mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-10-31 12:15:03 +08:00 
			
		
		
		
	Summary: The other half of https://github.com/pytorch/pytorch/issues/56272. Pull Request resolved: https://github.com/pytorch/pytorch/pull/56290 Test Plan: CI should pass on the tip of this PR, and we know that the lint works because the following CI runs (before this PR was finished) failed: - https://github.com/pytorch/pytorch/runs/2384511062 - https://github.com/pytorch/pytorch/actions/runs/765036024 Reviewed By: seemethere Differential Revision: D27867219 Pulled By: samestep fbshipit-source-id: e648f07b6822867e70833e23ddafe7fb7eaca235
		
			
				
	
	
		
			878 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			878 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Generates Python bindings for ATen functions
 | |
| #
 | |
| # The bindings are generated as methods on python_variable or functions on the
 | |
| # torch._C._nn. torch._C._fft, torch._C._linalg or torch._C._special objects.
 | |
| #
 | |
| 
 | |
| # Code tries to stick to the following rules:
 | |
| #
 | |
| # - templates should be colocated with the functions that use them.
 | |
| #   no templates are currently shared between functions, but if that
 | |
| #   happens, maybe put the template with the first one
 | |
| #
 | |
| # - don't use environment dictionaries when calling template.substitute().
 | |
| #   pass named arguments directly for everything, otherwise it's much too
 | |
| #   hard to track what's actually being used and by who
 | |
| #
 | |
| # - colocate any new hacks/adjustments with existing ones of the same kind.
 | |
| #   ideally in a data structure rather than code if possible. See e.g.
 | |
| #   SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
 | |
| #
 | |
| # - similarly, conversions from one format to another should ideally happen
 | |
| #   all at once in a single place.
 | |
| #
 | |
| # - no nontrivial nested functions. couple-liners are ok but please no more.
 | |
| #   especially avoid functions that read/write outer variables defined far away.
 | |
| #
 | |
| # - raise RuntimeError instead of asserting, and put as much
 | |
| #   information as is available into the message. I.e. no need to
 | |
| #   plumb in new params whose only purpose is to fill out an error
 | |
| #   message, but use what's there
 | |
| #
 | |
| 
 | |
| from collections import defaultdict
 | |
| import itertools
 | |
| import re
 | |
| import yaml
 | |
| 
 | |
| from .gen_trace_type import should_trace
 | |
| 
 | |
| from tools.codegen.code_template import CodeTemplate
 | |
| from tools.codegen.api import cpp
 | |
| from tools.codegen.api.types import CppSignatureGroup
 | |
| from tools.codegen.api.python import (PythonArgument, PythonSignature,
 | |
|                                       PythonSignatureDeprecated,
 | |
|                                       PythonSignatureGroup,
 | |
|                                       PythonSignatureNativeFunctionPair,
 | |
|                                       arg_parser_output_exprs,
 | |
|                                       argument_type_str, cpp_dispatch_exprs,
 | |
|                                       cpp_dispatch_target,
 | |
|                                       dispatch_lambda_args,
 | |
|                                       dispatch_lambda_exprs,
 | |
|                                       dispatch_lambda_return_str,
 | |
|                                       has_tensor_options,
 | |
|                                       namedtuple_fieldnames, signature)
 | |
| from tools.codegen.gen import cpp_string, parse_native_yaml, FileManager
 | |
| from tools.codegen.context import with_native_function
 | |
| from tools.codegen.model import (Argument, BaseOperatorName, NativeFunction,
 | |
|                                  Type, Variant)
 | |
| from tools.codegen.utils import split_name_params
 | |
| 
 | |
| from typing import Dict, Optional, List, Tuple, Set, Sequence, Callable
 | |
| 
 | |
| try:
 | |
|     # use faster C loader if available
 | |
|     from yaml import CSafeLoader as Loader
 | |
| except ImportError:
 | |
|     from yaml import SafeLoader as Loader  # type: ignore[misc]
 | |
| 
 | |
| #
 | |
| # declarations blocklist
 | |
| # We skip codegen for these functions, for various reasons.
 | |
| # Future PRs will categorize this list and eliminate or hoist
 | |
| # them out of eager-only codegen.
 | |
| # See https://github.com/pytorch/pytorch/issues/30788
 | |
| #
 | |
| 
 | |
| # These functions require manual Python bindings or are not exposed to Python
 | |
| SKIP_PYTHON_BINDINGS = [
 | |
|     'alias', 'contiguous', 'is_cuda', 'is_sparse', 'is_sparse_csr', 'size', 'stride',
 | |
|     '.*_backward', '.*_backward_(out|input|weight|bias)', '.*_forward',
 | |
|     '.*_forward_out', '_unsafe_view', 'tensor', '_?sparse_coo_tensor.*',
 | |
|     '_?sparse_csr_tensor.*',
 | |
|     '_arange.*', '_range.*', '_linspace.*', '_logspace.*',
 | |
|     '_sparse_add_out', '_sparse_div.*', '_sparse_mul.*', '_sparse_sub.*', '_sparse_dense_add_out',
 | |
|     'index', 'unique_dim_consecutive',
 | |
|     '_cumsum.*', '_cumprod.*', '_sum.*', '_prod.*',
 | |
|     '_th_.*', '_thnn_.*',
 | |
|     'arange.*', 'range.*', '_solve.*', '_inverse.*',
 | |
|     'full(_out)?',
 | |
|     '_cholesky.*', '_triangular_solve.*', '_qr.*', '_symeig.*', '_svd.*',
 | |
|     'slice', 'randint(_out)?',
 | |
|     'item', '_local_scalar_dense', 'to',
 | |
|     'copy_sparse_to_sparse_', 'copy_',
 | |
|     'numpy_T',  # this needs to be an attribute in Python, not a function
 | |
|     'nonzero(_(out|numpy))?',
 | |
|     'set_data',
 | |
|     '.*_overrideable',  # overrideable functions for backend extension
 | |
|     'data', 'is_leaf', 'output_nr', '_version', 'requires_grad_', 'retain_grad', 'set_',
 | |
|     '_fw_primal', 'fake_quantize_per_tensor_affine_cachemask',
 | |
|     'fake_quantize_per_channel_affine_cachemask',
 | |
| ]
 | |
| 
 | |
| # These function signatures are not exposed to Python. Note that this signature
 | |
| # list does not support regex.
 | |
| SKIP_PYTHON_BINDINGS_SIGNATURES = [
 | |
|     'add(Tensor, Scalar, Scalar)', 'add_(Tensor, Scalar, Scalar)',
 | |
|     'sub(Tensor, Scalar, Scalar)', 'sub_(Tensor, Scalar, Scalar)',
 | |
|     'mul(Tensor, Scalar)', 'mul_(Tensor, Scalar)',
 | |
|     'div(Tensor, Scalar)', 'div_(Tensor, Scalar)',
 | |
| ]
 | |
| 
 | |
| @with_native_function
 | |
| def should_generate_py_binding(f: NativeFunction) -> bool:
 | |
|     name = cpp.name(f.func)
 | |
|     for pattern in SKIP_PYTHON_BINDINGS:
 | |
|         if re.match('^' + pattern + '$', name):
 | |
|             return False
 | |
| 
 | |
|     args = ', '.join(argument_type_str(arg.type)
 | |
|                      for arg in signature(f).arguments())
 | |
|     sig = f'{name}({args})'
 | |
|     for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
 | |
|         if pattern == sig:
 | |
|             return False
 | |
| 
 | |
|     return True
 | |
| 
 | |
| def get_pycname(name: BaseOperatorName) -> str:
 | |
|     return f'THPVariable_{name}'
 | |
| 
 | |
| def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
 | |
|     return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
 | |
| 
 | |
| def is_py_variable_method(f: NativeFunction) -> bool:
 | |
|     return f.python_module is None and Variant.method in f.variants
 | |
| 
 | |
| def is_py_torch_function(f: NativeFunction) -> bool:
 | |
|     return f.python_module is None and Variant.function in f.variants
 | |
| 
 | |
| def is_py_nn_function(f: NativeFunction) -> bool:
 | |
|     return f.python_module == 'nn'
 | |
| 
 | |
| def is_py_fft_function(f: NativeFunction) -> bool:
 | |
|     return f.python_module == 'fft'
 | |
| 
 | |
| def is_py_linalg_function(f: NativeFunction) -> bool:
 | |
|     return f.python_module == 'linalg'
 | |
| 
 | |
| def is_py_special_function(f: NativeFunction) -> bool:
 | |
|     return f.python_module == 'special'
 | |
| 
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| #
 | |
| #                            Main Function
 | |
| #
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| 
 | |
| def gen(out: str, native_yaml_path: str, deprecated_yaml_path: str, template_path: str) -> None:
 | |
|     fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
 | |
| 
 | |
|     methods = load_signatures(native_yaml_path, deprecated_yaml_path, method=True)
 | |
|     create_python_bindings(
 | |
|         fm, methods, is_py_variable_method, None, 'python_variable_methods.cpp', method=True)
 | |
| 
 | |
|     functions = load_signatures(native_yaml_path, deprecated_yaml_path, method=False)
 | |
|     create_python_bindings(
 | |
|         fm, functions, is_py_torch_function, 'torch', 'python_torch_functions.cpp', method=False)
 | |
| 
 | |
|     create_python_bindings(
 | |
|         fm, functions, is_py_nn_function, 'torch.nn', 'python_nn_functions.cpp', method=False)
 | |
| 
 | |
|     create_python_bindings(
 | |
|         fm, functions, is_py_fft_function, 'torch.fft', 'python_fft_functions.cpp', method=False)
 | |
| 
 | |
|     create_python_bindings(
 | |
|         fm, functions, is_py_linalg_function, 'torch.linalg', 'python_linalg_functions.cpp', method=False)
 | |
| 
 | |
|     create_python_bindings(
 | |
|         fm, functions, is_py_special_function, 'torch.special', 'python_special_functions.cpp', method=False)
 | |
| 
 | |
| def create_python_bindings(
 | |
|     fm: FileManager,
 | |
|     pairs: Sequence[PythonSignatureNativeFunctionPair],
 | |
|     pred: Callable[[NativeFunction], bool],
 | |
|     module: Optional[str],
 | |
|     filename: str,
 | |
|     *,
 | |
|     method: bool,
 | |
| ) -> None:
 | |
|     """Generates Python bindings to ATen functions"""
 | |
|     py_methods: List[str] = []
 | |
|     py_method_defs: List[str] = []
 | |
|     py_forwards: List[str] = []
 | |
| 
 | |
|     grouped: Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
 | |
|     for pair in pairs:
 | |
|         if pred(pair.function):
 | |
|             grouped[pair.function.func.name.name].append(pair)
 | |
| 
 | |
|     for name in sorted(grouped.keys(), key=lambda x: str(x)):
 | |
|         overloads = grouped[name]
 | |
|         py_methods.append(method_impl(name, module, overloads, method=method))
 | |
|         py_method_defs.append(method_def(name, module, overloads, method=method))
 | |
|         py_forwards.extend(forward_decls(name, overloads, method=method))
 | |
| 
 | |
|     fm.write_with_template(filename, filename, lambda: {
 | |
|         'generated_comment': '@' + f'generated from {fm.template_dir}/{filename}',
 | |
|         'py_forwards': py_forwards,
 | |
|         'py_methods': py_methods,
 | |
|         'py_method_defs': py_method_defs,
 | |
|     })
 | |
| 
 | |
| def load_signatures(
 | |
|     native_yaml_path: str,
 | |
|     deprecated_yaml_path: str,
 | |
|     *,
 | |
|     method: bool,
 | |
|     skip_deprecated: bool = False,
 | |
|     pyi: bool = False,
 | |
| ) -> Sequence[PythonSignatureNativeFunctionPair]:
 | |
|     native_functions = list(filter(should_generate_py_binding, parse_native_yaml(native_yaml_path)))
 | |
| 
 | |
|     @with_native_function
 | |
|     def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
 | |
|         return PythonSignatureNativeFunctionPair(
 | |
|             signature=signature(f, method=method, pyi=pyi),
 | |
|             function=f,
 | |
|         )
 | |
| 
 | |
|     pairs = list(map(gen_signature_pairs, native_functions))
 | |
|     deprecated = load_deprecated_signatures(pairs, deprecated_yaml_path, method=method, pyi=pyi)
 | |
|     return pairs if skip_deprecated else pairs + deprecated
 | |
| 
 | |
| def load_deprecated_signatures(
 | |
|     pairs: Sequence[PythonSignatureNativeFunctionPair],
 | |
|     deprecated_yaml_path: str,
 | |
|     *,
 | |
|     method: bool,
 | |
|     pyi: bool,
 | |
| ) -> List[PythonSignatureNativeFunctionPair]:
 | |
|     # The deprecated.yaml doesn't have complete type information, we need
 | |
|     # find and leverage the original ATen signature (to which it delegates
 | |
|     # the call) to generate the full python signature.
 | |
|     # We join the deprecated and the original signatures using type-only form.
 | |
| 
 | |
|     # native function -> type-only signature
 | |
|     @with_native_function
 | |
|     def signature_original(f: NativeFunction) -> str:
 | |
|         # remove inplace suffix but keep outplace suffix
 | |
|         opname = str(f.func.name.name.base)
 | |
|         if f.func.is_out_fn():
 | |
|             opname += '_out'
 | |
|         if f.func.name.name.inplace and pyi:
 | |
|             opname += '_'
 | |
|         args = CppSignatureGroup.from_native_function(f, method=False).signature.arguments()
 | |
|         # Simply ignore TensorOptionsArguments as it does not exist in deprecated.yaml.
 | |
|         types = ', '.join(argument_type_str(a.argument.type)
 | |
|                           for a in args if isinstance(a.argument, Argument))
 | |
|         return f'{opname}({types})'
 | |
| 
 | |
|     # deprecated -> type-only native signature (according to the call order)
 | |
|     def signature_deprecated(opname: str, params: List[str], call_args: List[str]) -> str:
 | |
|         # create a mapping of parameter name to parameter type
 | |
|         types: Dict[str, str] = {}
 | |
|         for param in params:
 | |
|             if param == '*':
 | |
|                 continue
 | |
|             type, name = param.split(' ')
 | |
|             types[name] = type
 | |
|         # if the name in the call is not in the parameter list, assume it's
 | |
|         # a literal Scalar
 | |
|         rearranged_types = ', '.join(types.get(arg, 'Scalar') for arg in call_args)
 | |
|         return f'{opname}({rearranged_types})'
 | |
| 
 | |
|     # group the original ATen signatures by type-only signature
 | |
|     grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
 | |
|     for pair in pairs:
 | |
|         grouped[signature_original(pair.function)].append(pair)
 | |
| 
 | |
|     # find matching original signatures for each deprecated signature
 | |
|     results: List[PythonSignatureNativeFunctionPair] = []
 | |
| 
 | |
|     with open(deprecated_yaml_path, 'r') as f:
 | |
|         deprecated_defs = yaml.load(f, Loader=Loader)
 | |
| 
 | |
|     for deprecated in deprecated_defs:
 | |
|         _, params = split_name_params(deprecated['name'])
 | |
|         aten_name, call_args = split_name_params(deprecated['aten'])
 | |
| 
 | |
|         for pair in grouped[signature_deprecated(aten_name, params, call_args)]:
 | |
|             # It uses the types from the original ATen declaration, but the
 | |
|             # ordering and parameter names from the deprecated overload. Any
 | |
|             # default parameter values from the original ATen declaration are
 | |
|             # ignored.
 | |
|             # Deprecated signature might reorder input_args and input_kwargs,
 | |
|             # but never changes output_args nor TensorOptions (if any?),
 | |
|             # so here we only look into these two types of args.
 | |
|             python_sig = pair.signature
 | |
|             src_args: Dict[str, PythonArgument] = {a.name: PythonArgument(
 | |
|                 name=a.name,
 | |
|                 type=a.type,
 | |
|                 default=None,
 | |
|                 default_init=None,
 | |
|             ) for a in itertools.chain(python_sig.input_args, python_sig.input_kwargs)}
 | |
| 
 | |
|             args: List[str] = []
 | |
|             input_args: List[PythonArgument] = []
 | |
|             input_kwargs: List[PythonArgument] = []
 | |
| 
 | |
|             kwarg_only = False
 | |
|             for param in params:
 | |
|                 if param == '*':
 | |
|                     kwarg_only = True
 | |
|                     continue
 | |
|                 _, param_name = param.split(' ')
 | |
|                 args.append(param_name)
 | |
| 
 | |
|                 if param_name not in src_args:
 | |
|                     # output argument
 | |
|                     continue
 | |
| 
 | |
|                 if not kwarg_only:
 | |
|                     if not method or param_name != 'self':
 | |
|                         input_args.append(src_args[param_name])
 | |
|                 else:
 | |
|                     input_kwargs.append(src_args[param_name])
 | |
| 
 | |
|             results.append(PythonSignatureNativeFunctionPair(
 | |
|                 signature=PythonSignatureDeprecated(
 | |
|                     name=python_sig.name,
 | |
|                     input_args=tuple(input_args),
 | |
|                     input_kwargs=tuple(input_kwargs),
 | |
|                     output_args=python_sig.output_args,
 | |
|                     tensor_options_args=python_sig.tensor_options_args,
 | |
|                     method=python_sig.method,
 | |
|                     deprecated_args_names=tuple(args),
 | |
|                     deprecated_args_exprs=tuple(call_args),
 | |
|                     returns=python_sig.returns,
 | |
|                 ),
 | |
|                 function=pair.function,
 | |
|             ))
 | |
| 
 | |
|     return results
 | |
| 
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| #
 | |
| #                         Named Tuple Codegen
 | |
| #
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| 
 | |
| @with_native_function
 | |
| def gen_namedtuple_typename_key(f: NativeFunction) -> str:
 | |
|     name = cpp.name(f.func)
 | |
|     fieldnames = namedtuple_fieldnames(f.func.returns)
 | |
|     return '_'.join([name] + fieldnames)
 | |
| 
 | |
| def emit_namedtuple_typedefs(
 | |
|     overloads: Sequence[PythonSignatureNativeFunctionPair]
 | |
| ) -> Tuple[List[str], Dict[str, str]]:
 | |
|     """
 | |
|     Generate block of named tuple type def inits, and add typeref snippets
 | |
|     to declarations that use them
 | |
|     """
 | |
|     flddefnames: Dict[str, str] = {}  # map from unique field name lists to field def name
 | |
|     flddefs: List[str] = []           # field def declarations
 | |
|     typenames: Dict[str, str] = {}    # map from unique name + field name lists to typedef name
 | |
|     typedefs: List[str] = []          # typedef declarations and init code
 | |
| 
 | |
|     for overload in overloads:
 | |
|         fieldnames = namedtuple_fieldnames(overload.function.func.returns)
 | |
|         if not fieldnames:
 | |
|             continue
 | |
| 
 | |
|         fn_key = '_'.join(fieldnames)
 | |
|         fieldsname = flddefnames.get(fn_key)
 | |
|         if fieldsname is None:
 | |
|             fieldsname = f'NamedTuple_fields{"" if not flddefs else len(flddefs)}'
 | |
|             flddefnames[fn_key] = fieldsname
 | |
|             fields = ', '.join(f'{{"{fn}", ""}}' for fn in fieldnames)
 | |
|             flddefs.append(f"""\
 | |
| static PyStructSequence_Field {fieldsname}[] = {{ {fields},  {{nullptr}} }};
 | |
| """)
 | |
| 
 | |
|         name = cpp.name(overload.function.func)  # use @with_native_function?
 | |
|         tn_key = gen_namedtuple_typename_key(overload.function)
 | |
|         typename = typenames.get(tn_key)
 | |
|         if typename is None:
 | |
|             typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
 | |
|             typenames[tn_key] = typename
 | |
|             typedefs.append(f"""\
 | |
| static PyTypeObject {typename};
 | |
| static bool {typename}_initialized = false;
 | |
| if (!{typename}_initialized) {{
 | |
|   {typename}_initialized = true;
 | |
|   static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, {fieldsname}, {len(fieldnames)} }};
 | |
|   PyStructSequence_InitType(&{typename}, &desc);
 | |
|   {typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
 | |
| }}
 | |
| """)
 | |
| 
 | |
|     return flddefs + typedefs, typenames
 | |
| 
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| #
 | |
| #                         Method Impl Codegen
 | |
| #
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| 
 | |
| # python binding for all overloads of a particular function/method
 | |
| PY_VARIABLE_METHOD_VARARGS = CodeTemplate(r"""\
 | |
| // ${name}
 | |
| static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
 | |
| {
 | |
|   ${method_header}
 | |
|   static PythonArgParser parser({
 | |
|     ${signatures}
 | |
|   }, /*traceable=*/${traceable});
 | |
| 
 | |
|   ParsedArgs<${max_args}> parsed_args;
 | |
|   auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
 | |
|   ${check_has_torch_function}
 | |
|   switch (_r.idx) {
 | |
|     ${dispatch}
 | |
|   }
 | |
|   ${method_footer}
 | |
| }
 | |
| 
 | |
| """)
 | |
| 
 | |
| # handler for a single parsed signature - may be a single overload or
 | |
| # a pair of overloads that whose signatures only differ in output params
 | |
| # (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
 | |
| PY_VARIABLE_CASE = CodeTemplate("""\
 | |
| case ${overload_index}: {
 | |
|   ${body}
 | |
| }
 | |
| """)
 | |
| 
 | |
| # python binding for single-overload function/method
 | |
| PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate("""\
 | |
| // ${name}
 | |
| static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
 | |
| {
 | |
|   ${method_header}
 | |
|   static PythonArgParser parser({
 | |
|     ${signatures}
 | |
|   }, /*traceable=*/${traceable});
 | |
| 
 | |
|   ParsedArgs<${max_args}> parsed_args;
 | |
|   auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
 | |
|   ${check_has_torch_function}
 | |
|   ${dispatch}
 | |
|   ${method_footer}
 | |
| }
 | |
| 
 | |
| """)
 | |
| 
 | |
| # python binding for a method with no args, shortcuts parsing
 | |
| PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
 | |
| // ${name}
 | |
| static PyObject * ${pycname}(PyObject* self_, PyObject* args)
 | |
| {
 | |
|   ${method_header}
 | |
|   ${check_has_torch_function}
 | |
|   ${dispatch}
 | |
|   ${method_footer}
 | |
| }
 | |
| 
 | |
| """)
 | |
| 
 | |
| def method_impl(
 | |
|     name: BaseOperatorName,
 | |
|     module: Optional[str],
 | |
|     overloads: Sequence[PythonSignatureNativeFunctionPair],
 | |
|     *,
 | |
|     method: bool
 | |
| ) -> str:
 | |
|     """
 | |
|     Generate a python binding for all overloads of an op.
 | |
|     """
 | |
|     pycname = get_pycname(name)
 | |
|     noarg = is_noarg(overloads)
 | |
|     namedtuple_inits, namedtuple_typenames = emit_namedtuple_typedefs(overloads)
 | |
| 
 | |
|     method_header = ['HANDLE_TH_ERRORS']
 | |
|     method_header += namedtuple_inits
 | |
|     method_header += [
 | |
|         "const Tensor& self = THPVariable_Unpack(self_);"
 | |
|     ] if method else []
 | |
| 
 | |
|     method_footer = ([] if noarg else ['Py_RETURN_NONE;']) + ['END_HANDLE_TH_ERRORS']
 | |
| 
 | |
|     traceable = 'true' if all(should_trace(o.function) for o in overloads) else 'false'
 | |
| 
 | |
|     grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(overloads)
 | |
|     is_singleton = len(grouped_overloads) == 1
 | |
|     signatures: List[str] = []
 | |
|     dispatch: List[str] = []
 | |
|     for overload_index, overload in enumerate(grouped_overloads):
 | |
|         signature = overload.signature.signature_str()
 | |
|         signatures.append(f'{cpp_string(str(signature))},')
 | |
|         dispatch_body = emit_dispatch_case(overload, namedtuple_typenames)
 | |
|         dispatch.append(
 | |
|             PY_VARIABLE_CASE.substitute(overload_index=overload_index, body=dispatch_body)
 | |
|             if not is_singleton else dispatch_body)
 | |
| 
 | |
|     if noarg:
 | |
|         template = PY_VARIABLE_METHOD_NOARGS
 | |
|     elif is_singleton:
 | |
|         template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
 | |
|     else:
 | |
|         template = PY_VARIABLE_METHOD_VARARGS
 | |
| 
 | |
|     return template.substitute(
 | |
|         name=name,
 | |
|         pycname=pycname,
 | |
|         method_header=method_header,
 | |
|         max_args=max(map(lambda o: o.signature.arguments_count(), overloads)),
 | |
|         signatures=signatures,
 | |
|         traceable=traceable,
 | |
|         check_has_torch_function=gen_has_torch_function_check(
 | |
|             name=name,
 | |
|             module=module,
 | |
|             noarg=noarg,
 | |
|             method=method,
 | |
|         ),
 | |
|         dispatch=dispatch,
 | |
|         method_footer=method_footer,
 | |
|         self_="self_" if method else "nullptr",
 | |
|     )
 | |
| 
 | |
| def gen_has_torch_function_check(
 | |
|     name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
 | |
| ) -> str:
 | |
|     if noarg:
 | |
|         if method:
 | |
|             return f"""\
 | |
| if(check_has_torch_function(self_)) {{
 | |
|   return handle_torch_function(self_, "{name}");
 | |
| }}
 | |
| """
 | |
|         else:
 | |
|             return ''
 | |
| 
 | |
|     self_ = "self_" if method else "nullptr"
 | |
|     namespace = {
 | |
|         "torch": "THPVariableFunctionsModule",
 | |
|         "torch.nn": "THPNNVariableFunctionsModule",
 | |
|         "torch.fft": "THPFFTVariableFunctionsModule",
 | |
|         "torch.linalg": "THPLinalgVariableFunctionsModule",
 | |
|         "torch.special": "THPSpecialVariableFunctionsModule",
 | |
|     }[module] if module else "THPVariableClass"
 | |
| 
 | |
|     return f"""\
 | |
| if(_r.has_torch_function()) {{
 | |
|   return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
 | |
| }}
 | |
| """
 | |
| 
 | |
| # handler for output/no-output overload pair
 | |
| PY_VARIABLE_OUT = CodeTemplate("""\
 | |
| if (_r.isNone(${out_idx})) {
 | |
|   ${call_dispatch}
 | |
| } else {
 | |
|   ${call_dispatch_out}
 | |
| }
 | |
| """)
 | |
| 
 | |
| def emit_dispatch_case(
 | |
|     overload: PythonSignatureGroup,
 | |
|     namedtuple_typenames: Dict[str, str],
 | |
| ) -> str:
 | |
|     """
 | |
|     Emit dispatch code for a single parsed signature. This corresponds to either
 | |
|     a single native function, or a pair that differ only in output params. In the
 | |
|     latter case, a single python signature is used for both and dispatching
 | |
|     switches on the presence/absence of passed output args.
 | |
|     """
 | |
|     if overload.outplace is not None:
 | |
|         # dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
 | |
|         return PY_VARIABLE_OUT.substitute(
 | |
|             out_idx=overload.signature.output_idx(),
 | |
|             call_dispatch=emit_single_dispatch(
 | |
|                 overload.signature, overload.base, namedtuple_typenames),
 | |
|             call_dispatch_out=emit_single_dispatch(
 | |
|                 overload.signature, overload.outplace, namedtuple_typenames),
 | |
|         )
 | |
|     else:
 | |
|         # no-output version only
 | |
|         return emit_single_dispatch(
 | |
|             overload.signature, overload.base, namedtuple_typenames)
 | |
| 
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| #
 | |
| #                    Forward Declarations Codegen
 | |
| #
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| 
 | |
| def forward_decls(
 | |
|     name: BaseOperatorName,
 | |
|     overloads: Sequence[PythonSignatureNativeFunctionPair],
 | |
|     *,
 | |
|     method: bool
 | |
| ) -> Tuple[str, ...]:
 | |
|     if method:
 | |
|         return ()
 | |
| 
 | |
|     pycname = get_pycname(name)
 | |
|     if is_noarg(overloads):
 | |
|         return (f"""\
 | |
| static PyObject * {pycname}(PyObject* self_, PyObject* args);
 | |
| """,)
 | |
|     else:
 | |
|         return (f"""\
 | |
| static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
 | |
| """,)
 | |
| 
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| #
 | |
| #              Method Def (Binding Table Entry) Codegen
 | |
| #
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| 
 | |
| def method_def(
 | |
|     name: BaseOperatorName,
 | |
|     module: Optional[str],
 | |
|     overloads: Sequence[PythonSignatureNativeFunctionPair],
 | |
|     *,
 | |
|     method: bool
 | |
| ) -> str:
 | |
|     """
 | |
|     Generate method def entry.
 | |
|     """
 | |
|     pycname = get_pycname(name)
 | |
| 
 | |
|     if is_noarg(overloads):
 | |
|         pyfunc_cast = ''
 | |
|         flags = 'METH_NOARGS' if method else 'METH_VARARGS | METH_KEYWORDS'
 | |
|     else:
 | |
|         pyfunc_cast = 'castPyCFunctionWithKeywords'
 | |
|         flags = 'METH_VARARGS | METH_KEYWORDS'
 | |
| 
 | |
|     if module == "torch":
 | |
|         flags += ' | METH_STATIC'
 | |
| 
 | |
|     if name.dunder_method:
 | |
|         # PyMethodDef entry for binary op, throws not implemented error
 | |
|         return f"""\
 | |
| {{"{name}", {pyfunc_cast}(TypeError_to_NotImplemented_<{pycname}>), {flags}, NULL}},"""
 | |
|     else:
 | |
|         # PyMethodDef entry
 | |
|         return f"""\
 | |
| {{"{name}", {pyfunc_cast}({pycname}), {flags}, NULL}},"""
 | |
| 
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| #
 | |
| #                   Overload Sorting and Grouping
 | |
| #
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| 
 | |
| def group_overloads(
 | |
|     overloads: Sequence[PythonSignatureNativeFunctionPair],
 | |
| ) -> Sequence[PythonSignatureGroup]:
 | |
|     bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
 | |
|     outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
 | |
| 
 | |
|     # first group by signature ignoring out arguments
 | |
|     for overload in overloads:
 | |
|         sig = overload.signature.signature_str(skip_outputs=True)
 | |
|         if overload.function.func.is_out_fn():
 | |
|             if sig in outplaces:
 | |
|                 raise RuntimeError(
 | |
|                     f'Found duplicated function definition:\n- {overload.function.func}.\n'
 | |
|                     f'Existing definition:\n- {outplaces[sig].function.func}.'
 | |
|                 )
 | |
|             outplaces[sig] = overload
 | |
|         else:
 | |
|             if sig in bases:
 | |
|                 raise RuntimeError(
 | |
|                     f'Found duplicated function definition:\n- {overload.function.func}.\n'
 | |
|                     f'Existing definition:\n- {bases[sig].function.func}.'
 | |
|                 )
 | |
|             bases[sig] = overload
 | |
| 
 | |
|     for sig, out in outplaces.items():
 | |
|         if sig not in bases:
 | |
|             candidates: List[str] = []
 | |
|             for overload in overloads:
 | |
|                 if str(overload.function.func.name.name) == str(out.function.func.name.name) \
 | |
|                         and not overload.function.func.is_out_fn() \
 | |
|                         and not overload.signature.deprecated:
 | |
|                     candidates.append(overload.signature.signature_str(skip_outputs=True))
 | |
|             out_sig = out.signature.signature_str()
 | |
|             raise RuntimeError(
 | |
|                 f'While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. '
 | |
|                 f'We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema '
 | |
|                 'correctly in native_functions.yaml. We discovered the following candidate(s): \n'
 | |
|                 + '\n'.join(f'- {candidate}' for candidate in candidates))
 | |
| 
 | |
|     grouped: List[PythonSignatureGroup] = []
 | |
|     for sig, base in bases.items():
 | |
|         outplace = outplaces.get(sig)
 | |
|         grouped.append(PythonSignatureGroup(
 | |
|             # prefer the signature with optional out=... arguments because it's the
 | |
|             # superset that can be used to parse input for both base and outplace.
 | |
|             signature=outplace.signature if outplace is not None else base.signature,
 | |
|             base=base.function,
 | |
|             outplace=outplace.function if outplace is not None else None,
 | |
|         ))
 | |
| 
 | |
|     return sort_overloads(grouped)
 | |
| 
 | |
| # This function declares a partial order on declarations, and sorts them according
 | |
| # to its linear extension. This is necessary, because there's some ambiguity in the
 | |
| # choice of overload, and we want a different order.
 | |
| #
 | |
| # See Note[Order of overloads matters]
 | |
| #
 | |
| # A few examples of ambiguous python signature pairs.
 | |
| #
 | |
| #   All parameters have the same type, except one taking Tensor the other taking
 | |
| #   Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
 | |
| #   object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
 | |
| #   Therefore, same input arguments might be accepted by either python signature.
 | |
| #   We want to always parse the one taking Tensor first.
 | |
| #
 | |
| #     bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
 | |
| #     bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
 | |
| #
 | |
| #   If they have different number of parameters then they are not ambiguous - but
 | |
| #   the difference on output param can be ignored as it's optional.
 | |
| #
 | |
| #     multiply(Tensor input, Tensor other, *, Tensor out=None)
 | |
| #     multiply(Tensor input, Scalar other)
 | |
| #
 | |
| #   Both positional args and keyword-only args are considered together.
 | |
| #
 | |
| #     subtract(Tensor other, *, Scalar alpha=1)
 | |
| #     subtract(Scalar other, Scalar alpha=1)
 | |
| #
 | |
| # A few ambiguous cases which it does NOT handle yet.
 | |
| #
 | |
| #   If there is any difference in other parameters besides the Tensor/Scalar
 | |
| #   difference, then they are not considered ambiguous by this method anymore.
 | |
| #   However, the difference could be too trivial to disambiguate.
 | |
| #
 | |
| #     foo(Tensor input, Scalar other, Scalar bar)
 | |
| #     foo(Tensor input, Tensor other, double bar)
 | |
| #
 | |
| #   If they are taking different number of parameters then they are not considered
 | |
| #   ambiguous anymore, even if the difference is only on optional kwargs.
 | |
| #
 | |
| #     foo(Scalar other, Scalar alpha=1)
 | |
| #     foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
 | |
| #
 | |
| 
 | |
| def sort_overloads(
 | |
|     grouped_overloads: Sequence[PythonSignatureGroup]
 | |
| ) -> Sequence[PythonSignatureGroup]:
 | |
| 
 | |
|     def is_arg_smaller(t1: Type, t2: Type) -> bool:
 | |
|         return (str(t1) == 'Scalar' and str(t2) == 'Tensor' or
 | |
|                 'Dimname' in str(t1) and 'Dimname' not in str(t2))
 | |
| 
 | |
|     def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
 | |
|         """Returns True if s1 < s2 in the partial order."""
 | |
|         args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
 | |
|         if len(args1) != len(args2):
 | |
|             return False
 | |
|         # TODO: should use some canonical form instead of 'str(arg.type)' - see comments
 | |
|         # above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
 | |
|         # ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
 | |
|         equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
 | |
|         smaller_or_equal = all(str(arg1.type) == str(arg2.type)
 | |
|                                or is_arg_smaller(arg1.type, arg2.type)
 | |
|                                for arg1, arg2 in zip(args1, args2))
 | |
|         return smaller_or_equal and not equal
 | |
| 
 | |
|     # First sort by signature
 | |
|     grouped_overloads = sorted(grouped_overloads, key=lambda x: x.signature.signature_str())
 | |
| 
 | |
|     # Construct the relation graph
 | |
|     larger_than: Dict[int, Set[int]] = defaultdict(set)
 | |
|     for i1, overload1 in enumerate(grouped_overloads):
 | |
|         for i2, overload2 in enumerate(grouped_overloads):
 | |
|             if is_smaller(overload1.signature, overload2.signature):
 | |
|                 larger_than[i1].add(i2)
 | |
| 
 | |
|     if not larger_than:
 | |
|         return list(grouped_overloads)
 | |
| 
 | |
|     # Use a topological sort to sort overloads according to the partial order.
 | |
|     N = len(grouped_overloads)
 | |
|     sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
 | |
| 
 | |
|     for idx in range(N):
 | |
|         # The size of sorted_ids will grow to N eventually.
 | |
|         i = sorted_ids[idx]
 | |
|         for j in sorted(larger_than.keys()):
 | |
|             larger = larger_than[j]
 | |
|             larger.discard(i)
 | |
|             if not larger:
 | |
|                 del larger_than[j]
 | |
|                 sorted_ids.append(j)
 | |
| 
 | |
|     return list(map(lambda x: grouped_overloads[x], sorted_ids))
 | |
| 
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| #
 | |
| #                       Codegen API Integration
 | |
| #
 | |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
 | |
| 
 | |
| def emit_single_dispatch(
 | |
|     ps: PythonSignature, f: NativeFunction, namedtuple_typenames: Dict[str, str]
 | |
| ) -> str:
 | |
|     """
 | |
|     Emit dispatch code for a single native function.
 | |
|     """
 | |
|     @with_native_function
 | |
|     def go(f: NativeFunction) -> str:
 | |
|         # header comments
 | |
|         deprecated = '[deprecated] ' if ps.deprecated else ''
 | |
|         schema_comment = f'// {deprecated}aten::{f.func}'
 | |
| 
 | |
|         # dispatch lambda signature
 | |
|         name = cpp.name(f.func)
 | |
|         lambda_formals = ', '.join(map(lambda a: f"{a.type_str} {a.name}",
 | |
|                                        dispatch_lambda_args(ps, f)))
 | |
|         lambda_return = dispatch_lambda_return_str(f)
 | |
| 
 | |
|         # dispatch lambda body
 | |
|         dispatch_callee = cpp_dispatch_target(f)
 | |
|         dispatch_args = ', '.join(cpp_dispatch_exprs(f, python_signature=ps))
 | |
| 
 | |
|         # from arg parser outputs to dispatch lambda arguments
 | |
|         parser_outputs = arg_parser_output_exprs(ps, f)
 | |
|         lambda_arg_exprs = dispatch_lambda_exprs(ps, f)
 | |
|         inits = '\n'.join(lambda_arg_exprs.inits)
 | |
|         lambda_args = ', '.join(lambda_arg_exprs.exprs)
 | |
| 
 | |
|         # scatter fields
 | |
|         # TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
 | |
|         #       solution for enabling the 'requires_grad' argument for tensor methods
 | |
|         #       new_full, new_empty, and new_zeros. A much better but more difficult to
 | |
|         #       implement solution involves refactoring according to Ed's description here:
 | |
|         #       https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
 | |
|         need_set_requires_grad = ps.tensor_options_args and (not has_tensor_options(f) or (
 | |
|             ps.method and ('requires_grad' in parser_outputs)))
 | |
|         set_requires_grad = f'.set_requires_grad({parser_outputs["requires_grad"].expr})' \
 | |
|             if need_set_requires_grad else ''
 | |
| 
 | |
|         if lambda_return == 'void':
 | |
|             return f"""\
 | |
| {schema_comment}
 | |
| {inits}
 | |
| auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
 | |
|   pybind11::gil_scoped_release no_gil;
 | |
|   {dispatch_callee}({dispatch_args});
 | |
| }};
 | |
| dispatch_{name}({lambda_args}){set_requires_grad};
 | |
| Py_RETURN_NONE;
 | |
| """
 | |
|         else:
 | |
|             typename = namedtuple_typenames.get(gen_namedtuple_typename_key(f))
 | |
|             namedtuple_typeref = f'&{typename}, ' if typename is not None else ''
 | |
|             return f"""\
 | |
| {schema_comment}
 | |
| {inits}
 | |
| auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
 | |
|   pybind11::gil_scoped_release no_gil;
 | |
|   return {dispatch_callee}({dispatch_args});
 | |
| }};
 | |
| return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
 | |
| """
 | |
| 
 | |
|     return go(f)
 |