Files
pytorch/functorch/examples/maml_regression/evjang_transforms.py
Xuehai Pan 740fb22966 [BE][Easy][4/19] enforce style for empty lines in import segments in functorch/ (#129755)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129755
Approved by: https://github.com/zou3519
ghstack dependencies: #129752
2024-07-18 05:08:03 +00:00

137 lines
3.4 KiB
Python

# Eric Jang originally wrote an implementation of MAML in JAX
# (https://github.com/ericjang/maml-jax).
# We translated his implementation from JAX to PyTorch.
import math
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.func import grad, vmap
from torch.nn import functional as F
mpl.use("Agg")
def net(params, x):
x = F.linear(x, params[0], params[1])
x = F.relu(x)
x = F.linear(x, params[2], params[3])
x = F.relu(x)
x = F.linear(x, params[4], params[5])
return x
params = [
torch.Tensor(40, 1).uniform_(-1.0, 1.0).requires_grad_(),
torch.Tensor(40).zero_().requires_grad_(),
torch.Tensor(40, 40)
.uniform_(-1.0 / math.sqrt(40), 1.0 / math.sqrt(40))
.requires_grad_(),
torch.Tensor(40).zero_().requires_grad_(),
torch.Tensor(1, 40)
.uniform_(-1.0 / math.sqrt(40), 1.0 / math.sqrt(40))
.requires_grad_(),
torch.Tensor(1).zero_().requires_grad_(),
]
# TODO: use F.mse_loss
def mse_loss(x, y):
return torch.mean((x - y) ** 2)
opt = torch.optim.Adam(params, lr=1e-3)
alpha = 0.1
K = 20
losses = []
num_tasks = 4
def sample_tasks(outer_batch_size, inner_batch_size):
# Select amplitude and phase for the task
As = []
phases = []
for _ in range(outer_batch_size):
As.append(np.random.uniform(low=0.1, high=0.5))
phases.append(np.random.uniform(low=0.0, high=np.pi))
def get_batch():
xs, ys = [], []
for A, phase in zip(As, phases):
x = np.random.uniform(low=-5.0, high=5.0, size=(inner_batch_size, 1))
y = A * np.sin(x + phase)
xs.append(x)
ys.append(y)
return torch.tensor(xs, dtype=torch.float), torch.tensor(ys, dtype=torch.float)
x1, y1 = get_batch()
x2, y2 = get_batch()
return x1, y1, x2, y2
for it in range(20000):
loss2 = 0.0
opt.zero_grad()
def get_loss_for_task(x1, y1, x2, y2):
def inner_loss(params, x1, y1):
f = net(params, x1)
loss = mse_loss(f, y1)
return loss
grads = grad(inner_loss)(tuple(params), x1, y1)
new_params = [(params[i] - alpha * grads[i]) for i in range(len(params))]
v_f = net(new_params, x2)
return mse_loss(v_f, y2)
task = sample_tasks(num_tasks, K)
inner_losses = vmap(get_loss_for_task)(task[0], task[1], task[2], task[3])
loss2 = sum(inner_losses) / len(inner_losses)
loss2.backward()
opt.step()
if it % 100 == 0:
print("Iteration %d -- Outer Loss: %.4f" % (it, loss2))
losses.append(loss2.detach())
t_A = torch.tensor(0.0).uniform_(0.1, 0.5)
t_b = torch.tensor(0.0).uniform_(0.0, math.pi)
t_x = torch.empty(4, 1).uniform_(-5, 5)
t_y = t_A * torch.sin(t_x + t_b)
opt.zero_grad()
t_params = params
for k in range(5):
t_f = net(t_params, t_x)
t_loss = F.l1_loss(t_f, t_y)
grads = torch.autograd.grad(t_loss, t_params, create_graph=True)
t_params = [(t_params[i] - alpha * grads[i]) for i in range(len(params))]
test_x = torch.arange(-2 * math.pi, 2 * math.pi, step=0.01).unsqueeze(1)
test_y = t_A * torch.sin(test_x + t_b)
test_f = net(t_params, test_x)
plt.plot(test_x.data.numpy(), test_y.data.numpy(), label="sin(x)")
plt.plot(test_x.data.numpy(), test_f.data.numpy(), label="net(x)")
plt.plot(t_x.data.numpy(), t_y.data.numpy(), "o", label="Examples")
plt.legend()
plt.savefig("maml-sine.png")
plt.figure()
plt.plot(np.convolve(losses, [0.05] * 20))
plt.savefig("losses.png")