mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12029 In order to remove New() function in StaticContext(to remove StaticContext) and converge to the Allocator design, we'll first change the return type of New to at::DataPtr. Reviewed By: ezyang Differential Revision: D9889990 fbshipit-source-id: 3257c763530b987025f428741bdd2e089d11bad4
399 lines
12 KiB
C++
399 lines
12 KiB
C++
#ifndef CAFFE2_CORE_CONTEXT_HIP_H_
|
|
#define CAFFE2_CORE_CONTEXT_HIP_H_
|
|
|
|
#include <hiprand.h>
|
|
#include <ctime>
|
|
#include <mutex>
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/hip/common_hip.h"
|
|
#include "caffe2/core/hip/common_miopen.h"
|
|
#include "caffe2/core/logging.h"
|
|
#include "caffe2/core/numa.h"
|
|
#include "caffe2/core/tensor.h"
|
|
#include "caffe2/core/types.h"
|
|
#include "caffe2/proto/caffe2_pb.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
enum class HipMemoryPoolType {
|
|
NONE = 0,
|
|
CUB = 1,
|
|
THC = 2,
|
|
};
|
|
|
|
/**
|
|
* Gets the current memory pool type used by Caffe2.
|
|
*
|
|
* The memory pool is set up during caffe2's global initialization time.
|
|
*/
|
|
HipMemoryPoolType GetHipMemoryPoolType();
|
|
|
|
/**
|
|
* A struct to host thread-local cuda objects.
|
|
*
|
|
* In Caffe2, each thread has its own non-default cuda stream as well as
|
|
* related objects such as cublas and curand handles. This is achieved by
|
|
* having the ThreadLocalCUDAObjects wrapper that takes care of allocating
|
|
* and deallocating these objects at the thread scope. This class is solely
|
|
* used inside CUDAContext and should not be used externally.
|
|
*/
|
|
class ThreadLocalHIPObjects {
|
|
friend class HIPContext;
|
|
|
|
private:
|
|
ThreadLocalHIPObjects() {
|
|
for (int i = 0; i < CAFFE2_COMPILE_TIME_MAX_HIP_GPUS; ++i) {
|
|
hip_streams_[i] = vector<hipStream_t>();
|
|
rocblas_handles_[i] = vector<rocblas_handle>();
|
|
miopen_handles_[i] = vector<miopenHandle_t>();
|
|
}
|
|
}
|
|
|
|
hipStream_t GetStream(int gpu, int stream_id) {
|
|
vector<hipStream_t>& gpu_streams = hip_streams_[gpu];
|
|
if (gpu_streams.size() <= (unsigned)stream_id) {
|
|
gpu_streams.resize(stream_id + 1, nullptr);
|
|
}
|
|
if (!gpu_streams[stream_id]) {
|
|
DeviceGuard guard(gpu);
|
|
HIP_ENFORCE(hipStreamCreateWithFlags(
|
|
&gpu_streams[stream_id], hipStreamNonBlocking));
|
|
}
|
|
return gpu_streams[stream_id];
|
|
}
|
|
|
|
rocblas_handle GetHandle(int gpu, int stream_id) {
|
|
DeviceGuard guard(gpu);
|
|
vector<rocblas_handle>& gpu_handles = rocblas_handles_[gpu];
|
|
if (gpu_handles.size() <= (unsigned)stream_id) {
|
|
gpu_handles.resize(stream_id + 1, nullptr);
|
|
}
|
|
if (!gpu_handles[stream_id]) {
|
|
ROCBLAS_ENFORCE(rocblas_create_handle(&gpu_handles[stream_id]));
|
|
// The default is ROCBLAS_POINTER_MODE_HOST. You can override
|
|
// it after obtaining the rocblas handle, but do that with
|
|
// caution.
|
|
ROCBLAS_ENFORCE(rocblas_set_pointer_mode(
|
|
gpu_handles[stream_id], rocblas_pointer_mode_host));
|
|
ROCBLAS_ENFORCE(rocblas_set_stream(
|
|
gpu_handles[stream_id], GetStream(gpu, stream_id)));
|
|
}
|
|
return gpu_handles[stream_id];
|
|
}
|
|
|
|
miopenHandle_t GetMiopenHandle(int gpu, int stream_id) {
|
|
DeviceGuard guard(gpu);
|
|
vector<miopenHandle_t>& gpu_handles = miopen_handles_[gpu];
|
|
if (gpu_handles.size() <= (unsigned)stream_id) {
|
|
gpu_handles.resize(stream_id + 1, nullptr);
|
|
}
|
|
if (!gpu_handles[stream_id]) {
|
|
MIOPEN_ENFORCE(miopenCreate(&gpu_handles[stream_id]));
|
|
MIOPEN_ENFORCE(
|
|
miopenSetStream(gpu_handles[stream_id], GetStream(gpu, stream_id)));
|
|
}
|
|
return gpu_handles[stream_id];
|
|
}
|
|
|
|
~ThreadLocalHIPObjects() noexcept {
|
|
for (int i = 0; i < CAFFE2_COMPILE_TIME_MAX_HIP_GPUS; ++i) {
|
|
for (auto& handle : rocblas_handles_[i]) {
|
|
if (handle) {
|
|
ROCBLAS_CHECK(rocblas_destroy_handle(handle));
|
|
}
|
|
}
|
|
for (auto& stream : hip_streams_[i]) {
|
|
if (stream) {
|
|
HIP_CHECK(hipStreamDestroy(stream));
|
|
}
|
|
}
|
|
for (auto& handle : miopen_handles_[i]) {
|
|
if (handle) {
|
|
MIOPEN_CHECK(miopenDestroy(handle));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
vector<hipStream_t> hip_streams_[CAFFE2_COMPILE_TIME_MAX_HIP_GPUS];
|
|
vector<rocblas_handle> rocblas_handles_[CAFFE2_COMPILE_TIME_MAX_HIP_GPUS];
|
|
vector<miopenHandle_t> miopen_handles_[CAFFE2_COMPILE_TIME_MAX_HIP_GPUS];
|
|
};
|
|
|
|
BaseStaticContext* GetHIPStaticContext();
|
|
|
|
class HIPContext final : public BaseContext {
|
|
public:
|
|
// The default HIP context constructor.
|
|
explicit HIPContext(const int gpu_id = -1);
|
|
explicit HIPContext(const DeviceOption& option);
|
|
explicit HIPContext(const at::Device& device)
|
|
: HIPContext(DeviceToOption(device)) {}
|
|
|
|
~HIPContext() override {
|
|
if (hiprand_generator_) {
|
|
HIPRAND_CHECK(hiprandDestroyGenerator(hiprand_generator_));
|
|
}
|
|
FinishDeviceComputation();
|
|
}
|
|
|
|
BaseStaticContext* GetStaticContext() const override {
|
|
return GetHIPStaticContext();
|
|
}
|
|
|
|
static BaseStaticContext* StaticContext() {
|
|
return GetHIPStaticContext();
|
|
}
|
|
|
|
inline void SwitchToDevice(int stream_id) override {
|
|
set_stream_id(stream_id);
|
|
CaffeHipSetDevice(gpu_id_);
|
|
}
|
|
|
|
using BaseContext::SwitchToDevice;
|
|
|
|
inline void WaitEvent(const Event& ev) override {
|
|
ev.Wait(HIP, this);
|
|
}
|
|
|
|
inline void Record(Event* ev, const char* err_msg = nullptr) const override {
|
|
CAFFE_ENFORCE(ev, "Event must not be null.");
|
|
ev->Record(HIP, this, err_msg);
|
|
}
|
|
|
|
void FinishDeviceComputation() override {
|
|
hipStreamSynchronize(hip_objects_.GetStream(gpu_id_, stream_id_));
|
|
hipError_t error = hipGetLastError();
|
|
if (error != hipSuccess) {
|
|
CAFFE_THROW("Encountered HIP error: ", hipGetErrorString(error));
|
|
}
|
|
}
|
|
|
|
inline int hip_gpu_id() const {
|
|
return gpu_id_;
|
|
}
|
|
|
|
inline hipStream_t hip_stream() {
|
|
return hip_stream(gpu_id_, stream_id_);
|
|
}
|
|
|
|
inline hipStream_t hip_stream() const {
|
|
return hip_stream(gpu_id_, stream_id_);
|
|
}
|
|
|
|
static hipStream_t hip_stream(int gpu_id, int stream_id) {
|
|
return hip_objects_.GetStream(gpu_id, stream_id);
|
|
}
|
|
|
|
rocblas_handle rocblas_handle() {
|
|
return hip_objects_.GetHandle(gpu_id_, stream_id_);
|
|
}
|
|
|
|
miopenHandle_t miopen_handle() {
|
|
return hip_objects_.GetMiopenHandle(gpu_id_, stream_id_);
|
|
}
|
|
|
|
hiprandGenerator_t& hiprand_generator() {
|
|
if (!hiprand_generator_) {
|
|
DeviceGuard guard(gpu_id_);
|
|
HIPRAND_ENFORCE(hiprandCreateGenerator(
|
|
&hiprand_generator_, HIPRAND_RNG_PSEUDO_DEFAULT));
|
|
HIPRAND_ENFORCE(hiprandSetPseudoRandomGeneratorSeed(
|
|
hiprand_generator_, random_seed_));
|
|
CHECK_NOTNULL(hiprand_generator_);
|
|
}
|
|
HIPRAND_ENFORCE(hiprandSetStream(hiprand_generator_, hip_stream()));
|
|
return hiprand_generator_;
|
|
}
|
|
|
|
static at::DataPtr New(size_t nbytes) {
|
|
return StaticContext()->New(nbytes);
|
|
}
|
|
|
|
// Get a mutex to lock out hipMalloc / hipFree calls when
|
|
// NCCL kernels are being launched. Should remove threat of
|
|
// deadlocks
|
|
static std::mutex& mutex();
|
|
|
|
// Functions to query memory stats. Only available if flag
|
|
// --caffe2_gpu_memory_tracking is enabled.
|
|
static std::vector<long> TotalMemoryByGpu();
|
|
static std::vector<long> MaxMemoryByGpu();
|
|
|
|
template <class SrcContext, class DstContext>
|
|
inline void CopyBytes(size_t nbytes, const void* src, void* dst) {
|
|
if (nbytes == 0)
|
|
return;
|
|
HIP_ENFORCE(hipMemcpyAsync(
|
|
dst,
|
|
src,
|
|
nbytes,
|
|
hipMemcpyDefault,
|
|
hip_objects_.GetStream(gpu_id_, stream_id_)));
|
|
}
|
|
|
|
void CopyBytesSameDevice(size_t nbytes, const void* src, void* dst) override {
|
|
CopyBytes<HIPContext, HIPContext>(nbytes, src, dst);
|
|
}
|
|
|
|
void CopyBytesToCPU(size_t nbytes, const void* src, void* dst) override {
|
|
CopyBytes<HIPContext, CPUContext>(nbytes, src, dst);
|
|
}
|
|
|
|
void CopyBytesFromCPU(size_t nbytes, const void* src, void* dst) override {
|
|
CopyBytes<CPUContext, HIPContext>(nbytes, src, dst);
|
|
}
|
|
|
|
template <typename T, class SrcContext, class DstContext>
|
|
inline void Copy(int n, const T* src, T* dst) {
|
|
CopyBytes<SrcContext, DstContext>(
|
|
n * sizeof(T), static_cast<const void*>(src), static_cast<void*>(dst));
|
|
}
|
|
|
|
template <class SrcContext, class DstContext>
|
|
inline void
|
|
CopyItems(const TypeMeta& meta, size_t n, const void* src, void* dst) {
|
|
CAFFE_ENFORCE(!meta.copy(), "HIPContext requires fundamental types.");
|
|
CopyBytes<SrcContext, DstContext>(n * meta.itemsize(), src, dst);
|
|
}
|
|
|
|
// By default HIP operators have async device parts
|
|
static bool HasAsyncPartDefault() {
|
|
return true;
|
|
}
|
|
|
|
static bool SupportsAsyncScheduling() {
|
|
return true;
|
|
}
|
|
|
|
static bool IsStreamFree(const DeviceOption& option, int stream_id) {
|
|
auto stream = HIPContext::hip_stream(option.hip_gpu_id(), stream_id);
|
|
return hipStreamQuery(stream) == hipSuccess;
|
|
}
|
|
|
|
DeviceType device_type() const override {
|
|
return HIP;
|
|
}
|
|
|
|
static constexpr DeviceType GetDeviceType() {
|
|
return HIP;
|
|
}
|
|
|
|
protected:
|
|
static void Delete(void* data);
|
|
void set_stream_id(int stream_id) {
|
|
stream_id_ = stream_id;
|
|
}
|
|
|
|
int gpu_id_;
|
|
int stream_id_ = 0;
|
|
int random_seed_;
|
|
hiprandGenerator_t hiprand_generator_{nullptr};
|
|
static thread_local ThreadLocalHIPObjects hip_objects_;
|
|
};
|
|
|
|
// For the CPU context, we also allow a (probably expensive) function
|
|
// to copy the data from a HIP context. Inside the function, we create
|
|
// a temporary CUDAContext object to carry out the copy. From the caller's
|
|
// side, these functions are synchronous with respect to the host, similar
|
|
// to a normal CPUContext::CopyBytes<CPUContext, CPUContext> call.
|
|
template <>
|
|
inline void CPUContext::CopyBytes<HIPContext, CPUContext>(
|
|
size_t nbytes,
|
|
const void* src,
|
|
void* dst) {
|
|
HIPContext context(GetGPUIDForPointer(src));
|
|
context.CopyBytes<HIPContext, CPUContext>(nbytes, src, dst);
|
|
}
|
|
template <>
|
|
inline void CPUContext::CopyBytes<CPUContext, HIPContext>(
|
|
size_t nbytes,
|
|
const void* src,
|
|
void* dst) {
|
|
HIPContext context(GetGPUIDForPointer(dst));
|
|
context.CopyBytes<CPUContext, HIPContext>(nbytes, src, dst);
|
|
}
|
|
|
|
/**
|
|
* An allocator that does the CPU memory allocation with pinned memory.
|
|
*
|
|
* This is needed because if we want to do any asynchronous HIP memcpy,
|
|
* the underlying CPU memory also needs to be allocated into pinned memory
|
|
* space. As a result, whenever Caffe2 is built with GPU and there is
|
|
* GPU present during runtime, at global initialization time we will set
|
|
* the CPU memory allocator to allocate pinned memory.
|
|
*/
|
|
struct PinnedCPUAllocator final : public at::Allocator {
|
|
PinnedCPUAllocator() {}
|
|
~PinnedCPUAllocator() override {}
|
|
at::DataPtr allocate(size_t nbytes) const override {
|
|
void* data;
|
|
at::DataPtr data_ptr;
|
|
std::lock_guard<std::mutex> lock(HIPContext::mutex());
|
|
if (IsNUMAEnabled()) {
|
|
data_ptr = baseAllocator_.allocate(nbytes);
|
|
data = data_ptr.get();
|
|
CAFFE_ENFORCE(data);
|
|
HIP_ENFORCE(hipHostRegister(data, nbytes, hipHostRegisterDefault));
|
|
} else {
|
|
HIP_ENFORCE(hipHostMalloc(&data, nbytes));
|
|
data_ptr = {data, data, &Delete, at::Device(CPU)};
|
|
}
|
|
memset(data, 0, nbytes);
|
|
return data_ptr;
|
|
}
|
|
|
|
at::DeleterFnPtr raw_deleter() const override {
|
|
return &Delete;
|
|
}
|
|
|
|
private:
|
|
static void Delete(void* data) {
|
|
// Caffe2 uses a lazy way to figure out if one is actually going to use GPUs
|
|
// or not. If a HIPContext::New() call is made, inside the CUDAContext
|
|
// function we will switch the cpu side allocator to a PinnedCPUAllocator.
|
|
// But, if one calls CPUContext::New() before any HIP allocations,
|
|
// PinnedCPUAllocator can still delete the corresponding memory.
|
|
std::lock_guard<std::mutex> lock(HIPContext::mutex());
|
|
if (IsNUMAEnabled()) {
|
|
HIP_ENFORCE(hipHostUnregister(data));
|
|
DefaultCPUAllocator::Delete(data);
|
|
} else {
|
|
hipError_t err = hipHostFree(data);
|
|
if (err == hipErrorInvalidValue) {
|
|
free(data);
|
|
// Calling hipGetLastError will reset the cuda error.
|
|
hipGetLastError();
|
|
} else {
|
|
// For all other errors, still do a hip check.
|
|
HIP_ENFORCE(err);
|
|
}
|
|
}
|
|
}
|
|
|
|
DefaultCPUAllocator baseAllocator_;
|
|
};
|
|
|
|
class HIPStaticContext final : public BaseStaticContext {
|
|
public:
|
|
at::DataPtr New(size_t nbytes) const override;
|
|
|
|
DeviceType GetDeviceType() override {
|
|
return HIP;
|
|
}
|
|
|
|
void ExtractDeviceOption(DeviceOption* device, const void* data) override {
|
|
device->set_device_type(TypeToProto(GetDeviceType()));
|
|
device->set_hip_gpu_id(GetGPUIDForPointer(data));
|
|
}
|
|
|
|
protected:
|
|
static void Delete(void* data);
|
|
};
|
|
|
|
typedef Tensor TensorHIP;
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_CORE_CONTEXT_HIP_H_
|