mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126 Approved by: https://github.com/kit1980 ghstack dependencies: #127122, #127123, #127124, #127125
457 lines
14 KiB
Python
Executable File
457 lines
14 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import functools
|
|
import gc
|
|
import importlib
|
|
import logging
|
|
import os
|
|
import re
|
|
import sys
|
|
import warnings
|
|
from collections import namedtuple
|
|
from os.path import abspath, exists
|
|
|
|
import yaml
|
|
|
|
import torch
|
|
|
|
try:
|
|
from .common import BenchmarkRunner, main
|
|
except ImportError:
|
|
from common import BenchmarkRunner, main
|
|
|
|
from torch._dynamo.testing import collect_results, reduce_to_scalar_loss
|
|
from torch._dynamo.utils import clone_inputs
|
|
|
|
# We are primarily interested in tf32 datatype
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
|
def _reassign_parameters(model):
|
|
# torch_geometric models register parameter as tensors due to
|
|
# https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/dense/linear.py#L158-L168
|
|
# Since it is unusual thing to do, we just reassign them to parameters
|
|
def state_dict_hook(module, destination, prefix, local_metadata):
|
|
for name, param in module.named_parameters():
|
|
if isinstance(destination[name], torch.Tensor) and not isinstance(
|
|
destination[name], torch.nn.Parameter
|
|
):
|
|
destination[name] = torch.nn.Parameter(destination[name])
|
|
|
|
model._register_state_dict_hook(state_dict_hook)
|
|
|
|
|
|
def setup_torchbench_cwd():
|
|
original_dir = abspath(os.getcwd())
|
|
|
|
os.environ["KALDI_ROOT"] = "/tmp" # avoids some spam
|
|
for torchbench_dir in (
|
|
"./torchbenchmark",
|
|
"../torchbenchmark",
|
|
"../torchbench",
|
|
"../benchmark",
|
|
"../../torchbenchmark",
|
|
"../../torchbench",
|
|
"../../benchmark",
|
|
):
|
|
if exists(torchbench_dir):
|
|
break
|
|
|
|
if exists(torchbench_dir):
|
|
torchbench_dir = abspath(torchbench_dir)
|
|
os.chdir(torchbench_dir)
|
|
sys.path.append(torchbench_dir)
|
|
|
|
return original_dir
|
|
|
|
|
|
@functools.lru_cache(maxsize=1)
|
|
def load_yaml_file():
|
|
filename = "torchbench.yaml"
|
|
filepath = os.path.join(os.path.dirname(__file__), filename)
|
|
|
|
with open(filepath) as f:
|
|
data = yaml.safe_load(f)
|
|
|
|
def flatten(lst):
|
|
for item in lst:
|
|
if isinstance(item, list):
|
|
yield from flatten(item)
|
|
else:
|
|
yield item
|
|
|
|
def maybe_list_to_set(obj):
|
|
if isinstance(obj, dict):
|
|
return {k: maybe_list_to_set(v) for k, v in obj.items()}
|
|
if isinstance(obj, list):
|
|
return set(flatten(obj))
|
|
return obj
|
|
|
|
return maybe_list_to_set(data)
|
|
|
|
|
|
def process_hf_reformer_output(out):
|
|
assert isinstance(out, list)
|
|
# second output is unstable
|
|
return [elem for i, elem in enumerate(out) if i != 1]
|
|
|
|
|
|
def process_hf_whisper_output(out):
|
|
out_ret = []
|
|
for i, elem in enumerate(out):
|
|
if i == 0:
|
|
assert isinstance(elem, dict)
|
|
out_ret.append({k: v for k, v in elem.items() if k != "logits"})
|
|
elif i != 1:
|
|
out_ret.append(elem)
|
|
|
|
return out_ret
|
|
|
|
|
|
process_train_model_output = {
|
|
"hf_Reformer": process_hf_reformer_output,
|
|
"hf_Whisper": process_hf_whisper_output,
|
|
}
|
|
|
|
|
|
class TorchBenchmarkRunner(BenchmarkRunner):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.suite_name = "torchbench"
|
|
self.optimizer = None
|
|
|
|
@property
|
|
def _config(self):
|
|
return load_yaml_file()
|
|
|
|
@property
|
|
def _skip(self):
|
|
return self._config["skip"]
|
|
|
|
@property
|
|
def _batch_size(self):
|
|
return self._config["batch_size"]
|
|
|
|
@property
|
|
def _tolerance(self):
|
|
return self._config["tolerance"]
|
|
|
|
@property
|
|
def _accuracy(self):
|
|
return self._config["accuracy"]
|
|
|
|
@property
|
|
def skip_models(self):
|
|
return self._skip["all"]
|
|
|
|
@property
|
|
def skip_models_for_cpu(self):
|
|
return self._skip["device"]["cpu"]
|
|
|
|
@property
|
|
def skip_models_for_cuda(self):
|
|
return self._skip["device"]["cuda"]
|
|
|
|
@property
|
|
def skip_models_for_freezing(self):
|
|
return self._skip["freezing"]
|
|
|
|
@property
|
|
def slow_models(self):
|
|
return self._config["slow"]
|
|
|
|
@property
|
|
def very_slow_models(self):
|
|
return self._config["very_slow"]
|
|
|
|
@property
|
|
def non_deterministic_models(self):
|
|
return self._config["non_deterministic"]
|
|
|
|
@property
|
|
def get_output_amp_train_process_func(self):
|
|
return process_train_model_output
|
|
|
|
@property
|
|
def skip_not_suitable_for_training_models(self):
|
|
return self._skip["test"]["training"]
|
|
|
|
@property
|
|
def failing_fx2trt_models(self):
|
|
return self._config["trt_not_yet_working"]
|
|
|
|
@property
|
|
def force_amp_for_fp16_bf16_models(self):
|
|
return self._config["dtype"]["force_amp_for_fp16_bf16_models"]
|
|
|
|
@property
|
|
def force_fp16_for_bf16_models(self):
|
|
return self._config["dtype"]["force_fp16_for_bf16_models"]
|
|
|
|
@property
|
|
def skip_accuracy_checks_large_models_dashboard(self):
|
|
if self.args.dashboard or self.args.accuracy:
|
|
return self._accuracy["skip"]["large_models"]
|
|
return set()
|
|
|
|
@property
|
|
def skip_accuracy_check_as_eager_non_deterministic(self):
|
|
if self.args.accuracy and self.args.training:
|
|
return self._accuracy["skip"]["eager_not_deterministic"]
|
|
return set()
|
|
|
|
@property
|
|
def skip_multiprocess_models(self):
|
|
return self._skip["multiprocess"]
|
|
|
|
@property
|
|
def skip_models_due_to_control_flow(self):
|
|
return self._skip["control_flow"]
|
|
|
|
@property
|
|
def guard_on_nn_module_models(self):
|
|
return {
|
|
"vision_maskrcnn",
|
|
}
|
|
|
|
def load_model(
|
|
self,
|
|
device,
|
|
model_name,
|
|
batch_size=None,
|
|
part=None,
|
|
extra_args=None,
|
|
):
|
|
if self.args.enable_activation_checkpointing:
|
|
raise NotImplementedError(
|
|
"Activation checkpointing not implemented for Torchbench models"
|
|
)
|
|
is_training = self.args.training
|
|
use_eval_mode = self.args.use_eval_mode
|
|
dynamic_shapes = self.args.dynamic_shapes
|
|
candidates = [
|
|
f"torchbenchmark.models.{model_name}",
|
|
f"torchbenchmark.canary_models.{model_name}",
|
|
f"torchbenchmark.models.fb.{model_name}",
|
|
]
|
|
for c in candidates:
|
|
try:
|
|
module = importlib.import_module(c)
|
|
break
|
|
except ModuleNotFoundError as e:
|
|
if e.name != c:
|
|
raise
|
|
else:
|
|
raise ImportError(f"could not import any of {candidates}")
|
|
benchmark_cls = getattr(module, "Model", None)
|
|
if benchmark_cls is None:
|
|
raise NotImplementedError(f"{model_name}.Model is None")
|
|
|
|
if not hasattr(benchmark_cls, "name"):
|
|
benchmark_cls.name = model_name
|
|
|
|
cant_change_batch_size = (
|
|
not getattr(benchmark_cls, "ALLOW_CUSTOMIZE_BSIZE", True)
|
|
or model_name in self._config["dont_change_batch_size"]
|
|
)
|
|
if cant_change_batch_size:
|
|
batch_size = None
|
|
if (
|
|
batch_size is None
|
|
and is_training
|
|
and model_name in self._batch_size["training"]
|
|
):
|
|
batch_size = self._batch_size["training"][model_name]
|
|
elif (
|
|
batch_size is None
|
|
and not is_training
|
|
and model_name in self._batch_size["inference"]
|
|
):
|
|
batch_size = self._batch_size["inference"][model_name]
|
|
|
|
# Control the memory footprint for few models
|
|
if self.args.accuracy and model_name in self._accuracy["max_batch_size"]:
|
|
batch_size = min(batch_size, self._accuracy["max_batch_size"][model_name])
|
|
|
|
# workaround "RuntimeError: not allowed to set torch.backends.cudnn flags"
|
|
torch.backends.__allow_nonbracketed_mutation_flag = True
|
|
if extra_args is None:
|
|
extra_args = []
|
|
if part:
|
|
extra_args += ["--part", part]
|
|
|
|
# sam_fast only runs with amp
|
|
if model_name == "sam_fast":
|
|
self.args.amp = True
|
|
self.setup_amp()
|
|
|
|
if model_name == "vision_maskrcnn" and is_training:
|
|
# Output of vision_maskrcnn model is a list of bounding boxes,
|
|
# sorted on the basis of their scores. This makes accuracy
|
|
# comparison hard with torch.compile. torch.compile can cause minor
|
|
# divergences in the output because of how fusion works for amp in
|
|
# TorchInductor compared to eager. Therefore, instead of looking at
|
|
# all the bounding boxes, we compare only top 4.
|
|
model_kwargs = {"box_detections_per_img": 4}
|
|
benchmark = benchmark_cls(
|
|
test="train",
|
|
device=device,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
model_kwargs=model_kwargs,
|
|
)
|
|
elif is_training:
|
|
benchmark = benchmark_cls(
|
|
test="train",
|
|
device=device,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
)
|
|
else:
|
|
benchmark = benchmark_cls(
|
|
test="eval",
|
|
device=device,
|
|
batch_size=batch_size,
|
|
extra_args=extra_args,
|
|
)
|
|
model, example_inputs = benchmark.get_module()
|
|
if model_name in [
|
|
"basic_gnn_edgecnn",
|
|
"basic_gnn_gcn",
|
|
"basic_gnn_sage",
|
|
"basic_gnn_gin",
|
|
]:
|
|
_reassign_parameters(model)
|
|
|
|
# Models that must be in train mode while training
|
|
if is_training and (
|
|
not use_eval_mode or model_name in self._config["only_training"]
|
|
):
|
|
model.train()
|
|
else:
|
|
model.eval()
|
|
gc.collect()
|
|
batch_size = benchmark.batch_size
|
|
if model_name == "torchrec_dlrm":
|
|
batch_namedtuple = namedtuple(
|
|
"Batch", "dense_features sparse_features labels"
|
|
)
|
|
example_inputs = tuple(
|
|
batch_namedtuple(
|
|
dense_features=batch.dense_features,
|
|
sparse_features=batch.sparse_features,
|
|
labels=batch.labels,
|
|
)
|
|
for batch in example_inputs
|
|
)
|
|
# Torchbench has quite different setup for yolov3, so directly passing
|
|
# the right example_inputs
|
|
if model_name == "yolov3":
|
|
example_inputs = (torch.rand(batch_size, 3, 384, 512).to(device),)
|
|
# See https://github.com/pytorch/benchmark/issues/1561
|
|
if model_name == "maml_omniglot":
|
|
batch_size = 5
|
|
assert example_inputs[0].shape[0] == batch_size
|
|
if model_name == "vision_maskrcnn":
|
|
batch_size = 1
|
|
# global current_name, current_device
|
|
# current_device = device
|
|
# current_name = benchmark.name
|
|
|
|
if self.args.trace_on_xla:
|
|
# work around for: https://github.com/pytorch/xla/issues/4174
|
|
import torch_xla # noqa: F401
|
|
self.validate_model(model, example_inputs)
|
|
return device, benchmark.name, model, example_inputs, batch_size
|
|
|
|
def iter_model_names(self, args):
|
|
from torchbenchmark import _list_canary_model_paths, _list_model_paths
|
|
|
|
models = _list_model_paths()
|
|
models += [
|
|
f
|
|
for f in _list_canary_model_paths()
|
|
if os.path.basename(f) in self._config["canary_models"]
|
|
]
|
|
models.sort()
|
|
|
|
start, end = self.get_benchmark_indices(len(models))
|
|
for index, model_path in enumerate(models):
|
|
if index < start or index >= end:
|
|
continue
|
|
|
|
model_name = os.path.basename(model_path)
|
|
if (
|
|
not re.search("|".join(args.filter), model_name, re.I)
|
|
or re.search("|".join(args.exclude), model_name, re.I)
|
|
or model_name in args.exclude_exact
|
|
or model_name in self.skip_models
|
|
):
|
|
continue
|
|
|
|
yield model_name
|
|
|
|
def pick_grad(self, name, is_training):
|
|
if is_training or name in ("maml",):
|
|
return torch.enable_grad()
|
|
else:
|
|
return torch.no_grad()
|
|
|
|
def get_tolerance_and_cosine_flag(self, is_training, current_device, name):
|
|
tolerance = 1e-4
|
|
cosine = self.args.cosine
|
|
# Increase the tolerance for torch allclose
|
|
if self.args.float16 or self.args.amp:
|
|
if name in self._tolerance["higher_fp16"]:
|
|
return 1e-2, cosine
|
|
return 1e-3, cosine
|
|
|
|
if self.args.bfloat16:
|
|
if name in self._tolerance["higher_bf16"]:
|
|
return 1e-2, cosine
|
|
|
|
if is_training and (current_device == "cuda" or current_device == "xpu"):
|
|
tolerance = 1e-3
|
|
if name in self._tolerance["cosine"]:
|
|
cosine = True
|
|
elif name in self._tolerance["higher"]:
|
|
tolerance = 1e-3
|
|
elif name in self._tolerance["even_higher"]:
|
|
tolerance = 8 * 1e-2
|
|
return tolerance, cosine
|
|
|
|
def compute_loss(self, pred):
|
|
return reduce_to_scalar_loss(pred)
|
|
|
|
def forward_pass(self, mod, inputs, collect_outputs=True):
|
|
with self.autocast(**self.autocast_arg):
|
|
if isinstance(inputs, dict):
|
|
return mod(**inputs)
|
|
else:
|
|
return mod(*inputs)
|
|
|
|
def forward_and_backward_pass(self, mod, inputs, collect_outputs=True):
|
|
cloned_inputs = clone_inputs(inputs)
|
|
self.optimizer_zero_grad(mod)
|
|
with self.autocast(**self.autocast_arg):
|
|
if isinstance(cloned_inputs, dict):
|
|
pred = mod(**cloned_inputs)
|
|
else:
|
|
pred = mod(*cloned_inputs)
|
|
loss = self.compute_loss(pred)
|
|
self.grad_scaler.scale(loss).backward()
|
|
self.optimizer_step()
|
|
if collect_outputs:
|
|
return collect_results(mod, pred, loss, cloned_inputs)
|
|
return None
|
|
|
|
|
|
def torchbench_main():
|
|
original_dir = setup_torchbench_cwd()
|
|
logging.basicConfig(level=logging.WARNING)
|
|
warnings.filterwarnings("ignore")
|
|
main(TorchBenchmarkRunner(), original_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torchbench_main()
|