mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144556 Approved by: https://github.com/ezyang
207 lines
6.7 KiB
Python
Executable File
207 lines
6.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
"""This script runs cuda-memcheck on the specified unit test. Each test case
|
|
is run in its isolated process with a timeout so that:
|
|
1) different test cases won't influence each other, and
|
|
2) in case of hang, the script would still finish in a finite amount of time.
|
|
The output will be written to a log file result.log
|
|
|
|
Example usage:
|
|
python run_cuda_memcheck.py ../test_torch.py 600
|
|
|
|
Note that running cuda-memcheck could be very slow.
|
|
"""
|
|
|
|
import argparse
|
|
import asyncio
|
|
import multiprocessing
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
|
|
import cuda_memcheck_common as cmc
|
|
import tqdm
|
|
|
|
import torch
|
|
|
|
|
|
ALL_TESTS = []
|
|
GPUS = torch.cuda.device_count()
|
|
|
|
# parse arguments
|
|
parser = argparse.ArgumentParser(description="Run isolated cuda-memcheck on unit tests")
|
|
parser.add_argument(
|
|
"filename", help="the python file for a test, such as test_torch.py"
|
|
)
|
|
parser.add_argument(
|
|
"timeout",
|
|
type=int,
|
|
help="kill the test if it does not terminate in a certain amount of seconds",
|
|
)
|
|
parser.add_argument(
|
|
"--strict",
|
|
action="store_true",
|
|
help="Whether to show cublas/cudnn errors. These errors are ignored by default because"
|
|
"cublas/cudnn does not run error-free under cuda-memcheck, and ignoring these errors",
|
|
)
|
|
parser.add_argument(
|
|
"--nproc",
|
|
type=int,
|
|
default=multiprocessing.cpu_count(),
|
|
help="Number of processes running tests, default to number of cores in the system",
|
|
)
|
|
parser.add_argument(
|
|
"--gpus",
|
|
default="all",
|
|
help='GPU assignments for each process, it could be "all", or : separated list like "1,2:3,4:5,6"',
|
|
)
|
|
parser.add_argument(
|
|
"--ci",
|
|
action="store_true",
|
|
help="Whether this script is executed in CI. When executed inside a CI, this script fails when "
|
|
"an error is detected. Also, it will not show tqdm progress bar, but directly print the error"
|
|
"to stdout instead.",
|
|
)
|
|
parser.add_argument("--nohang", action="store_true", help="Treat timeout as success")
|
|
parser.add_argument("--split", type=int, default=1, help="Split the job into pieces")
|
|
parser.add_argument(
|
|
"--rank", type=int, default=0, help="Which piece this process should pick"
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
|
|
# Filters that ignores cublas/cudnn errors
|
|
# TODO (@zasdfgbnm): When can we remove this? Will cublas/cudnn run error-free under cuda-memcheck?
|
|
def is_ignored_only(output):
|
|
try:
|
|
report = cmc.parse(output)
|
|
except cmc.ParseError:
|
|
# in case the simple parser fails parsing the output of cuda memcheck
|
|
# then this error is never ignored.
|
|
return False
|
|
count_ignored_errors = 0
|
|
for e in report.errors:
|
|
if (
|
|
"libcublas" in "".join(e.stack)
|
|
or "libcudnn" in "".join(e.stack)
|
|
or "libcufft" in "".join(e.stack)
|
|
):
|
|
count_ignored_errors += 1
|
|
return count_ignored_errors == report.num_errors
|
|
|
|
|
|
# Set environment PYTORCH_CUDA_MEMCHECK=1 to allow skipping some tests
|
|
os.environ["PYTORCH_CUDA_MEMCHECK"] = "1"
|
|
|
|
# Discover tests:
|
|
# To get a list of tests, run:
|
|
# pytest --setup-only test/test_torch.py
|
|
# and then parse the output
|
|
proc = subprocess.Popen(
|
|
["pytest", "--setup-only", args.filename],
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
)
|
|
stdout, stderr = proc.communicate()
|
|
lines = stdout.decode().strip().splitlines()
|
|
for line in lines:
|
|
if "(fixtures used:" in line:
|
|
line = line.strip().split()[0]
|
|
line = line[line.find("::") + 2 :]
|
|
line = line.replace("::", ".")
|
|
ALL_TESTS.append(line)
|
|
|
|
|
|
# Do a simple filtering:
|
|
# if 'cpu' or 'CPU' is in the name and 'cuda' or 'CUDA' is not in the name, then skip it
|
|
def is_cpu_only(name):
|
|
name = name.lower()
|
|
return ("cpu" in name) and "cuda" not in name
|
|
|
|
|
|
ALL_TESTS = [x for x in ALL_TESTS if not is_cpu_only(x)]
|
|
|
|
# Split all tests into chunks, and only on the selected chunk
|
|
ALL_TESTS.sort()
|
|
chunk_size = (len(ALL_TESTS) + args.split - 1) // args.split
|
|
start = chunk_size * args.rank
|
|
end = chunk_size * (args.rank + 1)
|
|
ALL_TESTS = ALL_TESTS[start:end]
|
|
|
|
# Run tests:
|
|
# Since running cuda-memcheck on PyTorch unit tests is very slow, these tests must be run in parallel.
|
|
# This is done by using the coroutine feature in new Python versions. A number of coroutines are created;
|
|
# they create subprocesses and awaiting them to finish. The number of running subprocesses could be
|
|
# specified by the user and by default is the same as the number of CPUs in the machine.
|
|
# These subprocesses are balanced across different GPUs on the system by assigning one devices per process,
|
|
# or as specified by the user
|
|
progress = 0
|
|
if not args.ci:
|
|
logfile = open("result.log", "w")
|
|
progressbar = tqdm.tqdm(total=len(ALL_TESTS))
|
|
else:
|
|
logfile = sys.stdout
|
|
|
|
# create a fake progress bar that does not display anything
|
|
class ProgressbarStub:
|
|
def update(self, *args):
|
|
return
|
|
|
|
progressbar = ProgressbarStub()
|
|
|
|
|
|
async def run1(coroutine_id):
|
|
global progress
|
|
|
|
if args.gpus == "all":
|
|
gpuid = coroutine_id % GPUS
|
|
else:
|
|
gpu_assignments = args.gpus.split(":")
|
|
assert args.nproc == len(gpu_assignments), (
|
|
"Please specify GPU assignment for each process, separated by :"
|
|
)
|
|
gpuid = gpu_assignments[coroutine_id]
|
|
|
|
while progress < len(ALL_TESTS):
|
|
test = ALL_TESTS[progress]
|
|
progress += 1
|
|
cmd = f"CUDA_VISIBLE_DEVICES={gpuid} cuda-memcheck --error-exitcode 1 python {args.filename} {test}"
|
|
proc = await asyncio.create_subprocess_shell(
|
|
cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE
|
|
)
|
|
try:
|
|
stdout, stderr = await asyncio.wait_for(proc.communicate(), args.timeout)
|
|
except asyncio.TimeoutError:
|
|
print("Timeout:", test, file=logfile)
|
|
proc.kill()
|
|
if args.ci and not args.nohang:
|
|
sys.exit("Hang detected on cuda-memcheck")
|
|
else:
|
|
if proc.returncode == 0:
|
|
print("Success:", test, file=logfile)
|
|
else:
|
|
stdout = stdout.decode()
|
|
stderr = stderr.decode()
|
|
should_display = args.strict or not is_ignored_only(stdout)
|
|
if should_display:
|
|
print("Fail:", test, file=logfile)
|
|
print(stdout, file=logfile)
|
|
print(stderr, file=logfile)
|
|
if args.ci:
|
|
sys.exit("Failure detected on cuda-memcheck")
|
|
else:
|
|
print("Ignored:", test, file=logfile)
|
|
del proc
|
|
progressbar.update(1)
|
|
|
|
|
|
async def main():
|
|
tasks = [asyncio.ensure_future(run1(i)) for i in range(args.nproc)]
|
|
for t in tasks:
|
|
await t
|
|
|
|
|
|
if __name__ == "__main__":
|
|
loop = asyncio.get_event_loop()
|
|
loop.run_until_complete(main())
|