mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51177 **Summary** This commit adds support for static methods to TorchBind. Just like pybind, the API for declaring a static method is `def_static(...)`. A static method must be called on the class directly, and can be called both in Python as well as TorchScript. Support for static methods is implemented in a manner similar to that of instance methods. Registered static functions are wrapped in a layer of unboxing logic, their schemas are inferred using templates and metaprogramming, and they are added to the `ClassType` object corresponding to the TorchBind class on which they are registered. ScriptClass has been extended to support a `__getattr__` function so that static methods of TorchBind classes can be invoked in Python. The implementation of `__getattr__` returns `ScriptClassFunctionPtr`, a version of `StrongFunctionPtr` without a compilation unit (since the functions of a TorchBind class live inside the TorchBind registry). Within TorchScript, TorchBind static functions are desugared in `PythonClassValue::attr` by looking them up on the class type of the `PythonClassValue` instance. **Test Plan** This commit adds a unit test that tests a simple static method on a TorchBind class. Test Plan: Imported from OSS Reviewed By: pbelevich Differential Revision: D26356942 Pulled By: SplitInfinity fbshipit-source-id: 1b6a9bc2e5f3e22071ad78e331a0201fbbf7ab30
355 lines
15 KiB
C++
355 lines
15 KiB
C++
#pragma once
|
|
|
|
#include <ATen/core/stack.h>
|
|
#include <ATen/core/builtin_function.h>
|
|
#include <ATen/core/function_schema.h>
|
|
#include <ATen/core/ivalue.h>
|
|
#include <ATen/core/jit_type.h>
|
|
#include <ATen/core/op_registration/infer_schema.h>
|
|
#include <ATen/core/stack.h>
|
|
#include <c10/util/C++17.h>
|
|
#include <c10/util/Metaprogramming.h>
|
|
#include <c10/util/TypeList.h>
|
|
#include <c10/util/TypeTraits.h>
|
|
#include <torch/library.h>
|
|
#include <torch/custom_class_detail.h>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
namespace torch {
|
|
|
|
/// This function is used in conjunction with `class_::def()` to register
|
|
/// a constructor for a given C++ class type. For example,
|
|
/// `torch::init<int, std::string>()` would register a two-argument constructor
|
|
/// taking an `int` and a `std::string` as argument.
|
|
template <class... Types>
|
|
detail::types<void, Types...> init() {
|
|
return detail::types<void, Types...>{};
|
|
}
|
|
|
|
template <typename Func, typename... ParameterTypeList>
|
|
struct InitLambda {
|
|
Func f;
|
|
};
|
|
|
|
template <typename Func>
|
|
decltype(auto) init(Func&& f) {
|
|
using InitTraits =
|
|
c10::guts::infer_function_traits_t<std::decay_t<Func>>;
|
|
using ParameterTypeList = typename InitTraits::parameter_types;
|
|
|
|
InitLambda<Func, ParameterTypeList> init{std::forward<Func>(f)};
|
|
return init;
|
|
}
|
|
|
|
/// Entry point for custom C++ class registration. To register a C++ class
|
|
/// in PyTorch, instantiate `torch::class_` with the desired class as the
|
|
/// template parameter. Typically, this instantiation should be done in
|
|
/// the initialization of a global variable, so that the class will be
|
|
/// made available on dynamic library loading without any additional API
|
|
/// calls needed. For example, to register a class named Foo, you might
|
|
/// create a global variable like so:
|
|
///
|
|
/// static auto register_foo = torch::class_<Foo>("myclasses", "Foo")
|
|
/// .def("myMethod", &Foo::myMethod)
|
|
/// .def("lambdaMethod", [](const c10::intrusive_ptr<Foo>& self) {
|
|
/// // Do something with `self`
|
|
/// });
|
|
///
|
|
/// In addition to registering the class, this registration also chains
|
|
/// `def()` calls to register methods. `myMethod()` is registered with
|
|
/// a pointer to the Foo class's `myMethod()` method. `lambdaMethod()`
|
|
/// is registered with a C++ lambda expression.
|
|
template <class CurClass>
|
|
class class_ {
|
|
static_assert(std::is_base_of<CustomClassHolder, CurClass>::value,
|
|
"torch::class_<T> requires T to inherit from CustomClassHolder");
|
|
|
|
public:
|
|
/// This constructor actually registers the class type.
|
|
/// String argument `namespaceName` is an identifier for the
|
|
/// namespace you would like this class to appear in.
|
|
/// String argument `className` is the name you would like to
|
|
/// see this class exposed as in Python and TorchScript. For example, if
|
|
/// you pass `foo` as the namespace name and `Bar` as the className, the
|
|
/// class will appear as `torch.classes.foo.Bar` in Python and TorchScript
|
|
explicit class_(const std::string& namespaceName, const std::string& className, std::string doc_string = "") {
|
|
detail::checkValidIdent(namespaceName, "Namespace name");
|
|
detail::checkValidIdent(className, "Class name");
|
|
qualClassName = std::string("__torch__.torch.classes.") + namespaceName + "." + className;
|
|
|
|
classTypePtr = at::ClassType::create(
|
|
c10::QualifiedName(qualClassName),
|
|
std::weak_ptr<jit::CompilationUnit>(),
|
|
/*is_module=*/false,
|
|
std::move(doc_string));
|
|
classTypePtr->addAttribute("capsule", at::CapsuleType::get());
|
|
|
|
c10::getCustomClassTypeMap().insert(
|
|
{std::type_index(typeid(c10::intrusive_ptr<CurClass>)), classTypePtr});
|
|
c10::getCustomClassTypeMap().insert(
|
|
{std::type_index(typeid(c10::tagged_capsule<CurClass>)), classTypePtr});
|
|
|
|
registerCustomClass(classTypePtr);
|
|
}
|
|
|
|
/// def() can be used in conjunction with `torch::init()` to register
|
|
/// a constructor for a given C++ class type. For example, passing
|
|
/// `torch::init<int, std::string>()` would register a two-argument constructor
|
|
/// taking an `int` and a `std::string` as argument.
|
|
template <typename... Types>
|
|
class_& def(detail::types<void, Types...>, std::string doc_string = "") { // Used in combination with
|
|
// torch::init<...>()
|
|
auto func = [](c10::tagged_capsule<CurClass> self, Types... args) {
|
|
auto classObj = c10::make_intrusive<CurClass>(args...);
|
|
auto object = self.ivalue.toObject();
|
|
object->setSlot(0, c10::IValue::make_capsule(std::move(classObj)));
|
|
};
|
|
|
|
defineMethod("__init__", std::move(func), std::move(doc_string));
|
|
return *this;
|
|
}
|
|
|
|
// Used in combination with torch::init([]lambda(){......})
|
|
template <typename Func, typename... ParameterTypes>
|
|
class_& def(
|
|
InitLambda<Func, c10::guts::typelist::typelist<ParameterTypes...>> init,
|
|
std::string doc_string = "") {
|
|
auto init_lambda_wrapper = [func = std::move(init.f)](
|
|
c10::tagged_capsule<CurClass> self,
|
|
ParameterTypes... arg) {
|
|
c10::intrusive_ptr<CurClass> classObj =
|
|
at::guts::invoke(func, std::forward<ParameterTypes>(arg)...);
|
|
auto object = self.ivalue.toObject();
|
|
object->setSlot(0, c10::IValue::make_capsule(classObj));
|
|
};
|
|
defineMethod("__init__", std::move(init_lambda_wrapper), std::move(doc_string));
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// This is the normal method registration API. `name` is the name that
|
|
/// the method will be made accessible by in Python and TorchScript.
|
|
/// `f` is a callable object that defines the method. Typically `f`
|
|
/// will either be a pointer to a method on `CurClass`, or a lambda
|
|
/// expression that takes a `c10::intrusive_ptr<CurClass>` as the first
|
|
/// argument (emulating a `this` argument in a C++ method.)
|
|
///
|
|
/// Examples:
|
|
///
|
|
/// // Exposes method `foo` on C++ class `Foo` as `call_foo()` in
|
|
/// // Python and TorchScript
|
|
/// .def("call_foo", &Foo::foo)
|
|
///
|
|
/// // Exposes the given lambda expression as method `call_lambda()`
|
|
/// // in Python and TorchScript.
|
|
/// .def("call_lambda", [](const c10::intrusive_ptr<Foo>& self) {
|
|
/// // do something
|
|
/// })
|
|
template <typename Func>
|
|
class_& def(std::string name, Func f, std::string doc_string = "") {
|
|
auto wrapped_f = detail::wrap_func<CurClass, Func>(std::move(f));
|
|
defineMethod(std::move(name), std::move(wrapped_f), std::move(doc_string));
|
|
return *this;
|
|
}
|
|
|
|
/// Method registration API for static methods.
|
|
template <typename Func>
|
|
class_& def_static(std::string name, Func func, std::string doc_string = "") {
|
|
auto qualMethodName = qualClassName + "." + name;
|
|
auto schema =
|
|
c10::inferFunctionSchemaSingleReturn<Func>(std::move(name), "");
|
|
|
|
auto wrapped_func =
|
|
[func = std::move(func)](jit::Stack& stack) mutable -> void {
|
|
using RetType =
|
|
typename c10::guts::infer_function_traits_t<Func>::return_type;
|
|
detail::BoxedProxy<RetType, Func>()(stack, func);
|
|
};
|
|
auto method = std::make_unique<jit::BuiltinOpFunction>(
|
|
qualMethodName,
|
|
std::move(schema),
|
|
std::move(wrapped_func),
|
|
std::move(doc_string));
|
|
|
|
classTypePtr->addStaticMethod(method.get());
|
|
registerCustomClassMethod(std::move(method));
|
|
return *this;
|
|
}
|
|
|
|
/// This is an unsafe method registration API added for adding custom JIT backend support via custom
|
|
/// C++ classes. It is not for general purpose use.
|
|
class_& _def_unboxed(std::string name, std::function<void(jit::Stack&)> func, c10::FunctionSchema schema, std::string doc_string = "") {
|
|
auto qualMethodName = qualClassName + "." + name;
|
|
auto method = std::make_unique<jit::BuiltinOpFunction>(
|
|
qualMethodName, std::move(schema), std::move(func), std::move(doc_string));
|
|
classTypePtr->addMethod(method.get());
|
|
registerCustomClassMethod(std::move(method));
|
|
return *this;
|
|
}
|
|
|
|
/// def_pickle() is used to define exactly what state gets serialized
|
|
/// or deserialized for a given instance of a custom C++ class in
|
|
/// Python or TorchScript. This protocol is equivalent to the Pickle
|
|
/// concept of `__getstate__` and `__setstate__` from Python
|
|
/// (https://docs.python.org/2/library/pickle.html#object.__getstate__)
|
|
///
|
|
/// Currently, both the `get_state` and `set_state` callables must be
|
|
/// C++ lambda expressions. They should have the following signatures,
|
|
/// where `CurClass` is the class you're registering and `T1` is some object
|
|
/// that encapsulates the state of the object.
|
|
///
|
|
/// __getstate__(intrusive_ptr<CurClass>) -> T1
|
|
/// __setstate__(T2) -> intrusive_ptr<CurClass>
|
|
///
|
|
/// `T1` must be an object that is convertable to IValue by the same rules
|
|
/// for custom op/method registration.
|
|
///
|
|
/// For the common case, T1 == T2. T1 can also be a subtype of T2. An
|
|
/// example where it makes sense for T1 and T2 to differ is if __setstate__
|
|
/// handles legacy formats in a backwards compatible way.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// .def_pickle(
|
|
/// // __getstate__
|
|
/// [](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
|
|
/// return self->stack_;
|
|
/// },
|
|
/// [](std::vector<std::string> state) { // __setstate__
|
|
/// return c10::make_intrusive<MyStackClass<std::string>>(
|
|
/// std::vector<std::string>{"i", "was", "deserialized"});
|
|
/// })
|
|
template <typename GetStateFn, typename SetStateFn>
|
|
class_& def_pickle(GetStateFn&& get_state, SetStateFn&& set_state) {
|
|
static_assert(
|
|
c10::guts::is_stateless_lambda<std::decay_t<GetStateFn>>::value &&
|
|
c10::guts::is_stateless_lambda<std::decay_t<SetStateFn>>::value,
|
|
"def_pickle() currently only supports lambdas as "
|
|
"__getstate__ and __setstate__ arguments.");
|
|
def("__getstate__", std::forward<GetStateFn>(get_state));
|
|
|
|
// __setstate__ needs to be registered with some custom handling:
|
|
// We need to wrap the invocation of of the user-provided function
|
|
// such that we take the return value (i.e. c10::intrusive_ptr<CurrClass>)
|
|
// and assign it to the `capsule` attribute.
|
|
using SetStateTraits =
|
|
c10::guts::infer_function_traits_t<std::decay_t<SetStateFn>>;
|
|
using SetStateArg = typename c10::guts::typelist::head_t<
|
|
typename SetStateTraits::parameter_types>;
|
|
auto setstate_wrapper = [set_state = std::move(set_state)](
|
|
c10::tagged_capsule<CurClass> self,
|
|
SetStateArg&& arg) {
|
|
c10::intrusive_ptr<CurClass> classObj =
|
|
at::guts::invoke(set_state, std::forward<SetStateArg>(arg));
|
|
auto object = self.ivalue.toObject();
|
|
object->setSlot(0, c10::IValue::make_capsule(classObj));
|
|
};
|
|
defineMethod(
|
|
"__setstate__",
|
|
detail::wrap_func<CurClass, decltype(setstate_wrapper)>(
|
|
std::move(setstate_wrapper)));
|
|
|
|
// type validation
|
|
auto getstate_schema = classTypePtr->getMethod("__getstate__").getSchema();
|
|
auto format_getstate_schema = [&getstate_schema]() {
|
|
std::stringstream ss;
|
|
ss << getstate_schema;
|
|
return ss.str();
|
|
};
|
|
TORCH_CHECK(
|
|
getstate_schema.arguments().size() == 1,
|
|
"__getstate__ should take exactly one argument: self. Got: ",
|
|
format_getstate_schema());
|
|
auto first_arg_type = getstate_schema.arguments().at(0).type();
|
|
TORCH_CHECK(
|
|
*first_arg_type == *classTypePtr,
|
|
"self argument of __getstate__ must be the custom class type. Got ",
|
|
first_arg_type->repr_str());
|
|
TORCH_CHECK(
|
|
getstate_schema.returns().size() == 1,
|
|
"__getstate__ should return exactly one value for serialization. Got: ",
|
|
format_getstate_schema());
|
|
|
|
auto ser_type = getstate_schema.returns().at(0).type();
|
|
auto setstate_schema = classTypePtr->getMethod("__setstate__").getSchema();
|
|
auto arg_type = setstate_schema.arguments().at(1).type();
|
|
TORCH_CHECK(
|
|
ser_type->isSubtypeOf(arg_type),
|
|
"__getstate__'s return type should be a subtype of "
|
|
"input argument of __setstate__. Got ",
|
|
ser_type->repr_str(),
|
|
" but expected ",
|
|
arg_type->repr_str());
|
|
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
template <typename Func>
|
|
void defineMethod(std::string name, Func func, std::string doc_string = "") {
|
|
auto qualMethodName = qualClassName + "." + name;
|
|
auto schema = c10::inferFunctionSchemaSingleReturn<Func>(std::move(name), "");
|
|
|
|
auto wrapped_func = [func = std::move(func)](jit::Stack& stack) mutable -> void {
|
|
// TODO: we need to figure out how to profile calls to custom functions
|
|
// like this! Currently can't do it because the profiler stuff is in
|
|
// libtorch and not ATen
|
|
using RetType =
|
|
typename c10::guts::infer_function_traits_t<Func>::return_type;
|
|
detail::BoxedProxy<RetType, Func>()(stack, func);
|
|
};
|
|
auto method = std::make_unique<jit::BuiltinOpFunction>(
|
|
qualMethodName, std::move(schema), std::move(wrapped_func), std::move(doc_string));
|
|
|
|
// Register the method here to keep the Method alive.
|
|
// ClassTypes do not hold ownership of their methods (normally it
|
|
// those are held by the CompilationUnit), so we need a proxy for
|
|
// that behavior here.
|
|
classTypePtr->addMethod(method.get());
|
|
registerCustomClassMethod(std::move(method));
|
|
}
|
|
|
|
std::string qualClassName;
|
|
at::ClassTypePtr classTypePtr;
|
|
};
|
|
|
|
/// make_custom_class() is a convenient way to create an instance of a registered
|
|
/// custom class and wrap it in an IValue, for example when you want to pass the
|
|
/// object to TorchScript. Its syntax is equivalent to APIs like `std::make_shared<>`
|
|
/// or `c10::make_intrusive<>`.
|
|
///
|
|
/// For example, if you have a custom C++ class that can be constructed from an `int`
|
|
/// and `std::string`, you might use this API like so:
|
|
///
|
|
/// IValue custom_class_iv = torch::make_custom_class<MyClass>(3, "foobarbaz");
|
|
template <typename CurClass, typename... CtorArgs>
|
|
c10::IValue make_custom_class(CtorArgs&&... args) {
|
|
auto userClassInstance = c10::make_intrusive<CurClass>(std::forward<CtorArgs>(args)...);
|
|
return c10::IValue(std::move(userClassInstance));
|
|
}
|
|
|
|
// jit namespace for backward-compatibility
|
|
// We previously defined everything in torch::jit but moved it out to
|
|
// better reflect that these features are not limited only to TorchScript
|
|
namespace jit {
|
|
|
|
using ::torch::getCustomClass;
|
|
using ::torch::isCustomClass;
|
|
using ::torch::init;
|
|
using ::torch::class_;
|
|
|
|
} // namespace jit
|
|
|
|
template <class CurClass>
|
|
inline class_<CurClass> Library::class_(const std::string& className) {
|
|
TORCH_CHECK(kind_ == DEF || kind_ == FRAGMENT,
|
|
"class_(\"", className, "\"): Cannot define a class inside of a TORCH_LIBRARY_IMPL block. "
|
|
"All class_()s should be placed in the (unique) TORCH_LIBRARY block for their namespace. "
|
|
"(Error occurred at ", file_, ":", line_, ")");
|
|
TORCH_INTERNAL_ASSERT(ns_.has_value(), file_, ":", line_);
|
|
return torch::class_<CurClass>(*ns_, className);
|
|
}
|
|
|
|
}
|