mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
This reverts commit b5c33ccdb3198a48a354e21a4fdace0ec6d04146. Reverted https://github.com/pytorch/pytorch/pull/116459 on behalf of https://github.com/zou3519 due to Broke CI, seems to be a landrace ([comment](https://github.com/pytorch/pytorch/pull/116459#issuecomment-1877135999))
976 lines
35 KiB
Python
976 lines
35 KiB
Python
import collections
|
||
import dataclasses
|
||
import functools
|
||
import inspect
|
||
import itertools
|
||
import sys
|
||
import types
|
||
from typing import Dict, List
|
||
|
||
import torch._C
|
||
import torch._numpy as tnp
|
||
from .. import config, variables
|
||
from ..bytecode_transformation import create_call_function, create_instruction
|
||
from ..exc import unimplemented
|
||
from ..guards import GuardBuilder, install_guard
|
||
from ..source import AttrSource, GetItemSource, ODictGetItemSource, TypeSource
|
||
from ..utils import (
|
||
check_constant_args,
|
||
identity,
|
||
is_tensor_base_attr_getter,
|
||
proxy_args_kwargs,
|
||
)
|
||
from .base import MutableLocal, VariableTracker
|
||
from .functions import (
|
||
NestedUserFunctionVariable,
|
||
UserFunctionVariable,
|
||
UserMethodVariable,
|
||
)
|
||
from .user_defined import UserDefinedObjectVariable
|
||
|
||
|
||
class SuperVariable(VariableTracker):
|
||
def __init__(self, typevar, objvar=None, specialized=False, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.typevar = typevar
|
||
self.objvar = objvar
|
||
self.specialized = specialized # directly get attr from self.typevar if true
|
||
|
||
def reconstruct(self, codegen):
|
||
codegen(variables.BuiltinVariable(super))
|
||
codegen(self.typevar)
|
||
if self.objvar is not None:
|
||
codegen(self.objvar)
|
||
return create_call_function(2, True)
|
||
else:
|
||
return create_call_function(1, True)
|
||
|
||
def _resolved_getattr_and_source(self, tx, name):
|
||
assert self.objvar, "1-arg super not implemented"
|
||
if self.specialized:
|
||
return getattr(self.typevar.as_python_constant(), name)
|
||
search_type = self.typevar.as_python_constant()
|
||
|
||
# We default to the python type of the object. However, if this is
|
||
# a `type` or subclass of `type`, then the original object represents
|
||
# the user defined type.
|
||
type_to_use = self.objvar.python_type()
|
||
type_to_use_source = (
|
||
TypeSource(self.objvar.source) if self.objvar.source else None
|
||
)
|
||
if issubclass(type_to_use, type):
|
||
type_to_use = self.objvar.value
|
||
type_to_use_source = self.objvar.source
|
||
|
||
source = None
|
||
if self.objvar.source is not None:
|
||
# Walk the mro tuple to find out the actual class where the
|
||
# attribute resides.
|
||
search_mro = type_to_use.__mro__
|
||
start_index = search_mro.index(search_type) + 1
|
||
for index in range(start_index, len(search_mro)):
|
||
if hasattr(search_mro[index], name):
|
||
# Equivalent of something like type(L['self']).__mro__[1].attr_name
|
||
source = AttrSource(
|
||
GetItemSource(AttrSource(type_to_use_source, "__mro__"), index),
|
||
name,
|
||
)
|
||
break
|
||
|
||
# TODO(jansel): there is a small chance this could trigger user code, prevent that
|
||
return getattr(super(search_type, type_to_use), name), source
|
||
|
||
def var_getattr(self, tx, name: str) -> "VariableTracker":
|
||
# Check if getattr is a constant. If not, delay the actual work by
|
||
# wrapping the result in GetAttrVariable. Mostly super is called with a
|
||
# method, so most of the work is delayed to call_function.
|
||
#
|
||
# We could have just implemented a const_getattr. However, super is
|
||
# special when it comes to finding sources. Compared to other VTs, super
|
||
# requires the attr name to walk the mro and find the actual source (and
|
||
# not just AttrSource).
|
||
value, source = self._resolved_getattr_and_source(self, name)
|
||
if not variables.ConstantVariable.is_literal(value):
|
||
return GetAttrVariable(self, name)
|
||
if source:
|
||
install_guard(source.make_guard(GuardBuilder.CONSTANT_MATCH))
|
||
return variables.ConstantVariable.create(value, source=source)
|
||
return variables.ConstantVariable.create(value)
|
||
|
||
def call_method(
|
||
self,
|
||
tx,
|
||
name,
|
||
args: "List[VariableTracker]",
|
||
kwargs: "Dict[str, VariableTracker]",
|
||
) -> "VariableTracker":
|
||
inner_fn, source = self._resolved_getattr_and_source(self, name)
|
||
|
||
if inner_fn is object.__init__:
|
||
return LambdaVariable(identity)
|
||
elif inner_fn is torch.nn.Module.__init__:
|
||
objvar = self.objvar
|
||
from ..side_effects import AttributeMutationNew
|
||
|
||
if (
|
||
isinstance(objvar, variables.UserDefinedObjectVariable)
|
||
and isinstance(objvar.mutable_local, AttributeMutationNew)
|
||
and not (args or kwargs)
|
||
):
|
||
tx.output.side_effects.store_attr(
|
||
objvar,
|
||
"__call_nn_module_init",
|
||
variables.ConstantVariable.create(True),
|
||
)
|
||
return variables.ConstantVariable.create(None)
|
||
else:
|
||
unimplemented("super() nn.Module.__init__")
|
||
elif isinstance(inner_fn, types.FunctionType):
|
||
return variables.UserFunctionVariable(
|
||
inner_fn, source=source
|
||
).call_function(tx, [self.objvar] + args, kwargs)
|
||
elif isinstance(inner_fn, types.MethodType):
|
||
return variables.UserMethodVariable(
|
||
inner_fn.__func__, self.objvar, source=source
|
||
).call_function(tx, args, kwargs)
|
||
elif (
|
||
inner_fn is collections.OrderedDict.__getitem__
|
||
and isinstance(self.objvar, variables.UserDefinedObjectVariable)
|
||
and self.objvar.source
|
||
and len(args) == 1
|
||
and len(kwargs) == 0
|
||
and args[0].is_python_constant()
|
||
):
|
||
from .builder import VariableBuilder
|
||
|
||
key = args[0].as_python_constant()
|
||
return VariableBuilder(tx, ODictGetItemSource(self.objvar.source, key))(
|
||
collections.OrderedDict.__getitem__(self.objvar.value, key)
|
||
)
|
||
elif (
|
||
inner_fn in (collections.OrderedDict.__setitem__, object.__setattr__)
|
||
and isinstance(self.objvar, variables.CustomizedDictVariable)
|
||
and args
|
||
and variables.ConstDictVariable.is_valid_key(args[0])
|
||
and self.objvar.mutable_local
|
||
):
|
||
assert not kwargs and len(args) == 2
|
||
k = variables.ConstDictVariable.get_key(args[0])
|
||
tx.output.side_effects.mutation(self)
|
||
self.objvar.items[k] = args[1]
|
||
return variables.ConstantVariable.create(None)
|
||
else:
|
||
unimplemented(f"non-function or method super: {inner_fn}")
|
||
|
||
|
||
class UnknownVariable(VariableTracker):
|
||
"""
|
||
It could be anything!
|
||
"""
|
||
|
||
|
||
class DelayGraphBreakVariable(UnknownVariable):
|
||
"""
|
||
Used to insert a dummy variable in the stack to do the graph break at CALL_FUNCTION.
|
||
"""
|
||
|
||
|
||
class ComptimeVariable(VariableTracker):
|
||
"""
|
||
This variable is special, it lets you execute arbitrary code at
|
||
Dynamo compile time
|
||
"""
|
||
|
||
def reconstruct(self, codegen):
|
||
raise NotImplementedError("comptime is special form")
|
||
|
||
def var_getattr(self, tx, name: str) -> "VariableTracker":
|
||
from ..comptime import comptime
|
||
|
||
# To support the comptime.print_graph convenience accessors
|
||
from .functions import UserFunctionVariable
|
||
|
||
return UserFunctionVariable(
|
||
getattr(comptime, name), source=AttrSource(self.source, name)
|
||
)
|
||
|
||
def call_function(
|
||
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
||
) -> "VariableTracker":
|
||
from ..comptime import ComptimeContext
|
||
|
||
# TODO: support an expression form as well
|
||
|
||
assert not kwargs
|
||
assert len(args) == 1
|
||
fn = args[0]
|
||
if isinstance(fn, UserFunctionVariable):
|
||
fn.get_function()(ComptimeContext(tx))
|
||
elif isinstance(fn, NestedUserFunctionVariable):
|
||
# We have to manually bind the freevars ourselves
|
||
code = fn.get_code()
|
||
assert not fn.closure, (
|
||
"comptime function must not have free variables, "
|
||
f"but these variables were free: {code.co_freevars}"
|
||
)
|
||
func = types.FunctionType(
|
||
code,
|
||
fn.f_globals,
|
||
fn.fn_name.as_python_constant(),
|
||
tuple(fn.defaults.items) if fn.defaults else None,
|
||
# We could automatically promote free variables into
|
||
# ComptimeVar but this is confusing if you access
|
||
# a free variable that we actually DO have the runtime
|
||
# value for
|
||
# tuple(make_cell(ComptimeVar(i)) for i in fn.closure.items)
|
||
tuple(),
|
||
)
|
||
func(ComptimeContext(tx))
|
||
else:
|
||
raise RuntimeError(f"unsupported argument to comptime: {type(fn)}")
|
||
|
||
return variables.ConstantVariable.create(None)
|
||
|
||
|
||
class ClosureVariable(UnknownVariable):
|
||
def __init__(self, name, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.name = name
|
||
|
||
def reconstruct(self, codegen):
|
||
return [codegen.create_load_closure(self.name)]
|
||
|
||
|
||
# closure variable created by an inlined function
|
||
class InlinedClosureVariable(UnknownVariable):
|
||
def __init__(self, name, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.name = name
|
||
|
||
def reconstruct(self, codegen):
|
||
return [codegen.create_load_closure(self.name)]
|
||
|
||
|
||
class NewCellVariable(VariableTracker):
|
||
def __init__(self, **kwargs):
|
||
super().__init__(**kwargs)
|
||
|
||
|
||
class NewGlobalVariable(VariableTracker):
|
||
def __init__(self, **kwargs):
|
||
super().__init__(**kwargs)
|
||
|
||
|
||
class InspectSignatureVariable(VariableTracker):
|
||
"""represents inspect.signature(...)"""
|
||
|
||
@staticmethod
|
||
def create(callable, **kwargs):
|
||
if kwargs:
|
||
unimplemented(f"inspect.signature with {kwargs}")
|
||
return InspectSignatureVariable(callable)
|
||
|
||
def __init__(self, inspected: VariableTracker, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.inspected = inspected
|
||
|
||
def var_getattr(self, tx, name: str) -> "VariableTracker":
|
||
if name == "parameters":
|
||
return variables.ConstDictVariable(
|
||
{
|
||
name: InspectParameterVariable()
|
||
for name in self.inspected.inspect_parameter_names()
|
||
},
|
||
user_cls=dict,
|
||
)
|
||
return super().var_getattr(tx, name)
|
||
|
||
|
||
class InspectParameterVariable(VariableTracker):
|
||
"""This is not implemented, if used will graph break."""
|
||
|
||
pass
|
||
|
||
|
||
def produce_trampoline_autograd_fwd(fn_cls):
|
||
def trampoline_autograd_fwd(*args, **kwargs):
|
||
return fn_cls.forward(*args, **kwargs)
|
||
|
||
trampoline_autograd_fwd._origin = produce_trampoline_autograd_fwd
|
||
return trampoline_autograd_fwd
|
||
|
||
|
||
def produce_trampoline_autograd_bwd(fn_cls):
|
||
def trampoline_autograd_bwd(*args, **kwargs):
|
||
return fn_cls.backward(*args, **kwargs)
|
||
|
||
trampoline_autograd_bwd._origin = produce_trampoline_autograd_bwd
|
||
return trampoline_autograd_bwd
|
||
|
||
|
||
def produce_trampoline_autograd_apply(fn_cls):
|
||
def trampoline_autograd_apply(*args, **kwargs):
|
||
return fn_cls.apply(*args, **kwargs)
|
||
|
||
trampoline_autograd_apply._origin = produce_trampoline_autograd_apply
|
||
return trampoline_autograd_apply
|
||
|
||
|
||
class AutogradFunctionVariable(VariableTracker):
|
||
"""represents a torch.autograd.Function subclass"""
|
||
|
||
def __init__(self, fn_cls, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.fn_cls = fn_cls
|
||
|
||
def call_apply(self, tx, args, kwargs):
|
||
requires_grad = False
|
||
|
||
def visit(node):
|
||
nonlocal requires_grad
|
||
if isinstance(node, variables.TensorVariable):
|
||
if node.requires_grad is not False:
|
||
requires_grad = True
|
||
if isinstance(node, variables.NNModuleVariable):
|
||
if node.is_training(tx):
|
||
requires_grad = True
|
||
return node
|
||
|
||
VariableTracker.apply(visit, (args, kwargs))
|
||
|
||
ctx = AutogradFunctionContextVariable.create(tx)
|
||
args = [ctx, *args]
|
||
|
||
if (
|
||
requires_grad
|
||
and torch.is_grad_enabled()
|
||
and config.capture_autograd_function
|
||
):
|
||
# Note - this is the same check used in autograd/function.py, except inverted.
|
||
# If we want to support functorch transforms here, we will need to enable this.
|
||
if (
|
||
self.fn_cls.setup_context
|
||
!= torch.autograd.function._SingleLevelFunction.setup_context
|
||
):
|
||
unimplemented(
|
||
"NYI - autograd.Function with custom setup_context method"
|
||
)
|
||
|
||
vjp_fn = self.fn_cls.vjp # type: ignore[attr-defined]
|
||
if vjp_fn is not torch.autograd.Function.vjp:
|
||
unimplemented("NYI - User defind vjp")
|
||
|
||
jvp_fn = self.fn_cls.jvp # type: ignore[attr-defined]
|
||
if jvp_fn is not torch.autograd.Function.jvp:
|
||
unimplemented("NYI - User defind jvp")
|
||
|
||
from .higher_order_ops import TorchHigherOrderOperatorVariable
|
||
|
||
trampoline_autograd_apply = produce_trampoline_autograd_apply(self.fn_cls)
|
||
trampoline_autograd_fwd = produce_trampoline_autograd_fwd(self.fn_cls)
|
||
trampoline_autograd_bwd = produce_trampoline_autograd_bwd(self.fn_cls)
|
||
|
||
# NOTE [On Tracing autograd.Function w/ grad]
|
||
# The complex system described here revolves around the soundness evaluation of an autograd.Function in
|
||
# PyTorch. The system follows a well-defined strategy for tracing, which involves three key steps: tracing
|
||
# forward, tracing backward, and if both are sound the potential recording of an "apply" operation into the
|
||
# graph.We trace forward, and evaluate soundness. Soundness, in this context, refers to the absence of side
|
||
# effects, the avoidance of lifting new arguments into the trace, the production of a single tensor output,
|
||
# and a limited input scope confined to contexts, tensors, and constants. If the forward trace is sound,
|
||
# we install any guards accumulated from tracing. If not, we graph break. We trace backward, and evaluate
|
||
# for soundness, same as forward, except with more strictness. We enable a strict mode on the tx, and
|
||
# reject certain ops when running under this strict mode. If both the forward and backward traces are sound,
|
||
# we write the autograd function’s apply into the graph.
|
||
|
||
# For tracing forward and backward, we use UserFunctionVariable. Although it does not directly contribute
|
||
# to soundness evaluation, it plus a GlobalSource makes sure we can produce valid guards,
|
||
# and that we can inline properly here. Inlining is required in order to be able to ensure that the
|
||
# soundness evaluation works as described above.
|
||
|
||
module_source = AttrSource(
|
||
tx.import_source(self.fn_cls.__module__), self.fn_cls.__name__
|
||
)
|
||
fwd_bwd_tracer = torch._dynamo.output_graph.SubgraphTracer(
|
||
tx.output,
|
||
parent=tx.output.current_tracer,
|
||
source_target="autograd.Function",
|
||
)
|
||
higher_order_autograd_fn = TorchHigherOrderOperatorVariable.make(
|
||
trampoline_autograd_fwd,
|
||
source=AttrSource(module_source, "forward"),
|
||
fwd_bwd_tracer=fwd_bwd_tracer,
|
||
)
|
||
speculated_fwd_result = higher_order_autograd_fn.call_function(
|
||
tx, args, kwargs
|
||
)
|
||
|
||
if isinstance(speculated_fwd_result, variables.TupleVariable):
|
||
bwd_args = [ctx, *speculated_fwd_result.items]
|
||
else:
|
||
bwd_args = [ctx, speculated_fwd_result]
|
||
|
||
TorchHigherOrderOperatorVariable.make(
|
||
trampoline_autograd_bwd,
|
||
source=AttrSource(module_source, "backward"),
|
||
fwd_bwd_tracer=fwd_bwd_tracer,
|
||
).call_function(tx, bwd_args, {})
|
||
|
||
# If fwd and backward are sound, we want apply in the graph.
|
||
# We don't want backward because we are tracing forwards.
|
||
args = args[1:]
|
||
return TorchHigherOrderOperatorVariable.make(
|
||
trampoline_autograd_apply,
|
||
fwd_bwd_tracer=None,
|
||
).call_function(tx, args, kwargs)
|
||
|
||
if self.source:
|
||
source = AttrSource(AttrSource(self.source, "__class__"), "forward")
|
||
else:
|
||
source = None
|
||
fn = self.fn_cls.forward
|
||
if isinstance(fn, types.FunctionType):
|
||
return variables.UserFunctionVariable(fn, source=source).call_function(
|
||
tx, args, kwargs
|
||
)
|
||
elif isinstance(fn, types.MethodType):
|
||
return variables.UserMethodVariable(
|
||
fn.__func__,
|
||
variables.UserDefinedClassVariable(self.fn_cls),
|
||
source=source,
|
||
).call_function(tx, args, kwargs)
|
||
else:
|
||
unimplemented(
|
||
f"non-function or method in subclass of torch.autograd.Function: {fn}"
|
||
)
|
||
|
||
def call_function(self, tx, args, kwargs):
|
||
return AutogradFunctionVariable(self.fn_cls)
|
||
|
||
def call_method(
|
||
self,
|
||
tx,
|
||
name,
|
||
args: "List[VariableTracker]",
|
||
kwargs: "Dict[str, VariableTracker]",
|
||
):
|
||
from ..trace_rules import is_callable_allowed
|
||
from .builder import wrap_fx_proxy
|
||
|
||
if name == "apply":
|
||
if is_callable_allowed(self.fn_cls):
|
||
trampoline_autograd_apply = produce_trampoline_autograd_apply(
|
||
self.fn_cls
|
||
)
|
||
return wrap_fx_proxy(
|
||
tx=tx,
|
||
proxy=tx.output.create_proxy(
|
||
"call_function",
|
||
trampoline_autograd_apply,
|
||
*proxy_args_kwargs(args, kwargs),
|
||
),
|
||
)
|
||
else:
|
||
return self.call_apply(tx, args, kwargs)
|
||
elif name == "backward":
|
||
with tx.strict_translation_mode():
|
||
if isinstance(self.fn_cls.backward, types.FunctionType):
|
||
backward = UserFunctionVariable(self.fn_cls.backward)
|
||
elif isinstance(self.fn_cls.backward, types.MethodType):
|
||
backward = UserMethodVariable(
|
||
self.fn_cls.backward.__func__,
|
||
variables.UserDefinedClassVariable(self.fn_cls),
|
||
)
|
||
args = [backward.obj] + args
|
||
else:
|
||
unimplemented(
|
||
f"backward is a non-function or method: {self.fn_cls.backward}"
|
||
)
|
||
|
||
return tx.inline_call(tx, backward, args, kwargs)
|
||
|
||
elif name == "forward":
|
||
if isinstance(self.fn_cls.forward, types.FunctionType):
|
||
forward = UserFunctionVariable(self.fn_cls.forward)
|
||
elif isinstance(self.fn_cls.forward, types.MethodType):
|
||
forward = UserMethodVariable(
|
||
self.fn_cls.forward.__func__,
|
||
variables.UserDefinedClassVariable(self.fn_cls),
|
||
)
|
||
args = [forward.obj] + args
|
||
else:
|
||
unimplemented(
|
||
f"forward is a non-function or method: {self.fn_cls.forward}"
|
||
)
|
||
|
||
return tx.inline_call(tx, forward, args, kwargs)
|
||
|
||
else:
|
||
unimplemented(f"Unsupported method: {name}")
|
||
|
||
|
||
@dataclasses.dataclass
|
||
class SavedTensorBox:
|
||
tensors: List[VariableTracker] = dataclasses.field(default_factory=list)
|
||
|
||
|
||
class AutogradFunctionContextVariable(UserDefinedObjectVariable):
|
||
"""
|
||
Tracks an autograd.Function() context using mutation tracking in side_effects.py
|
||
"""
|
||
|
||
_nonvar_fields = {
|
||
"proxy",
|
||
"inference",
|
||
*UserDefinedObjectVariable._nonvar_fields,
|
||
}
|
||
|
||
def __init__(
|
||
self,
|
||
value,
|
||
value_type=None,
|
||
inference=False,
|
||
proxy=None,
|
||
saved_tensors=None,
|
||
**kwargs,
|
||
):
|
||
super().__init__(value=value, value_type=value_type, **kwargs)
|
||
self.inference = inference
|
||
self.proxy = proxy
|
||
self.saved_tensors = saved_tensors
|
||
|
||
@staticmethod
|
||
def create(tx):
|
||
proxy = tx.output.create_proxy(
|
||
"call_function", torch.autograd.function.FunctionCtx, tuple(), {}
|
||
)
|
||
out = tx.output.side_effects.track_object_new(
|
||
None,
|
||
torch.autograd.function.FunctionCtx,
|
||
functools.partial(
|
||
AutogradFunctionContextVariable,
|
||
inference=True,
|
||
proxy=proxy,
|
||
saved_tensors=SavedTensorBox(),
|
||
),
|
||
{},
|
||
)
|
||
proxy.node.meta["example_value"] = out.value
|
||
return out
|
||
|
||
def as_proxy(self):
|
||
if self.proxy is None:
|
||
unimplemented("proxy not set")
|
||
return self.proxy
|
||
|
||
def call_method(
|
||
self,
|
||
tx,
|
||
name,
|
||
args: "List[VariableTracker]",
|
||
kwargs: "Dict[str, VariableTracker]",
|
||
) -> "VariableTracker":
|
||
if name != "save_for_backward":
|
||
unimplemented(f"autograd.Function context method: {name}")
|
||
if self.saved_tensors is None:
|
||
unimplemented(
|
||
"save_for_backward only supported on a newly constructed FunctionCtx"
|
||
)
|
||
|
||
if not self.inference:
|
||
assert self.source and not kwargs
|
||
tx.output.side_effects.track_save_for_backward(self, args)
|
||
|
||
for arg in args:
|
||
self.saved_tensors.tensors.append(arg)
|
||
return variables.ConstantVariable.create(None)
|
||
|
||
def var_getattr(self, tx, name):
|
||
if name == "save_for_backward":
|
||
return LambdaVariable(
|
||
lambda *args, **kwargs: self.call_method(tx, name, args, kwargs)
|
||
)
|
||
if name == "saved_tensors" and self.saved_tensors is not None:
|
||
return variables.TupleVariable(list(self.saved_tensors.tensors))
|
||
return super().var_getattr(tx, name)
|
||
|
||
|
||
class LambdaVariable(VariableTracker):
|
||
def __init__(self, fn, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.fn = fn
|
||
|
||
def call_function(
|
||
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
||
) -> "VariableTracker":
|
||
return self.fn(*args, **kwargs)
|
||
|
||
|
||
class GetAttrVariable(VariableTracker):
|
||
def __init__(self, obj, name, **kwargs):
|
||
super().__init__(**kwargs)
|
||
assert isinstance(obj, VariableTracker)
|
||
assert isinstance(name, str)
|
||
self.obj = obj
|
||
self.name = name
|
||
|
||
def __str__(self):
|
||
return f"{self.__class__.__name__}({self.obj}, {self.name})"
|
||
|
||
@staticmethod
|
||
def create_getattr_proxy(base_proxy: torch.fx.Proxy, attr):
|
||
return getattr(base_proxy, attr)
|
||
|
||
def as_proxy(self):
|
||
return GetAttrVariable.create_getattr_proxy(self.obj.as_proxy(), self.name)
|
||
|
||
def const_getattr(self, tx, name):
|
||
if not isinstance(self.obj, variables.NNModuleVariable):
|
||
raise NotImplementedError()
|
||
step1 = tx.output.get_submodule(self.obj.module_key)
|
||
if self.name not in step1.__dict__:
|
||
raise NotImplementedError()
|
||
step2 = inspect.getattr_static(step1, self.name)
|
||
if name not in step2.__dict__:
|
||
raise NotImplementedError()
|
||
return inspect.getattr_static(step2, name)
|
||
|
||
def reconstruct(self, codegen):
|
||
codegen(self.obj)
|
||
return codegen.create_load_attrs(self.name)
|
||
|
||
def call_function(
|
||
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
||
) -> "VariableTracker":
|
||
return self.obj.call_method(tx, self.name, args, kwargs)
|
||
|
||
|
||
class MethodWrapperVariable(VariableTracker):
|
||
def __init__(self, method_wrapper, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.method_wrapper = method_wrapper
|
||
|
||
def call_function(
|
||
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
||
) -> "VariableTracker":
|
||
if is_tensor_base_attr_getter(self.method_wrapper) and isinstance(
|
||
args[0], variables.TensorVariable
|
||
):
|
||
assert len(args) == 1 and len(kwargs) == 0
|
||
|
||
return args[0].var_getattr(tx, self.method_wrapper.__self__.__name__)
|
||
|
||
super().call_function(tx, args, kwargs)
|
||
|
||
def is_python_constant(self):
|
||
return True
|
||
|
||
def as_python_constant(self):
|
||
return self.method_wrapper
|
||
|
||
|
||
class GetSetDescriptorVariable(VariableTracker):
|
||
def __init__(self, desc, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.desc = desc
|
||
|
||
def var_getattr(self, tx, name):
|
||
if name == "__get__" and self.source:
|
||
from .builder import VariableBuilder
|
||
|
||
return VariableBuilder(tx, AttrSource(self.source, "__get__"))(
|
||
self.desc.__get__
|
||
)
|
||
else:
|
||
return super().var_getattr(tx, name)
|
||
|
||
def is_python_constant(self):
|
||
return True
|
||
|
||
def as_python_constant(self):
|
||
return self.desc
|
||
|
||
|
||
class PythonModuleVariable(VariableTracker):
|
||
def __init__(self, value: types.ModuleType, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.value = value
|
||
self.is_torch = self.value is torch or self.value.__name__.startswith("torch.")
|
||
|
||
def python_type(self):
|
||
return types.ModuleType
|
||
|
||
def as_python_constant(self):
|
||
return self.value
|
||
|
||
def __repr__(self):
|
||
return f"PythonModuleVariable({self.value})"
|
||
|
||
def call_hasattr(self, tx, name):
|
||
if self.is_torch:
|
||
result = hasattr(self.value, name)
|
||
return variables.ConstantVariable.create(result)
|
||
return super().call_hasattr(tx, name)
|
||
|
||
|
||
class SkipFilesVariable(VariableTracker):
|
||
def __init__(self, value, reason=None, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.value = value
|
||
self.reason = reason
|
||
|
||
def python_type(self):
|
||
return type(self.value)
|
||
|
||
def as_python_constant(self):
|
||
return self.value
|
||
|
||
@classmethod
|
||
def create_with_source(cls, value, source):
|
||
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
|
||
return cls(
|
||
value,
|
||
source=source,
|
||
)
|
||
|
||
@staticmethod
|
||
@functools.lru_cache(None)
|
||
def fold_through_function_to_wrapper():
|
||
return {
|
||
collections.namedtuple: variables.UserDefinedClassVariable,
|
||
}
|
||
|
||
def call_function(
|
||
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
||
) -> "VariableTracker":
|
||
if inspect.getattr_static(self.value, "_torchdynamo_disable", False):
|
||
unimplemented(f"call torch._dynamo.disable() wrapped function {self.value}")
|
||
# Fold through the functions(e.g, collections.namedtuple)
|
||
# that inputs & outputs are all python constants
|
||
elif (
|
||
self.value in self.fold_through_function_to_wrapper().keys()
|
||
and check_constant_args(args, kwargs)
|
||
):
|
||
value = self.value(
|
||
*[x.as_python_constant() for x in args],
|
||
**{k: v.as_python_constant() for k, v in kwargs.items()},
|
||
)
|
||
return self.fold_through_function_to_wrapper().get(self.value)(
|
||
value, mutable_local=MutableLocal()
|
||
)
|
||
elif (
|
||
self.value is functools.wraps
|
||
and not kwargs
|
||
and len(args) == 1
|
||
and (
|
||
args[0].source is not None or args[0].can_reconstruct(tx.output.root_tx)
|
||
)
|
||
):
|
||
|
||
def wraps(fn):
|
||
if isinstance(fn, variables.NestedUserFunctionVariable):
|
||
if args[0].source:
|
||
reconstructible = args[0].source
|
||
else:
|
||
reconstructible = args[0]
|
||
return fn.clone(wrapped_reconstructible=reconstructible)
|
||
unimplemented(f"functools.wraps({fn})")
|
||
|
||
return variables.LambdaVariable(wraps)
|
||
else:
|
||
try:
|
||
path = inspect.getfile(self.value)
|
||
except TypeError:
|
||
path = f"Builtin {self.value.__name__}"
|
||
msg = f"'skip function {self.value.__qualname__} in file {path}'"
|
||
msg += f"', {self.reason}'" if self.reason else ""
|
||
unimplemented(msg)
|
||
|
||
|
||
class TypingVariable(VariableTracker):
|
||
def __init__(self, value, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.value = value
|
||
|
||
def call_method(
|
||
self,
|
||
tx,
|
||
name,
|
||
args: "List[VariableTracker]",
|
||
kwargs: "Dict[str, VariableTracker]",
|
||
) -> "VariableTracker":
|
||
if name == "__getitem__" and len(args) == 1:
|
||
return variables.ConstantVariable.create(
|
||
self.value[args[0].as_python_constant()],
|
||
)
|
||
unimplemented("typing")
|
||
|
||
def python_type(self):
|
||
return type(self.value)
|
||
|
||
def as_python_constant(self):
|
||
return self.value
|
||
|
||
|
||
@functools.lru_cache(maxsize=1)
|
||
def get_np_to_tnp_map():
|
||
from ..utils import NP_TO_TNP_MODULE
|
||
|
||
np_fn_to_tnp_fn = {}
|
||
|
||
for np_mod, tnp_mod in NP_TO_TNP_MODULE.items():
|
||
for fn_name, tnp_fn in tnp_mod.__dict__.items():
|
||
if callable(tnp_fn):
|
||
# some internal details do leak from tnp
|
||
# which are not part of numpy API.
|
||
if np_fn := getattr(np_mod, fn_name, None):
|
||
np_fn_to_tnp_fn[np_fn] = tnp_fn
|
||
|
||
return np_fn_to_tnp_fn
|
||
|
||
|
||
class NumpyVariable(VariableTracker):
|
||
"""
|
||
Wrapper around `numpy.*`. Currently, is able to trace a small subset of numpy functions as well as numpy dtypes.
|
||
"""
|
||
|
||
def __init__(self, value, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.value = value
|
||
|
||
def call_function(
|
||
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
||
) -> "VariableTracker":
|
||
if not config.trace_numpy:
|
||
unimplemented(f"numpy.{self.value}()")
|
||
|
||
from ..utils import numpy_to_tensor_wrapper
|
||
|
||
from .tensor import NumpyNdarrayVariable
|
||
|
||
# lookup method name in tnp. Things like np.dtype(float) are not supported yet.
|
||
if self.value.__name__ == "dtype":
|
||
unimplemented(
|
||
f"numpy dtype function is not supported yet. Got type {type(self.value)}."
|
||
)
|
||
else: # We are dealing with a callable.
|
||
func = get_np_to_tnp_map().get(self.value)
|
||
if func is None:
|
||
unimplemented(
|
||
f"Can't find numpy function {self.value} in torch._numpy. "
|
||
" Please file an issue to request support for this function."
|
||
)
|
||
|
||
if (
|
||
func.__module__ == "torch._numpy.random"
|
||
and config.use_numpy_random_stream
|
||
):
|
||
msg = f"delegate '{func.__qualname__}' to NumPy itself via "
|
||
msg += f"confg.use_numpy_random_stream={config.use_numpy_random_stream}"
|
||
unimplemented(msg)
|
||
|
||
# TODO(larryliu0820): currently assuming all numpy.* functions are returning a ndarray that can be
|
||
# wrapped by NumpyNdarrayVariable which is wrong!
|
||
proxy = tx.output.create_proxy(
|
||
"call_function",
|
||
numpy_to_tensor_wrapper(func),
|
||
*proxy_args_kwargs(args, kwargs),
|
||
)
|
||
return NumpyNdarrayVariable.create(tx, proxy)
|
||
|
||
def call_method(
|
||
self,
|
||
tx,
|
||
name,
|
||
args: "List[VariableTracker]",
|
||
kwargs: "Dict[str, VariableTracker]",
|
||
) -> "VariableTracker":
|
||
unimplemented("numpy")
|
||
|
||
def python_type(self):
|
||
return type(self.value)
|
||
|
||
def as_python_constant(self):
|
||
return self.value
|
||
|
||
def as_proxy(self):
|
||
# this handles numpy dtype attribute such as np.float32. TODO(larryliu0820): we should split NumpyVariable
|
||
# into NumpyVariable for instances/objects and NumpyVariable for types.
|
||
if config.trace_numpy and isinstance(self.value, type):
|
||
# retrieve attribute str. E.g., "float32" if given np.float32
|
||
|
||
attr = self.value.__name__
|
||
# get tnp equivalent
|
||
tnp_dtype = tnp.dtype(attr)
|
||
# returning a string here because we are assuming all `dtype` kwargs for numpy
|
||
# functions can take an equivalent string and the behavior of the function would
|
||
# be the same as taking a numpy dtype.
|
||
return tnp_dtype.name
|
||
|
||
return super().as_proxy()
|
||
|
||
|
||
# Used to keep track of NULLs pushed on the stack for Python 3.11 function calls
|
||
class NullVariable(VariableTracker):
|
||
def __init__(self, **kwargs):
|
||
super().__init__(**kwargs)
|
||
|
||
def __str__(self):
|
||
return "NullVariable"
|
||
|
||
def reconstruct(self, codegen):
|
||
if sys.version_info < (3, 11):
|
||
unimplemented("cannot reconstruct NullVariable in < Python 3.11")
|
||
return [create_instruction("PUSH_NULL")]
|
||
|
||
|
||
class DeletedVariable(VariableTracker):
|
||
"""Marker used to implement delattr()"""
|
||
|
||
|
||
class StringFormatVariable(VariableTracker):
|
||
"""
|
||
Represents a call to str.format(), we delay calling format until after the graph.
|
||
"""
|
||
|
||
_nonvar_fields = {"format_string", *VariableTracker._nonvar_fields}
|
||
|
||
@classmethod
|
||
def create(cls, format_string, sym_args, sym_kwargs):
|
||
if all(
|
||
x.is_python_constant()
|
||
for x in itertools.chain(sym_args, sym_kwargs.values())
|
||
):
|
||
return variables.ConstantVariable.create(
|
||
format_string.format(
|
||
*[v.as_python_constant() for v in sym_args],
|
||
**{k: v.as_python_constant() for k, v in sym_kwargs.items()},
|
||
)
|
||
)
|
||
return cls(format_string, list(sym_args), dict(sym_kwargs))
|
||
|
||
def __init__(self, format_string, sym_args, sym_kwargs, **kwargs):
|
||
super().__init__(**kwargs)
|
||
assert isinstance(format_string, str)
|
||
self.format_string = format_string
|
||
self.sym_args = sym_args
|
||
self.sym_kwargs = sym_kwargs
|
||
|
||
def __repr__(self):
|
||
return f"{self.__class__.__name__}({self.format_string!r}, {self.sym_args!r}, {self.sym_kwargs!r})"
|
||
|
||
def reconstruct(self, codegen):
|
||
if sys.version_info >= (3, 11):
|
||
codegen.append_output(create_instruction("PUSH_NULL"))
|
||
codegen.append_output(codegen.create_load_const(self.format_string))
|
||
codegen.append_output(codegen.create_load_attr("format"))
|
||
codegen.extend_output(
|
||
variables.TupleVariable(self.sym_args).reconstruct(codegen)
|
||
)
|
||
codegen.extend_output(
|
||
variables.ConstDictVariable(self.sym_kwargs, user_cls=dict).reconstruct(
|
||
codegen
|
||
)
|
||
)
|
||
codegen.append_output(create_instruction("CALL_FUNCTION_EX", arg=1))
|
||
return []
|