OC, kernel, stride, N, L, device):
|
|
self.inputs = {"input": torch.rand(N, IC, L, device=device)}
|
|
self.convtranspose1d = nn.ConvTranspose1d(IC, OC, kernel, stride=stride).to(
|
|
device=device
|
|
)
|
|
self.set_module_name("ConvTranspose1d")
|
|
|
|
def forward(self, input):
|
|
return self.convtranspose1d(input)
|
|
|
|
|
|
op_bench.generate_pt_test(
|
|
configs.conv_1d_configs_short + configs.conv_1d_configs_long, Conv1dBenchmark
|
|
)
|
|
op_bench.generate_pt_test(
|
|
configs.conv_1d_configs_short + configs.conv_1d_configs_long,
|
|
ConvTranspose1dBenchmark,
|
|
)
|
|
|
|
|
|
"""
|
|
Microbenchmarks for Conv2d, ConvTranspose2d, and Conv2dPointwise operators.
|
|
"""
|
|
|
|
|
|
class Conv2dBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, IC, OC, kernel, stride, N, H, W, G, pad, device):
|
|
self.inputs = {"input": torch.rand(N, IC, H, W, device=device)}
|
|
self.conv2d = nn.Conv2d(
|
|
IC, OC, kernel, stride=stride, groups=G, padding=pad
|
|
).to(device=device)
|
|
self.set_module_name("Conv2d")
|
|
|
|
def forward(self, input):
|
|
return self.conv2d(input)
|
|
|
|
|
|
class ConvTranspose2dBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, IC, OC, kernel, stride, N, H, W, G, pad, device):
|
|
self.inputs = {"input": torch.rand(N, IC, H, W, device=device)}
|
|
self.convtranspose2d = nn.ConvTranspose2d(
|
|
IC, OC, kernel, stride=stride, groups=G, padding=pad
|
|
).to(device=device)
|
|
self.set_module_name("ConvTranspose2d")
|
|
|
|
def forward(self, input):
|
|
return self.convtranspose2d(input)
|
|
|
|
|
|
class Conv2dPointwiseBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, IC, OC, stride, N, H, W, G, pad, device):
|
|
self.inputs = {"input": torch.rand(N, IC, H, W, device=device)}
|
|
# Use 1 as kernel for pointwise convolution
|
|
self.conv2d = nn.Conv2d(IC, OC, 1, stride=stride, groups=G, padding=pad).to(
|
|
device=device
|
|
)
|
|
self.set_module_name("Conv2dPointwise")
|
|
|
|
def forward(self, input):
|
|
return self.conv2d(input)
|
|
|
|
|
|
op_bench.generate_pt_test(
|
|
configs.conv_2d_configs_short + configs.conv_2d_configs_long, Conv2dBenchmark
|
|
)
|
|
op_bench.generate_pt_test(
|
|
configs.conv_2d_configs_short + configs.conv_2d_configs_long,
|
|
ConvTranspose2dBenchmark,
|
|
)
|
|
op_bench.generate_pt_test(
|
|
configs.conv_2d_pw_configs_short + configs.conv_2d_pw_configs_long,
|
|
Conv2dPointwiseBenchmark,
|
|
)
|
|
|
|
|
|
"""
|
|
Microbenchmarks for Conv3d and ConvTranspose3d operators.
|
|
"""
|
|
|
|
|
|
class Conv3dBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, IC, OC, kernel, stride, N, D, H, W, device):
|
|
self.inputs = {"input": torch.rand(N, IC, D, H, W, device=device)}
|
|
self.conv3d = nn.Conv3d(IC, OC, kernel, stride=stride).to(device=device)
|
|
self.set_module_name("Conv3d")
|
|
|
|
def forward(self, input):
|
|
return self.conv3d(input)
|
|
|
|
|
|
class ConvTranspose3dBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, IC, OC, kernel, stride, N, D, H, W, device):
|
|
self.inputs = {"input": torch.rand(N, IC, D, H, W, device=device)}
|
|
self.convtranspose3d = nn.ConvTranspose3d(IC, OC, kernel, stride=stride).to(
|
|
device=device
|
|
)
|
|
self.set_module_name("ConvTranspose3d")
|
|
|
|
def forward(self, input):
|
|
return self.convtranspose3d(input)
|
|
|
|
|
|
op_bench.generate_pt_test(configs.conv_3d_configs_short, Conv3dBenchmark)
|
|
op_bench.generate_pt_test(configs.conv_3d_configs_short, ConvTranspose3dBenchmark)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|