mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Following https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md we implemented the backend configuration for fbgemm/qnnpack backend, currently it was under fx folder, but we'd like to use this for all different workflows, including eager, fx graph and define by run quantization, this PR moves it to torch.ao.quantization namespace so that it can be shared by different workflows Also moves some utility functions specific to fx to fx/backend_config_utils.py and some files are kept in fx folder (quantize_handler.py and fuse_handler.py) Test Plan: python test/teset_quantization.py TestQuantizeFx python test/teset_quantization.py TestQuantizeFxOps python test/teset_quantization.py TestQuantizeFxModels python test/test_quantization.py TestAOMigrationQuantization python test/test_quantization.py TestAOMigrationQuantizationFx Reviewers: Subscribers: Tasks: Tags: Pull Request resolved: https://github.com/pytorch/pytorch/pull/75823 Approved by: https://github.com/vkuzo
674 lines
20 KiB
Python
674 lines
20 KiB
Python
# -*- coding: utf-8 -*-
|
|
#
|
|
# PyTorch documentation build configuration file, created by
|
|
# sphinx-quickstart on Fri Dec 23 13:31:47 2016.
|
|
#
|
|
# This file is execfile()d with the current directory set to its
|
|
# containing dir.
|
|
#
|
|
# Note that not all possible configuration values are present in this
|
|
# autogenerated file.
|
|
#
|
|
# All configuration values have a default; values that are commented out
|
|
# serve to show the default.
|
|
|
|
# If extensions (or modules to document with autodoc) are in another directory,
|
|
# add these directories to sys.path here. If the directory is relative to the
|
|
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
|
#
|
|
import os
|
|
from os import path
|
|
# import sys
|
|
import pkgutil
|
|
|
|
# source code directory, relative to this file, for sphinx-autobuild
|
|
# sys.path.insert(0, os.path.abspath('../..'))
|
|
|
|
import torch
|
|
|
|
try:
|
|
import torchvision # noqa: F401
|
|
except ImportError:
|
|
import warnings
|
|
warnings.warn('unable to load "torchvision" package')
|
|
|
|
RELEASE = os.environ.get('RELEASE', False)
|
|
|
|
import pytorch_sphinx_theme
|
|
|
|
# -- General configuration ------------------------------------------------
|
|
|
|
# If your documentation needs a minimal Sphinx version, state it here.
|
|
#
|
|
needs_sphinx = '3.1.2'
|
|
|
|
# Add any Sphinx extension module names here, as strings. They can be
|
|
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
|
# ones.
|
|
extensions = [
|
|
'sphinx.ext.autodoc',
|
|
'sphinx.ext.autosummary',
|
|
'sphinx.ext.doctest',
|
|
'sphinx.ext.intersphinx',
|
|
'sphinx.ext.todo',
|
|
'sphinx.ext.coverage',
|
|
'sphinx.ext.napoleon',
|
|
'sphinx.ext.viewcode',
|
|
'sphinxcontrib.katex',
|
|
'sphinx.ext.autosectionlabel',
|
|
'sphinx_copybutton',
|
|
'sphinx_panels'
|
|
]
|
|
|
|
# build the templated autosummary files
|
|
autosummary_generate = True
|
|
numpydoc_show_class_members = False
|
|
|
|
# Theme has bootstrap already
|
|
panels_add_bootstrap_css = False
|
|
|
|
# autosectionlabel throws warnings if section names are duplicated.
|
|
# The following tells autosectionlabel to not throw a warning for
|
|
# duplicated section names that are in different documents.
|
|
autosectionlabel_prefix_document = True
|
|
|
|
# katex options
|
|
#
|
|
#
|
|
|
|
katex_prerender = True
|
|
|
|
napoleon_use_ivar = True
|
|
|
|
# Add any paths that contain templates here, relative to this directory.
|
|
templates_path = ['_templates']
|
|
|
|
# TODO: document these and remove them from here.
|
|
|
|
coverage_ignore_functions = [
|
|
# torch
|
|
"typename",
|
|
# torch.autograd
|
|
"register_py_tensor_class_for_device",
|
|
"variable",
|
|
# torch.cuda
|
|
"check_error",
|
|
"cudart",
|
|
"is_bf16_supported",
|
|
# torch.distributed.autograd
|
|
"is_available",
|
|
# torch.distributed.elastic.events
|
|
"construct_and_record_rdzv_event",
|
|
"record_rdzv_event",
|
|
# torch.distributed.elastic.metrics
|
|
"initialize_metrics",
|
|
# torch.distributed.elastic.rendezvous.registry
|
|
"get_rendezvous_handler",
|
|
# torch.distributed.launch
|
|
"launch",
|
|
"main",
|
|
"parse_args",
|
|
# torch.distributed.rpc
|
|
"is_available",
|
|
# torch.distributed.run
|
|
"config_from_args",
|
|
"determine_local_world_size",
|
|
"get_args_parser",
|
|
"get_rdzv_endpoint",
|
|
"get_use_env",
|
|
"main",
|
|
"parse_args",
|
|
"parse_min_max_nnodes",
|
|
"run",
|
|
"run_script_path",
|
|
# torch.distributions.constraints
|
|
"is_dependent",
|
|
# torch.hub
|
|
"import_module",
|
|
# torch.jit
|
|
"export_opnames",
|
|
# torch.jit.unsupported_tensor_ops
|
|
"execWrapper",
|
|
# torch.onnx
|
|
"unregister_custom_op_symbolic",
|
|
# torch.ao.quantization
|
|
"default_eval_fn",
|
|
# torch.ao.quantization.backend_config
|
|
"validate_backend_config_dict",
|
|
# torch.backends
|
|
"disable_global_flags",
|
|
"flags_frozen",
|
|
# torch.distributed.algorithms.ddp_comm_hooks
|
|
"register_ddp_comm_hook",
|
|
# torch.nn
|
|
"factory_kwargs",
|
|
# torch.nn.parallel
|
|
"DistributedDataParallelCPU",
|
|
# torch.utils
|
|
"set_module",
|
|
# torch.utils.model_dump
|
|
"burn_in_info",
|
|
"get_info_and_burn_skeleton",
|
|
"get_inline_skeleton",
|
|
"get_model_info",
|
|
"get_storage_info",
|
|
"hierarchical_pickle",
|
|
]
|
|
|
|
coverage_ignore_classes = [
|
|
# torch
|
|
"FatalError",
|
|
"QUInt2x4Storage",
|
|
"Size",
|
|
"Storage",
|
|
"Stream",
|
|
"Tensor",
|
|
"finfo",
|
|
"iinfo",
|
|
"qscheme",
|
|
"AggregationType",
|
|
"AliasDb",
|
|
"AnyType",
|
|
"Argument",
|
|
"ArgumentSpec",
|
|
"BenchmarkConfig",
|
|
"BenchmarkExecutionStats",
|
|
"Block",
|
|
"BoolType",
|
|
"BufferDict",
|
|
"CallStack",
|
|
"Capsule",
|
|
"ClassType",
|
|
"Code",
|
|
"CompleteArgumentSpec",
|
|
"ComplexType",
|
|
"ConcreteModuleType",
|
|
"ConcreteModuleTypeBuilder",
|
|
"DeepCopyMemoTable",
|
|
"DeserializationStorageContext",
|
|
"DeviceObjType",
|
|
"DictType",
|
|
"EnumType",
|
|
"ExecutionPlan",
|
|
"FileCheck",
|
|
"FloatType",
|
|
"FunctionSchema",
|
|
"Gradient",
|
|
"Graph",
|
|
"GraphExecutorState",
|
|
"IODescriptor",
|
|
"InferredType",
|
|
"IntType",
|
|
"InterfaceType",
|
|
"ListType",
|
|
"LockingLogger",
|
|
"MobileOptimizerType",
|
|
"ModuleDict",
|
|
"Node",
|
|
"NoneType",
|
|
"NoopLogger",
|
|
"NumberType",
|
|
"OperatorInfo",
|
|
"OptionalType",
|
|
"ParameterDict",
|
|
"PyObjectType",
|
|
"PyTorchFileReader",
|
|
"PyTorchFileWriter",
|
|
"RRefType",
|
|
"ScriptClass",
|
|
"ScriptClassFunction",
|
|
"ScriptDict",
|
|
"ScriptDictIterator",
|
|
"ScriptDictKeyIterator",
|
|
"ScriptList",
|
|
"ScriptListIterator",
|
|
"ScriptMethod",
|
|
"ScriptModule",
|
|
"ScriptModuleSerializer",
|
|
"ScriptObject",
|
|
"ScriptObjectProperty",
|
|
"SerializationStorageContext",
|
|
"StaticModule",
|
|
"StringType",
|
|
"SymIntType",
|
|
"ThroughputBenchmark",
|
|
"TracingState",
|
|
"TupleType",
|
|
"Type",
|
|
"UnionType",
|
|
"Use",
|
|
"Value",
|
|
# torch.cuda
|
|
"BFloat16Storage",
|
|
"BFloat16Tensor",
|
|
"BoolStorage",
|
|
"BoolTensor",
|
|
"ByteStorage",
|
|
"ByteTensor",
|
|
"CharStorage",
|
|
"CharTensor",
|
|
"ComplexDoubleStorage",
|
|
"ComplexFloatStorage",
|
|
"CudaError",
|
|
"DeferredCudaCallError",
|
|
"DoubleStorage",
|
|
"DoubleTensor",
|
|
"FloatStorage",
|
|
"FloatTensor",
|
|
"HalfStorage",
|
|
"HalfTensor",
|
|
"IntStorage",
|
|
"IntTensor",
|
|
"LongStorage",
|
|
"LongTensor",
|
|
"ShortStorage",
|
|
"ShortTensor",
|
|
"cudaStatus",
|
|
# torch.distributed.elastic.multiprocessing.errors
|
|
"ChildFailedError",
|
|
"ProcessFailure",
|
|
# torch.distributions.constraints
|
|
"cat",
|
|
"greater_than",
|
|
"greater_than_eq",
|
|
"half_open_interval",
|
|
"independent",
|
|
"integer_interval",
|
|
"interval",
|
|
"less_than",
|
|
"multinomial",
|
|
"stack",
|
|
# torch.distributions.transforms
|
|
"AffineTransform",
|
|
"CatTransform",
|
|
"ComposeTransform",
|
|
"CorrCholeskyTransform",
|
|
"CumulativeDistributionTransform",
|
|
"ExpTransform",
|
|
"IndependentTransform",
|
|
"PowerTransform",
|
|
"ReshapeTransform",
|
|
"SigmoidTransform",
|
|
"SoftmaxTransform",
|
|
"SoftplusTransform",
|
|
"StackTransform",
|
|
"StickBreakingTransform",
|
|
"TanhTransform",
|
|
"Transform",
|
|
# torch.jit
|
|
"CompilationUnit",
|
|
"Error",
|
|
"Future",
|
|
"ScriptFunction",
|
|
# torch.onnx
|
|
"CheckerError",
|
|
"ExportTypes",
|
|
# torch.backends
|
|
"ContextProp",
|
|
"PropModule",
|
|
# torch.backends.cuda
|
|
"cuBLASModule",
|
|
"cuFFTPlanCache",
|
|
"cuFFTPlanCacheAttrContextProp",
|
|
"cuFFTPlanCacheManager",
|
|
# torch.distributed.algorithms.ddp_comm_hooks
|
|
"DDPCommHookType",
|
|
# torch.jit.mobile
|
|
"LiteScriptModule",
|
|
# torch.nn.quantized.modules
|
|
"DeQuantize",
|
|
"Quantize",
|
|
# torch.utils.backcompat
|
|
"Warning",
|
|
]
|
|
|
|
# The suffix(es) of source filenames.
|
|
# You can specify multiple suffix as a list of string:
|
|
#
|
|
# source_suffix = ['.rst', '.md']
|
|
source_suffix = '.rst'
|
|
|
|
# The master toctree document.
|
|
master_doc = 'index'
|
|
|
|
# General information about the project.
|
|
project = 'PyTorch'
|
|
copyright = '2022, PyTorch Contributors'
|
|
author = 'PyTorch Contributors'
|
|
torch_version = str(torch.__version__)
|
|
|
|
# The version info for the project you're documenting, acts as replacement for
|
|
# |version| and |release|, also used in various other places throughout the
|
|
# built documents.
|
|
#
|
|
# The short X.Y version.
|
|
# TODO: change to [:2] at v1.0
|
|
version = 'master (' + torch_version + ' )'
|
|
# The full version, including alpha/beta/rc tags.
|
|
# TODO: verify this works as expected
|
|
release = 'master'
|
|
|
|
# Customized html_title here.
|
|
# Default is " ".join(project, release, "documentation") if not set
|
|
if RELEASE:
|
|
# Turn 1.11.0aHASH into 1.11
|
|
# Note: the release candidates should no longer have the aHASH suffix, but in any
|
|
# case we wish to leave only major.minor, even for rc builds.
|
|
version = '.'.join(torch_version.split('.')[:2])
|
|
html_title = " ".join((project, version, "documentation"))
|
|
release = version
|
|
|
|
# The language for content autogenerated by Sphinx. Refer to documentation
|
|
# for a list of supported languages.
|
|
#
|
|
# This is also used if you do content translation via gettext catalogs.
|
|
# Usually you set "language" from the command line for these cases.
|
|
language = None
|
|
|
|
# List of patterns, relative to source directory, that match files and
|
|
# directories to ignore when looking for source files.
|
|
# This patterns also effect to html_static_path and html_extra_path
|
|
exclude_patterns = []
|
|
|
|
# The name of the Pygments (syntax highlighting) style to use.
|
|
pygments_style = 'sphinx'
|
|
|
|
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
|
todo_include_todos = True
|
|
|
|
# Disable docstring inheritance
|
|
autodoc_inherit_docstrings = False
|
|
|
|
# Disable displaying type annotations, these can be very verbose
|
|
autodoc_typehints = 'none'
|
|
|
|
# Enable overriding of function signatures in the first line of the docstring.
|
|
autodoc_docstring_signature = True
|
|
|
|
# -- katex javascript in header
|
|
#
|
|
# def setup(app):
|
|
# app.add_javascript("https://cdn.jsdelivr.net/npm/katex@0.10.0-beta/dist/katex.min.js")
|
|
|
|
|
|
# -- Options for HTML output ----------------------------------------------
|
|
#
|
|
# The theme to use for HTML and HTML Help pages. See the documentation for
|
|
# a list of builtin themes.
|
|
#
|
|
#
|
|
#
|
|
|
|
html_theme = 'pytorch_sphinx_theme'
|
|
html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
|
|
|
|
# Theme options are theme-specific and customize the look and feel of a theme
|
|
# further. For a list of options available for each theme, see the
|
|
# documentation.
|
|
|
|
html_theme_options = {
|
|
'pytorch_project': 'docs',
|
|
'canonical_url': 'https://pytorch.org/docs/stable/',
|
|
'collapse_navigation': False,
|
|
'display_version': True,
|
|
'logo_only': True,
|
|
'analytics_id': 'UA-117752657-2',
|
|
}
|
|
|
|
html_logo = '_static/img/pytorch-logo-dark-unstable.png'
|
|
if RELEASE:
|
|
html_logo = '_static/img/pytorch-logo-dark.svg'
|
|
|
|
|
|
# Add any paths that contain custom static files (such as style sheets) here,
|
|
# relative to this directory. They are copied after the builtin static files,
|
|
# so a file named "default.css" will overwrite the builtin "default.css".
|
|
html_static_path = ['_static']
|
|
|
|
html_css_files = [
|
|
'css/jit.css',
|
|
]
|
|
|
|
from sphinx.ext.coverage import CoverageBuilder
|
|
|
|
def coverage_post_process(app, exception):
|
|
if exception is not None:
|
|
return
|
|
|
|
# Only run this test for the coverage build
|
|
if not isinstance(app.builder, CoverageBuilder):
|
|
return
|
|
|
|
if not torch.distributed.is_available():
|
|
raise RuntimeError("The coverage tool cannot run with a version "
|
|
"of PyTorch that was built with USE_DISTRIBUTED=0 "
|
|
"as this module's API changes.")
|
|
|
|
# These are all the modules that have "automodule" in an rst file
|
|
# These modules are the ones for which coverage is checked
|
|
# Here, we make sure that no module is missing from that list
|
|
modules = app.env.domaindata['py']['modules']
|
|
|
|
# We go through all the torch submodules and make sure they are
|
|
# properly tested
|
|
missing = set()
|
|
|
|
def is_not_internal(modname):
|
|
split_name = modname.split(".")
|
|
for name in split_name:
|
|
if name[0] == "_":
|
|
return False
|
|
return True
|
|
|
|
# The walk function does not return the top module
|
|
if "torch" not in modules:
|
|
missing.add("torch")
|
|
|
|
for _, modname, ispkg in pkgutil.walk_packages(path=torch.__path__,
|
|
prefix=torch.__name__ + '.'):
|
|
if ispkg and is_not_internal(modname):
|
|
if modname not in modules:
|
|
missing.add(modname)
|
|
|
|
output = []
|
|
|
|
if missing:
|
|
mods = ", ".join(missing)
|
|
output.append(f"\nYou added the following module(s) to the PyTorch namespace '{mods}' "
|
|
"but they have no corresponding entry in a doc .rst file. You should "
|
|
"either make sure that the .rst file that contains the module's documentation "
|
|
"properly contains either '.. automodule:: mod_name' (if you do not want "
|
|
"the paragraph added by the automodule, you can simply use '.. py:module:: mod_name') "
|
|
" or make the module private (by appending an '_' at the beginning of its name).")
|
|
|
|
# The output file is hard-coded by the coverage tool
|
|
# Our CI is setup to fail if any line is added to this file
|
|
output_file = path.join(app.outdir, 'python.txt')
|
|
|
|
if output:
|
|
with open(output_file, "a") as f:
|
|
for o in output:
|
|
f.write(o)
|
|
|
|
# Called automatically by Sphinx, making this `conf.py` an "extension".
|
|
def setup(app):
|
|
# NOTE: in Sphinx 1.8+ `html_css_files` is an official configuration value
|
|
# and can be moved outside of this function (and the setup(app) function
|
|
# can be deleted).
|
|
html_css_files = [
|
|
'https://cdn.jsdelivr.net/npm/katex@0.10.0-beta/dist/katex.min.css'
|
|
]
|
|
|
|
# In Sphinx 1.8 it was renamed to `add_css_file`, 1.7 and prior it is
|
|
# `add_stylesheet` (deprecated in 1.8).
|
|
add_css = getattr(app, 'add_css_file', app.add_stylesheet)
|
|
for css_file in html_css_files:
|
|
add_css(css_file)
|
|
|
|
app.connect("build-finished", coverage_post_process)
|
|
|
|
# From PyTorch 1.5, we now use autogenerated files to document classes and
|
|
# functions. This breaks older references since
|
|
# https://pytorch.org/docs/stable/torch.html#torch.flip
|
|
# moved to
|
|
# https://pytorch.org/docs/stable/generated/torch.flip.html
|
|
# which breaks older links from blog posts, stack overflow answers and more.
|
|
# To mitigate that, we add an id="torch.flip" in an appropriated place
|
|
# in torch.html by overriding the visit_reference method of html writers.
|
|
# Someday this can be removed, once the old links fade away
|
|
|
|
from sphinx.writers import html, html5
|
|
|
|
def replace(Klass):
|
|
old_call = Klass.visit_reference
|
|
|
|
def visit_reference(self, node):
|
|
if 'refuri' in node and 'generated' in node.get('refuri'):
|
|
ref = node.get('refuri')
|
|
ref_anchor = ref.split('#')
|
|
if len(ref_anchor) > 1:
|
|
# Only add the id if the node href and the text match,
|
|
# i.e. the href is "torch.flip#torch.flip" and the content is
|
|
# "torch.flip" or "flip" since that is a signal the node refers
|
|
# to autogenerated content
|
|
anchor = ref_anchor[1]
|
|
txt = node.parent.astext()
|
|
if txt == anchor or txt == anchor.split('.')[-1]:
|
|
self.body.append('<p id="{}"/>'.format(ref_anchor[1]))
|
|
return old_call(self, node)
|
|
Klass.visit_reference = visit_reference
|
|
|
|
replace(html.HTMLTranslator)
|
|
replace(html5.HTML5Translator)
|
|
|
|
# -- Options for HTMLHelp output ------------------------------------------
|
|
|
|
# Output file base name for HTML help builder.
|
|
htmlhelp_basename = 'PyTorchdoc'
|
|
|
|
|
|
# -- Options for LaTeX output ---------------------------------------------
|
|
|
|
latex_elements = {
|
|
# The paper size ('letterpaper' or 'a4paper').
|
|
#
|
|
# 'papersize': 'letterpaper',
|
|
|
|
# The font size ('10pt', '11pt' or '12pt').
|
|
#
|
|
# 'pointsize': '10pt',
|
|
|
|
# Additional stuff for the LaTeX preamble.
|
|
#
|
|
# 'preamble': '',
|
|
|
|
# Latex figure (float) alignment
|
|
#
|
|
# 'figure_align': 'htbp',
|
|
}
|
|
|
|
# Grouping the document tree into LaTeX files. List of tuples
|
|
# (source start file, target name, title,
|
|
# author, documentclass [howto, manual, or own class]).
|
|
latex_documents = [
|
|
(master_doc, 'pytorch.tex', 'PyTorch Documentation',
|
|
'Torch Contributors', 'manual'),
|
|
]
|
|
|
|
|
|
# -- Options for manual page output ---------------------------------------
|
|
|
|
# One entry per manual page. List of tuples
|
|
# (source start file, name, description, authors, manual section).
|
|
man_pages = [
|
|
(master_doc, 'PyTorch', 'PyTorch Documentation',
|
|
[author], 1)
|
|
]
|
|
|
|
|
|
# -- Options for Texinfo output -------------------------------------------
|
|
|
|
# Grouping the document tree into Texinfo files. List of tuples
|
|
# (source start file, target name, title, author,
|
|
# dir menu entry, description, category)
|
|
texinfo_documents = [
|
|
(master_doc, 'PyTorch', 'PyTorch Documentation',
|
|
author, 'PyTorch', 'One line description of project.',
|
|
'Miscellaneous'),
|
|
]
|
|
|
|
|
|
# Example configuration for intersphinx: refer to the Python standard library.
|
|
intersphinx_mapping = {
|
|
'python': ('https://docs.python.org/3', None),
|
|
'numpy': ('https://numpy.org/doc/stable', None),
|
|
}
|
|
|
|
# -- A patch that prevents Sphinx from cross-referencing ivar tags -------
|
|
# See http://stackoverflow.com/a/41184353/3343043
|
|
|
|
from docutils import nodes
|
|
from sphinx.util.docfields import TypedField
|
|
from sphinx import addnodes
|
|
import sphinx.ext.doctest
|
|
|
|
# Without this, doctest adds any example with a `>>>` as a test
|
|
doctest_test_doctest_blocks = ''
|
|
doctest_default_flags = sphinx.ext.doctest.doctest.ELLIPSIS
|
|
doctest_global_setup = '''
|
|
import torch
|
|
try:
|
|
import torchvision
|
|
except ImportError:
|
|
torchvision = None
|
|
'''
|
|
|
|
|
|
def patched_make_field(self, types, domain, items, **kw):
|
|
# `kw` catches `env=None` needed for newer sphinx while maintaining
|
|
# backwards compatibility when passed along further down!
|
|
|
|
# type: (List, unicode, Tuple) -> nodes.field
|
|
def handle_item(fieldarg, content):
|
|
par = nodes.paragraph()
|
|
par += addnodes.literal_strong('', fieldarg) # Patch: this line added
|
|
# par.extend(self.make_xrefs(self.rolename, domain, fieldarg,
|
|
# addnodes.literal_strong))
|
|
if fieldarg in types:
|
|
par += nodes.Text(' (')
|
|
# NOTE: using .pop() here to prevent a single type node to be
|
|
# inserted twice into the doctree, which leads to
|
|
# inconsistencies later when references are resolved
|
|
fieldtype = types.pop(fieldarg)
|
|
if len(fieldtype) == 1 and isinstance(fieldtype[0], nodes.Text):
|
|
typename = u''.join(n.astext() for n in fieldtype)
|
|
typename = typename.replace('int', 'python:int')
|
|
typename = typename.replace('long', 'python:long')
|
|
typename = typename.replace('float', 'python:float')
|
|
typename = typename.replace('bool', 'python:bool')
|
|
typename = typename.replace('type', 'python:type')
|
|
par.extend(self.make_xrefs(self.typerolename, domain, typename,
|
|
addnodes.literal_emphasis, **kw))
|
|
else:
|
|
par += fieldtype
|
|
par += nodes.Text(')')
|
|
par += nodes.Text(' -- ')
|
|
par += content
|
|
return par
|
|
|
|
fieldname = nodes.field_name('', self.label)
|
|
if len(items) == 1 and self.can_collapse:
|
|
fieldarg, content = items[0]
|
|
bodynode = handle_item(fieldarg, content)
|
|
else:
|
|
bodynode = self.list_type()
|
|
for fieldarg, content in items:
|
|
bodynode += nodes.list_item('', handle_item(fieldarg, content))
|
|
fieldbody = nodes.field_body('', bodynode)
|
|
return nodes.field('', fieldname, fieldbody)
|
|
|
|
TypedField.make_field = patched_make_field
|
|
|
|
copybutton_prompt_text = r'>>> |\.\.\. '
|
|
copybutton_prompt_is_regexp = True
|