mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126 Approved by: https://github.com/kit1980 ghstack dependencies: #127122, #127123, #127124, #127125
161 lines
4.4 KiB
Python
161 lines
4.4 KiB
Python
import random
|
|
from typing import List
|
|
|
|
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for Cat operator"""
|
|
|
|
cross_product_configs = {
|
|
"device": ["cpu", "cuda"],
|
|
}
|
|
|
|
# Configs for PT Cat operator
|
|
cat_configs_short = op_bench.config_list(
|
|
attr_names=["sizes", "N", "dim"],
|
|
attrs=[
|
|
[(1, 1, 1), 2, 0], # noqa: E241
|
|
[(512, 512, 2), 2, 1], # noqa: E241
|
|
[(128, 1024, 2), 2, 1], # noqa: E241
|
|
],
|
|
cross_product_configs=cross_product_configs,
|
|
tags=["short"],
|
|
)
|
|
|
|
# Configs specific to static runtime feature - a fast path runtime for pared down models
|
|
cat_configs_static_runtime = op_bench.config_list(
|
|
attr_names=["sizes", "N", "dim"],
|
|
attrs=[
|
|
[[(1, 160), (1, 14)], -1, 1],
|
|
[[(1, 20, 40), (1, 4, 40), (1, 5, 40)], -1, 1],
|
|
[[(1, 580), (1, 174)], -1, 1],
|
|
[[(20, 160), (20, 14)], -1, 1],
|
|
[[(20, 20, 40), (20, 4, 40), (20, 5, 40)], -1, 1],
|
|
[[(20, 580), (20, 174)], -1, 1],
|
|
],
|
|
cross_product_configs=cross_product_configs,
|
|
tags=["static_runtime"],
|
|
)
|
|
|
|
cat_configs_long = op_bench.config_list(
|
|
attr_names=["sizes", "N", "dim"],
|
|
attrs=[
|
|
[(2**10, 2**10, 2), 2, 0], # noqa: E241
|
|
[(2**10 + 1, 2**10 - 1, 2), 2, 1], # noqa: E226,E241
|
|
[(2**10, 2**10, 2), 2, 2], # noqa: E241
|
|
[
|
|
[
|
|
lambda: random.randint(2**6, 2**7),
|
|
2**7 - 17,
|
|
2**6 + 1,
|
|
], # noqa: E201,E226,E241
|
|
5,
|
|
0,
|
|
],
|
|
[
|
|
[
|
|
2**6 + 2**5,
|
|
lambda: random.randint(2**6, 2**7),
|
|
2**6,
|
|
], # noqa: E201,E226,E241,E272
|
|
5,
|
|
1,
|
|
],
|
|
[
|
|
[
|
|
2**7,
|
|
2**6,
|
|
lambda: random.randint(2**6, 2**7),
|
|
], # noqa: E201,E241,E272
|
|
5,
|
|
2,
|
|
],
|
|
[[lambda: random.randint(2**5, 2**6), 2**5, 2**6], 50, 0], # noqa: E241
|
|
[
|
|
[2**5, lambda: random.randint(2**5, 2**6), 2**6], # noqa: E241,E272
|
|
50,
|
|
1,
|
|
],
|
|
[
|
|
[
|
|
2**5 + 1,
|
|
2**6 + 1,
|
|
lambda: random.randint(2**5, 2**6),
|
|
], # noqa: E226,E241,E272
|
|
50,
|
|
2,
|
|
],
|
|
],
|
|
cross_product_configs=cross_product_configs,
|
|
tags=["long"],
|
|
)
|
|
|
|
# There is a different codepath on CUDA for >4 dimensions
|
|
cat_configs_multidim = op_bench.config_list(
|
|
attr_names=["sizes", "N", "dim"],
|
|
attrs=[
|
|
[(2**6, 2**5, 2**2, 2**4, 2**5), 2, 2], # noqa: E241
|
|
[(2**4, 2**5, 2**2, 2**4, 2**5), 8, 2], # noqa: E241
|
|
[
|
|
(2**3 + 1, 2**5 - 1, 2**2 + 1, 2**4 - 1, 2**5 + 1),
|
|
17,
|
|
4,
|
|
], # noqa: E226,E241
|
|
],
|
|
cross_product_configs=cross_product_configs,
|
|
tags=["multidim"],
|
|
)
|
|
|
|
cat_configs_manyinputs = op_bench.config_list(
|
|
attr_names=["sizes", "N", "dim"],
|
|
attrs=[
|
|
[[lambda: random.randint(1, 10000)], 100, 0],
|
|
[[lambda: random.randint(1, 1000)], 1000, 0],
|
|
[[lambda: random.randint(1, 500)], 2000, 0],
|
|
[[lambda: random.randint(1, 300)], 3000, 0],
|
|
],
|
|
cross_product_configs=cross_product_configs,
|
|
tags=["manyinputs"],
|
|
)
|
|
|
|
|
|
class CatBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, sizes, N, dim, device):
|
|
random.seed(42)
|
|
inputs = []
|
|
gen_sizes = []
|
|
if type(sizes) == list and N == -1:
|
|
gen_sizes = sizes
|
|
else:
|
|
for i in range(N):
|
|
gen_sizes.append(
|
|
[
|
|
old_size() if callable(old_size) else old_size
|
|
for old_size in sizes
|
|
]
|
|
)
|
|
|
|
for s in gen_sizes:
|
|
inputs.append(torch.rand(s, device=device))
|
|
result = torch.empty(0, device=device)
|
|
self.inputs = {"result": result, "inputs": inputs, "dim": dim}
|
|
self.set_module_name("cat")
|
|
|
|
def forward(self, result: torch.Tensor, inputs: List[torch.Tensor], dim: int):
|
|
return torch.cat(inputs, dim=dim, out=result)
|
|
|
|
|
|
op_bench.generate_pt_test(
|
|
cat_configs_short
|
|
+ cat_configs_long
|
|
+ cat_configs_multidim
|
|
+ cat_configs_manyinputs
|
|
+ cat_configs_static_runtime,
|
|
CatBenchmark,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|