Files
pytorch/torch/csrc/jit/script/init.cpp
Michael Suo 73c166a5ed add resolveType to Resolver (#19237)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19237
ghimport-source-id: 70777ec37155be37efef1b743d564752e4dff9de

Differential Revision: D14928289

Reviewed By: zdevito

Pulled By: suo

fbshipit-source-id: 46827da9ace16730669fc654bf781d83172d18b1
2019-04-19 13:02:02 -07:00

1229 lines
44 KiB
C++

#include <torch/csrc/jit/script/init.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/jit/import.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/module.h>
#include <torch/csrc/jit/script/schema_matching.h>
#include <torch/csrc/jit/script/sugared_value.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <torch/csrc/jit/constants.h>
#include <torch/csrc/jit/graph_executor.h>
#include <torch/csrc/jit/hooks_for_testing.h>
#include <torch/csrc/jit/import_source.h>
#include <torch/csrc/jit/irparser.h>
#include <torch/csrc/jit/passes/python_print.h>
#include <torch/csrc/jit/pybind_utils.h>
#include <torch/csrc/jit/python_tracer.h>
#include <torch/csrc/jit/script/logging.h>
#include <torch/csrc/jit/script/parser.h>
#include <torch/csrc/jit/tracer.h>
#include <torch/csrc/api/include/torch/ordered_dict.h>
#include <ATen/ATen.h>
#include <ATen/core/function_schema.h>
#include <pybind11/functional.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
#include <chrono>
#include <cstddef>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
PYBIND11_MAKE_OPAQUE(torch::jit::script::ExtraFilesMap);
namespace torch {
namespace jit {
namespace script {
using ::c10::Argument;
using ::c10::FunctionSchema;
using ResolutionCallback = std::function<py::function(std::string)>;
using FunctionDefaults = std::unordered_map<std::string, py::object>;
static std::string typeString(py::handle h) {
return py::str(h.get_type().attr("__name__"));
}
inline std::shared_ptr<SugaredValue> toSimple(Value* v) {
return std::make_shared<SimpleValue>(v);
}
// NB: This should be the single entry-point for instantiating a SugaredValue
// from a Python object. If you are adding support for converting a new Python
// type, *add it in this function's implementation*.
std::shared_ptr<SugaredValue> toSugaredValue(
py::object obj,
Function& m,
SourceRange loc,
bool is_constant = false);
struct VISIBILITY_HIDDEN PythonValue : public SugaredValue {
PythonValue(py::object self) : self(std::move(self)) {}
FunctionSchema getSchema(const size_t n_args, const size_t n_binders) {
auto annotations = py::module::import("torch.jit.annotations");
auto signature = annotations.attr("get_signature")(self);
std::vector<Argument> args, rets;
// We may mutate this if we can determine the number of args from Python
// introspection.
size_t actual_n_args = n_args;
if (!signature.is_none()) {
std::vector<TypePtr> arg_types;
TypePtr ret_type;
std::tie(arg_types, ret_type) =
py::cast<std::pair<std::vector<TypePtr>, TypePtr>>(signature);
args.reserve(arg_types.size());
size_t idx = 0; // Fake argument names by putting in the index
for (auto& arg_type : arg_types) {
args.push_back(Argument(
std::to_string(idx++), std::move(arg_type), {}, {}, false));
}
rets.push_back(Argument("0", std::move(ret_type), {}, {}, false));
} else {
// Create a default signature using what information we have
// First see if we can introspect the number of function parameters
// irrespective of the presence of explicit type annotations
auto num_params = annotations.attr("get_num_params")(self);
if (!num_params.is_none()) {
// Return a signature with the correct number of params according to the
// Python function. The error handling in call() will catch any mismatch
// later.
actual_n_args = py::cast<size_t>(num_params);
}
// Construct the default signature: all arguments and returns will be
// DynamicType
args.reserve(actual_n_args);
for (size_t i = 0; i < actual_n_args; ++i) {
args.push_back(
Argument(std::to_string(i), TensorType::get(), {}, {}, false));
}
TypePtr ret_type = TensorType::get();
if (n_binders == 0) {
ret_type = NoneType::get();
} else if (n_binders > 1) {
std::vector<TypePtr> tuple_values(n_binders, ret_type);
ret_type = TupleType::create(std::move(tuple_values));
}
rets.push_back(Argument("0", ret_type, {}, {}, false));
}
return FunctionSchema("", "", std::move(args), std::move(rets));
}
// call it like a function, e.g. `outputs = this(inputs)`
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& m,
at::ArrayRef<NamedValue> inputs_,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
auto inputs = toValues(*m.graph(), inputs_);
auto schema = getSchema(inputs.size(), n_binders);
std::stringstream failure_messages;
c10::optional<MatchedSchema> matched_schema = tryMatchSchema(
schema,
loc,
*m.graph(),
c10::nullopt,
inputs_,
attributes,
failure_messages,
/*conv_tensor_to_num*/ true);
if (!matched_schema)
throw ErrorReport(loc) << failure_messages.str();
// Release the function object so we can wrap it in a PythonOp
py::object func = self;
std::string cconv(inputs.size(), 'd');
Node* new_node = m.graph()->insertNode(m.graph()->createPythonOp(
THPObjectPtr(func.release().ptr()), cconv, {}));
// Mark if function is ignored on export
if (py::cast<bool>(py::module::import("torch.jit")
.attr("_try_get_ignored_op")(self))) {
auto python_op = static_cast<PythonOp*>(new_node);
python_op->ignore_on_export = true;
}
new_node->setSourceLocation(std::make_shared<SourceRange>(loc));
for (auto& i : matched_schema->inputs)
new_node->addInput(i);
Value* output =
new_node->addOutput()->setType(matched_schema->return_types.at(0));
return std::make_shared<SimpleValue>(output);
}
std::string kind() const override {
std::stringstream ss;
ss << "python value of type '" << typeString(self) << "'";
return ss.str();
}
void checkForAddToConstantsError(std::stringstream& ss) {
auto nn = py::module::import("torch.nn");
if (py::isinstance(self, nn.attr("ModuleList")) ||
py::isinstance(self, nn.attr("Sequential"))) {
ss << ". Did you forget to add it to __constants__? ";
}
}
std::vector<std::shared_ptr<SugaredValue>> asTuple(
const SourceRange& loc,
Function& m,
const c10::optional<size_t>& size_hint = {}) override {
const std::string type_str = typeString(self);
std::stringstream ss;
ss << kind() << " cannot be used as a tuple";
checkForAddToConstantsError(ss);
throw ErrorReport(loc) << ss.str();
}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override {
const std::string type_str = typeString(self);
std::stringstream ss;
ss << "attribute lookup is not defined on " << kind();
checkForAddToConstantsError(ss);
throw ErrorReport(loc) << ss.str();
}
protected:
py::object getattr(const SourceRange& loc, const std::string& name) {
try {
return py::getattr(self, name.c_str());
} catch (py::error_already_set& e) {
throw ErrorReport(loc) << "object has no attribute " << name;
}
}
py::object self;
};
struct VISIBILITY_HIDDEN PythonModuleValue : public PythonValue {
explicit PythonModuleValue(py::object mod) : PythonValue(std::move(mod)) {}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override {
py::object member = getattr(loc, field);
// note: is_constant = true because we consider that global properties
// on modules like math.pi or torch.float to be constants
// eventhough it is possible, though rare, for someone to mutate them
return toSugaredValue(member, m, loc, /*is_constant=*/true);
}
};
struct VISIBILITY_HIDDEN ConstantPythonTupleValue : public PythonValue {
explicit ConstantPythonTupleValue(py::object tup)
: PythonValue(std::move(tup)) {}
std::vector<std::shared_ptr<SugaredValue>> asTuple(
const SourceRange& loc,
Function& m,
const c10::optional<size_t>& size_hint = {}) override {
py::tuple tup = self;
std::vector<std::shared_ptr<SugaredValue>> result;
result.reserve(tup.size());
for (py::handle t : tup) {
py::object obj = py::reinterpret_borrow<py::object>(t);
result.push_back(toSugaredValue(obj, m, loc, true));
}
return result;
}
Value* asValue(const SourceRange& loc, Function& m) override {
std::vector<Value*> values;
for (const auto& sugared_item : asTuple(loc, m)) {
values.push_back(sugared_item->asValue(loc, m));
}
auto node = m.graph()->createTuple(values);
return m.graph()->insertNode(node)->output();
}
};
// Represents all the parameters of a module as a List[Tensor]
struct VISIBILITY_HIDDEN ConstantParameterList : public SugaredValue {
ConstantParameterList(Value* the_list) : the_list_(the_list) {}
std::string kind() const override {
return "constant parameter list";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& caller,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
return toSimple(the_list_);
}
private:
Value* the_list_;
};
struct VISIBILITY_HIDDEN OverloadedFunctionValue : public SugaredValue {
OverloadedFunctionValue(Value* module, std::vector<std::string> method_names)
: module_(module), method_names_(std::move(method_names)) {}
std::string kind() const override {
return "overloaded function";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& caller,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
std::stringstream err;
std::vector<NamedValue> new_inputs = inputs.vec();
new_inputs.insert(new_inputs.begin(), module_);
for (const std::string& method_name : method_names_) {
auto cls = module_->type()->expect<ClassType>();
Function* fn = cls->getMethod(method_name);
auto match = tryMatchSchema(
fn->getSchema(),
loc,
*caller.graph().get(),
c10::nullopt,
new_inputs,
attributes,
err,
true);
if (match) {
return MethodValue(module_, *fn)
.call(loc, caller, inputs, attributes, n_binders);
}
}
throw ErrorReport(loc) << "Could not find any matching overloads\n"
<< err.str();
}
private:
Value* module_;
std::vector<std::string> method_names_;
};
// defines how modules/methods behave inside the script subset.
// for now this does not have any interaction with python.
// in the future, we will add the ability to resolve `self.foo` to python
// {functions, modules, contants} so this SugaredValue is defined here
// anticipating we will eventually need to replace Module with a py::object
// holding the actual nn.Module class.
struct ModuleValue : public SugaredValue {
ModuleValue(Value* self, std::shared_ptr<Module> module)
: self_(self), module_(std::move(module)) {}
std::string kind() const override {
return "module";
}
// select an attribute on it, e.g. `this.field`
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override {
// workaround to make self.training work
// it adds a buffer 'training' to the model if one doesn't exist
// and then loads that parameter, casting it to bool
if (field == "training") {
Slot* v = module_->find_buffer(field);
if (!v) {
py::object py_module = py::cast(module_);
bool training = py::cast<bool>(py::getattr(py_module, "training"));
auto t =
autograd::make_variable(at::full({}, training ? 1 : 0, at::kLong));
module_->register_buffer("training", std::move(t));
v = module_->find_buffer(field);
}
Value* the_tensor = m.graph()->insertGetAttr(self_, "training");
Value* the_bool = m.graph()->insert(prim::Bool, {the_tensor});
return std::make_shared<SimpleValue>(the_bool);
}
if (std::shared_ptr<Module> v = module_->find_module(field)) {
return std::make_shared<ModuleValue>(
m.graph()->insertGetAttr(self_, field), v);
} else if (auto kind = module_->kind_of(field)) {
// methods, parameters, attributes, and buffers are all first class
return SimpleValue(self_).attr(loc, m, field);
}
// This can also be a call to a non-script module, or a plain
// python method. If so return this as a python value.
py::object py_module = py::cast(module_);
py::object overloads =
py_module.attr("_overloads").attr("get")(field, py::none());
if (!overloads.is_none()) {
return std::make_shared<OverloadedFunctionValue>(
self_, py::cast<std::vector<std::string>>(overloads));
}
if (py::object attr = py::getattr(py_module, field.c_str(), py::none())) {
if (py::isinstance<py::function>(attr) &&
py::hasattr(attr, "_parameter_names_fn")) {
// Fetch the names of the parameters in the list so they're in the
// right order
auto fn_self = py::getattr(attr, "__self__");
auto param_names = py::getattr(attr, "_parameter_names_fn")(fn_self);
Graph& g = *m.graph();
// Add all module parameters as inputs to the graph
std::vector<Value*> params;
for (auto name : param_names) {
params.emplace_back(g.insertGetAttr(self_, py::str(name)));
}
auto list = g.insertNode(g.createTuple(params))->output();
return std::make_shared<ConstantParameterList>(list);
}
if (py::isinstance<py::function>(attr) ||
py::isinstance(attr, py::module::import("torch.nn").attr("Module")) ||
py_module.attr("_constants_set").contains(field.c_str())) {
return toSugaredValue(attr, m, loc, true);
} else {
std::string hint = "did you forget to add it __constants__?";
if (py::isinstance(attr, py::module::import("torch").attr("Tensor"))) {
hint = "Tensors must be added to a module as a buffer or parameter";
}
throw ErrorReport(loc)
<< "attribute '" << field << "' of type '" << typeString(attr)
<< "' is not usable in a script method (" << hint << ")";
}
}
throw ErrorReport(loc) << "module has no attribute '" << field << "'";
}
// call module.forward
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& caller,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
return attr(loc, caller, "forward")
->call(loc, caller, inputs, attributes, n_binders);
}
std::vector<std::shared_ptr<SugaredValue>> asTuple(
const SourceRange& loc,
Function& m,
const c10::optional<size_t>& size_hint = {}) override {
py::object py_module = py::cast(module_);
if (!py::isinstance(
py_module,
py::module::import("torch.jit").attr("_ConstModuleList")))
return SugaredValue::asTuple(loc, m, size_hint);
std::vector<std::shared_ptr<SugaredValue>> result;
for (py::handle py_submodule : py_module) {
py::object obj = py::reinterpret_borrow<py::object>(py_submodule);
if (py::isinstance<Module>(obj)) {
auto sub_module = py::cast<std::shared_ptr<Module>>(obj);
Value* module_v = m.graph()->insertGetAttr(self_, sub_module->name());
result.emplace_back(
std::make_shared<ModuleValue>(module_v, sub_module));
} else {
result.push_back(toSugaredValue(
obj,
m,
loc,
/*is_constant =*/false));
}
}
return result;
}
private:
Value* self_;
std::shared_ptr<Module> module_;
};
struct VISIBILITY_HIDDEN BooleanDispatchValue : public SugaredValue {
BooleanDispatchValue(py::dict dispatched_fn)
: dispatched_fn_(std::move(dispatched_fn)) {}
std::string kind() const override {
return "boolean dispatch";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& caller,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
c10::optional<bool> result;
Graph& graph = *(caller.graph());
auto index = py::cast<size_t>(dispatched_fn_["index"]);
auto arg_name = py::str(dispatched_fn_["arg_name"]);
if (index < inputs.size()) {
// Dispatch flag is in arg list
result = constant_as<bool>(inputs.at(index).value(graph));
} else if (auto i = findInputWithName(arg_name, attributes)) {
// Dispatch flag is in kwargs
result = constant_as<bool>(attributes[*i].value(graph));
} else {
// Didn't find dispatch flag, so use default value
result = py::cast<bool>(dispatched_fn_["default"]);
}
if (!result) {
throw ErrorReport(loc) << "value for boolean dispatch was not constant";
}
std::shared_ptr<SugaredValue> value;
if (*result) {
value = toSugaredValue(dispatched_fn_["if_true"], caller, loc);
} else {
value = toSugaredValue(dispatched_fn_["if_false"], caller, loc);
}
return value->call(loc, caller, inputs, attributes, n_binders);
}
private:
py::dict dispatched_fn_;
};
std::shared_ptr<MethodValue> moduleToMethod(
const std::shared_ptr<Module>& mod) {
// this path only supports calling raw script functions
// but because they are not distinguished from models, we have to check
// that they are function-like here. They must not have state, and they
// must have a forward method. When we expose functions to python
// this will be replaced with a direct py::isinstance<Function> call.
if (mod->get_parameters().size() != 0) {
throw ErrorReport()
<< "Attempted to inline a Module with parameters. "
"Stateful modules to be inlined must be submodules of the callee.";
}
Method* forward = mod->find_method("forward");
if (!forward) {
throw ErrorReport() << " expected this module to have a forward function.";
}
return std::make_shared<MethodValue>(at::nullopt, forward->function());
}
std::shared_ptr<SugaredValue> toSugaredValue(
py::object obj,
Function& m,
SourceRange loc,
bool is_constant) {
// directly create SimpleValues when possible, because they are first-class
// and can be re-assigned. Otherwise, this would be invalid:
// f = python_constant
// while ...
// f = f + 1
auto& g = *m.graph();
if (is_constant) {
if (py::isinstance<py::bool_>(obj)) {
return toSimple(g.insertConstant(py::cast<bool>(obj), nullptr, loc));
} else if (py::isinstance<py::int_>(obj)) {
return toSimple(g.insertConstant(py::cast<int64_t>(obj), nullptr, loc));
} else if (py::isinstance<py::float_>(obj)) {
return toSimple(g.insertConstant(py::cast<double>(obj), nullptr, loc));
} else if (py::isinstance<py::str>(obj)) {
return toSimple(
g.insertConstant(py::cast<std::string>(obj), nullptr, loc));
} else if (obj.is(py::none())) {
return toSimple(g.insertConstant(IValue(), nullptr, loc));
} else if (THPDevice_Check(obj.ptr())) {
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
return toSimple(g.insertConstant(device->device));
} else if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
const auto v = static_cast<int64_t>(layout->layout);
return toSimple(g.insertConstant(v, nullptr, loc));
} else if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
const auto v = static_cast<int64_t>(dtype->scalar_type);
return toSimple(g.insertConstant(v, nullptr, loc));
} else if (py::isinstance<py::tuple>(obj)) {
return std::make_shared<ConstantPythonTupleValue>(obj);
}
}
auto weak_obj =
py::module::import("torch.jit").attr("_try_get_weak_module")(obj);
if (!weak_obj.is_none()) {
obj = weak_obj;
}
if (py::isinstance<Module>(obj)) {
// In the case that this Python object is not a submodule, inline *ONLY
// PURE* ScriptModules. This allows us to call arbitrary @script functions
// within a scripting context while still enforcing that parameters from
// stateful submodules are properly accounted for.
auto mod = py::cast<std::shared_ptr<Module>>(obj);
return moduleToMethod(mod);
} else if (py::isinstance<py::module>(obj)) {
return std::make_shared<PythonModuleValue>(obj);
} else if (obj.ptr() == py::module::import("torch.jit").attr("_fork").ptr()) {
return std::make_shared<ForkValue>();
} else if (
obj.ptr() == py::module::import("torch.jit").attr("annotate").ptr()) {
return std::make_shared<AnnotateValue>();
}
py::object builtin_name =
py::module::import("torch.jit").attr("_find_builtin")(obj);
if (!builtin_name.is_none()) {
return std::make_shared<BuiltinFunction>(
Symbol::fromQualString(py::str(builtin_name)), c10::nullopt);
}
if (py::isinstance<py::function>(obj)) {
auto compiled_fn =
py::module::import("torch.jit").attr("_try_compile_weak_script")(obj);
if (!compiled_fn.is(py::none())) {
auto mod = py::cast<std::shared_ptr<Module>>(compiled_fn);
return moduleToMethod(mod);
}
}
py::object dispatched_fn =
py::module::import("torch.jit").attr("_try_get_dispatched_fn")(obj);
if (!dispatched_fn.is_none()) {
return std::make_shared<BooleanDispatchValue>(std::move(dispatched_fn));
}
return std::make_shared<PythonValue>(obj);
}
py::object unpackVariableTensorList(std::vector<at::Tensor> outputs) {
// if we don't tell pybind these are variables it chokes on the
// conversion.
// TODO: fix conversions to be sane and make sure this works.
if (outputs.size() == 0) {
return py::none();
} else if (outputs.size() == 1) {
return py::cast(autograd::as_variable_ref(outputs[0]));
} else {
py::tuple tuple(outputs.size());
for (size_t i = 0; i < outputs.size(); i++) {
tuple[i] = py::cast(autograd::as_variable_ref(outputs[i]));
}
return std::move(tuple);
}
}
static void gatherParametersAndBuffers(
std::vector<Slot>& values,
const Module& m) {
for (auto& param : m.get_parameters()) {
values.push_back(param);
}
for (auto& param : m.get_attributes()) {
if (param.type()->isSubtypeOf(TensorType::get())) {
values.push_back(param);
}
}
for (const auto& sub : m.get_modules()) {
gatherParametersAndBuffers(values, *sub);
}
}
namespace {
// A resolver that will inspect the outer Python scope to find `name`.
struct PythonResolver : public Resolver {
explicit PythonResolver(ResolutionCallback rcb) : rcb_(std::move(rcb)) {}
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
Function& m,
const SourceRange& loc) const override {
AutoGIL ag;
py::object obj = rcb_(name);
if (obj.is(py::none())) {
return nullptr;
}
return toSugaredValue(obj, m, loc);
}
TypePtr resolveType(const std::string& name) const override {
return ClassType::get(name);
}
private:
ResolutionCallback rcb_;
};
std::shared_ptr<PythonResolver> pythonResolver(ResolutionCallback rcb) {
return std::make_shared<PythonResolver>(rcb);
}
} // namespace
FunctionSchema getSchemaWithNameAndDefaults(
const SourceRange& range,
const FunctionSchema& schema,
const at::optional<std::string>& new_name,
const FunctionDefaults& default_args) {
std::vector<Argument> new_args;
for (auto& arg : schema.arguments()) {
auto it = default_args.find(arg.name());
if (it != default_args.end()) {
try {
IValue value;
auto n = arg.N();
auto list_type = arg.type()->cast<ListType>();
if (n && *n > 0 && list_type) {
// BroadcastingList, allow default values T for arg types List[T]
value = toIValue(it->second, list_type->getElementType());
} else {
value = toIValue(it->second, arg.type());
}
new_args.emplace_back(
arg.name(), arg.type(), arg.N(), value, arg.kwarg_only());
} catch (py::cast_error& e) {
throw ErrorReport(range)
<< "Expected a default value of type " << arg.type()->str()
<< " on parameter \"" << arg.name() << "\"";
}
} else {
new_args.push_back(arg);
}
}
return FunctionSchema(
new_name.value_or(schema.name()),
schema.overload_name(),
new_args,
schema.returns(),
schema.is_vararg(),
schema.is_varret());
}
static Self moduleSelf(const std::shared_ptr<Module>& m) {
return [m](Value* v) {
v->setType(m->module_object()->type());
return std::make_shared<ModuleValue>(v, m);
};
}
static void setInputTensorTypes(Graph& g, const Stack& stack) {
AT_ASSERT(stack.size() == g.inputs().size());
for (size_t i = 0; i < stack.size(); ++i) {
g.inputs().at(i)->setType(
DimensionedTensorType::create(stack.at(i).toTensor()));
}
}
static std::shared_ptr<Graph> _propagate_shapes(
Graph& graph,
std::vector<at::Tensor> inputs,
bool with_grad = false) {
Stack stack(inputs.begin(), inputs.end());
auto retval = graph.copy();
setInputTensorTypes(*retval, stack);
PropagateInputShapes(retval);
return retval;
}
static std::shared_ptr<Graph> _propagate_and_assign_input_and_output_shapes(
Graph& graph,
std::vector<at::Tensor> inputs,
std::vector<at::Tensor> outputs,
bool with_grad = false,
bool propagate = true) {
auto retval = graph.copy();
if (propagate) {
setInputTensorTypes(*retval, fmap<IValue>(inputs));
PropagateInputShapes(retval);
}
AT_ASSERT(retval->inputs().size() == inputs.size());
for (size_t i = 0; i < retval->inputs().size(); ++i) {
auto scalar_type = inputs[i].scalar_type();
auto sizes = inputs[i].sizes();
auto type =
torch::jit::CompleteTensorType::create(scalar_type, at::kCPU, sizes);
retval->inputs()[i]->setType(type);
}
at::ArrayRef<Value*> output_values = retval->outputs();
// patch this to still work if we are returning a tuple of multiple values
if (output_values.at(0)->type()->kind() == TupleType::Kind) {
AT_ASSERT(output_values.at(0)->node()->kind() == prim::TupleConstruct);
output_values = output_values.at(0)->node()->inputs();
}
AT_ASSERT(output_values.size() == outputs.size());
for (size_t i = 0; i < retval->outputs().size(); ++i) {
auto scalar_type = outputs[i].scalar_type();
auto sizes = outputs[i].sizes();
auto type =
torch::jit::CompleteTensorType::create(scalar_type, at::kCPU, sizes);
output_values[i]->setType(type);
}
return retval;
}
void initJitScriptBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
// STL containers are not mutable by default and hence we need to bind as
// follows.
py::bind_map<ExtraFilesMap>(m, "ExtraFilesMap");
// torch.jit.ScriptModule is a subclass of this C++ object.
// Methods here are prefixed with _ since they should not be
// public.
py::class_<Module, std::shared_ptr<Module>>(m, "ScriptModule")
.def(py::init<>())
.def(
"save",
[](std::shared_ptr<Module> m,
const std::string& filename,
const ExtraFilesMap& _extra_files = ExtraFilesMap()) {
m->save(filename, _extra_files);
},
py::arg("filename"),
py::arg("_extra_files") = ExtraFilesMap())
.def(
"save_to_buffer",
[](std::shared_ptr<Module> m,
const ExtraFilesMap& _extra_files = ExtraFilesMap()) {
std::ostringstream buf;
m->save(buf, _extra_files);
return py::bytes(buf.str());
},
py::arg("_extra_files") = ExtraFilesMap())
.def("_set_optimized", &Module::set_optimized)
.def(
"_define",
[](std::shared_ptr<Module> m,
const std::string& script,
ResolutionCallback rcb,
bool has_self) {
if (has_self) {
m->class_compilation_unit().define(
script, pythonResolver(rcb), moduleSelf(m));
} else {
m->_define_lowered(script, pythonResolver(rcb));
}
didFinishEmitModule(m);
})
.def(
"_create_methods",
[](std::shared_ptr<Module> m,
const std::vector<Def>& defs,
const std::vector<ResolutionCallback>& rcbs,
const std::vector<FunctionDefaults>& defaults) {
std::vector<ResolverPtr> resolvers;
resolvers.reserve(rcbs.size());
for (auto& callback : rcbs) {
resolvers.push_back(pythonResolver(callback));
}
m->class_compilation_unit().define(defs, resolvers, moduleSelf(m));
// Stitch in default arguments for each Def if provided
auto defaults_it = defaults.begin();
auto defs_it = defs.begin();
while (defs_it != defs.end()) {
auto& method = m->class_compilation_unit().get_function(
(*defs_it).name().name());
method.setSchema(getSchemaWithNameAndDefaults(
defs_it->range(),
method.getSchema(),
at::nullopt,
*defaults_it));
++defs_it;
++defaults_it;
}
didFinishEmitModule(m);
})
.def(
"_get_method",
[](Module& self, const std::string& name) -> const Method& {
return self.get_method(name);
},
py::return_value_policy::reference_internal)
.def("_register_parameter", &Module::register_parameter)
.def(
"_register_attribute",
[](Module& self, std::string name, TypePtr type, py::object value) {
self.register_attribute(name, type, toIValue(value, type));
})
.def("_register_module", &Module::register_module)
.def("_register_buffer", &Module::register_buffer)
.def("_set_parameter", &Module::set_parameter)
.def("_get_parameter", &Module::get_parameter)
.def("_get_buffer", &Module::get_buffer)
.def("_get_attribute", &Module::get_attribute)
.def("_get_module", &Module::get_module)
.def(
"_get_modules",
[](Module& self) -> py::tuple {
auto modules = self.get_modules();
py::tuple result(modules.size());
for (size_t i = 0; i < modules.size(); ++i) {
auto& item = modules[i];
result[i] = std::make_pair(item->name(), item);
}
return result;
})
.def(
"_get_parameters",
[](Module& self) -> py::tuple {
auto parameters = self.get_parameters();
py::tuple result(parameters.size());
for (size_t i = 0; i < parameters.size(); ++i) {
auto& p = parameters[i];
py::tuple r(2);
result[i] = std::make_tuple(
p.name(), autograd::as_variable_ref(p.value().toTensor()));
}
return result;
})
.def(
"_get_attributes",
[](Module& self) -> py::tuple {
auto attributes = self.get_attributes();
py::tuple result(attributes.size());
for (size_t i = 0; i < attributes.size(); ++i) {
auto& buffer = attributes[i];
py::tuple r(3);
IValue v = buffer.value();
result[i] = std::make_tuple(
buffer.name(), buffer.type(), toPyObject(std::move(v)));
}
return result;
})
.def(
"_has_attribute",
[](Module& self, const std::string& name) -> bool {
return self.find_attribute(name);
})
.def(
"_has_parameter",
[](Module& self, const std::string& name) -> bool {
return self.find_parameter(name);
})
.def(
"_has_buffer",
[](Module& self, const std::string& name) -> bool {
return self.find_buffer(name);
})
.def(
"_has_module",
[](Module& self, const std::string& name) {
return bool(self.find_module(name));
})
.def(
"_has_method",
[](Module& self, const std::string& name) {
return bool(self.find_method(name));
})
.def(
"_method_names",
[](Module& self) {
return fmap(
self.get_methods(), [](const std::unique_ptr<Method>& method) {
return method->name();
});
})
.def(
"_create_method_from_graph",
[](Module& self,
const std::string& name,
std::shared_ptr<Graph> graph) {
self._define_lowered(name, std::move(graph), {});
})
.def(
"_create_method_from_trace",
[](std::shared_ptr<Module> self,
const std::string& name,
py::function func,
py::tuple input_tuple,
py::function var_lookup_fn,
bool force_outplace) {
// prereq: Module's buffers and parameters are unique
// this was ensured in python before calling this function
std::vector<Slot> parameters;
gatherParametersAndBuffers(parameters, *self);
auto typed_inputs = toTypedStack(input_tuple);
if (parameters.size() > 0) {
auto inputs = typed_inputs.stack();
auto input_types = typed_inputs.types()->elements().vec();
for (const Slot& param : parameters) {
inputs.emplace_back(param.value());
input_types.push_back(incompleteInferTypeFrom(param.value()));
}
typed_inputs = TypedStack(inputs, TupleType::create(input_types));
}
auto graph = tracer::createGraphByTracing(
func,
typed_inputs,
var_lookup_fn,
force_outplace,
input_tuple.size());
self->_define_lowered(
name, std::move(graph), std::move(parameters));
didFinishEmitModule(self);
})
.def(
"get_debug_state",
[](Module& self) {
if (self.find_method("forward")) {
Method& m = self.get_method("forward");
return m.get_executor().getDebugState();
}
throw std::runtime_error(
"Attempted to call get_debug_state on a Module without a compiled forward()");
})
.def(
"forward",
[](py::args args, py::kwargs kwargs) {
// We implement this in C++ to avoid incurring the pybind11 dispatch
// overhead twice: once to call into the method lookup for "forward"
// and once to actually invoke the method.
//
// There is a thin wrapper on top of this method in the C++ version
// of ScriptModule.
// see: [pybind11 varargs]
Module& self = py::cast<Module&>(args[0]);
return invokeScriptMethodFromPython(
self.get_method("forward"),
tuple_slice(std::move(args), 1),
std::move(kwargs));
})
.def_property_readonly(
"code",
[](Module& self) {
std::ostringstream ss;
std::vector<at::Tensor> tensors;
std::vector<ClassTypePtr> classes;
PythonPrint(ss, self, tensors, classes, false);
return ss.str();
})
.def("apply", &Module::apply)
.def("_copy_into", &Module::copy_into)
.def(
"_copy_method",
[](std::shared_ptr<Module> m,
std::string name,
std::vector<std::tuple<std::shared_ptr<Module>, std::string>>
params,
std::shared_ptr<Module> orig) {
std::vector<Slot> member_inputs;
for (auto& p : params) {
Slot* np = std::get<0>(p)->find_parameter(std::get<1>(p));
if (np == nullptr) {
np = std::get<0>(p)->find_buffer(std::get<1>(p));
}
AT_ASSERT(np != nullptr);
member_inputs.push_back(*np);
}
Method* orig_method = orig->find_method(name);
m->_define_lowered(
name, orig_method->graph()->copy(), std::move(member_inputs));
});
py::class_<Method>(m, "ScriptMethod", py::dynamic_attr())
.def(
"__call__",
[](py::args args, py::kwargs kwargs) {
// see: [pybind11 varargs]
Method& method = py::cast<Method&>(args[0]);
return invokeScriptMethodFromPython(
method, tuple_slice(std::move(args), 1), std::move(kwargs));
})
.def_property_readonly("graph", &Method::graph)
.def(
"initial_ivalues",
[](Method& m) {
std::vector<at::Tensor> tensors;
for (auto& t : m.initial_ivalues()) {
tensors.push_back(t.value().toTensor());
}
return tensors;
})
.def_property_readonly("schema", &Method::getSchema)
.def_property_readonly("code", [](Method& self) {
std::ostringstream ss;
std::vector<at::Tensor> tensors;
std::vector<ClassTypePtr> classes;
PythonPrint(ss, self, tensors, classes, false);
return ss.str();
});
m.def(
"_jit_script_compile",
[](std::shared_ptr<Module> mod,
const Def& def,
ResolutionCallback rcb,
FunctionDefaults defaults) {
auto def_f = def.withName("forward");
mod->_define_lowered({def_f}, {pythonResolver(rcb)});
auto& func = mod->lowered_methods().get_function("forward");
func.setSchema(getSchemaWithNameAndDefaults(
def.range(), func.getSchema(), def.name().name(), defaults));
auto& func2 = mod->class_compilation_unit().get_function("forward");
func2.setSchema(getSchemaWithNameAndDefaults(
def.range(), func2.getSchema(), def.name().name(), defaults));
didFinishEmitModule(mod);
return mod;
});
m.def(
"_jit_script_class_compile",
[](const ClassDef& classDef, ResolutionCallback rcb) {
auto cu = std::make_shared<CompilationUnit>();
auto classType = ClassType::create(classDef.name().name(), cu);
std::vector<ResolverPtr> rcbs;
std::vector<Def> methodDefs;
for (const auto& def : classDef.defs()) {
methodDefs.push_back(def);
rcbs.push_back(pythonResolver(rcb));
}
cu->define(methodDefs, rcbs, simpleSelf(classType));
});
m.def("parse_type_comment", [](const std::string& comment) {
Parser p(comment);
return Decl(p.parseTypeComment());
});
m.def("merge_type_from_type_comment", &mergeTypesFromTypeComment);
m.def(
"import_ir_module",
[](ModuleLookup module_lookup,
const std::string& filename,
py::object map_location,
ExtraFilesMap& extra_files) {
c10::optional<at::Device> optional_device;
if (!map_location.is(py::none())) {
AT_ASSERT(THPDevice_Check(map_location.ptr()));
optional_device =
reinterpret_cast<THPDevice*>(map_location.ptr())->device;
}
import_ir_module(module_lookup, filename, optional_device, extra_files);
});
m.def(
"import_ir_module_from_buffer",
[](ModuleLookup module_lookup,
const std::string& buffer,
py::object map_location,
ExtraFilesMap& extra_files) {
std::istringstream in(buffer);
c10::optional<at::Device> optional_device;
if (!map_location.is(py::none())) {
AT_ASSERT(THPDevice_Check(map_location.ptr()));
optional_device =
reinterpret_cast<THPDevice*>(map_location.ptr())->device;
}
import_ir_module(module_lookup, in, optional_device, extra_files);
});
m.def("_jit_import_methods", import_methods);
m.def("_jit_set_emit_module_hook", setEmitModuleHook);
m.def("_jit_clear_class_registry", ClassType::clearRegistry);
m.def(
"_debug_set_autodiff_subgraph_inlining",
debugSetAutodiffSubgraphInlining);
m.def("_propagate_shapes", _propagate_shapes);
m.def(
"_propagate_and_assign_input_and_output_shapes",
_propagate_and_assign_input_and_output_shapes);
m.def("_jit_python_print", [](py::object obj) {
std::ostringstream ss;
std::vector<at::Tensor> constants;
std::vector<ClassTypePtr> classes;
if (py::isinstance<Module>(obj)) {
auto& self = py::cast<Module&>(obj);
PythonPrint(ss, self, constants, classes, true);
} else {
auto& m = py::cast<Method&>(obj);
PythonPrint(ss, m, constants, classes, true);
}
return std::make_pair(ss.str(), std::move(constants));
});
m.def(
"_last_executed_optimized_graph",
[]() { return lastExecutedOptimizedGraph(); },
"Retrieve the optimized graph that was run the last time the graph executor ran on this thread");
py::class_<testing::FileCheck>(m, "FileCheck")
.def(py::init<>())
.def("check", &testing::FileCheck::check)
.def("check_not", &testing::FileCheck::check_not)
.def("check_same", &testing::FileCheck::check_same)
.def("check_next", &testing::FileCheck::check_next)
.def("check_count", &testing::FileCheck::check_count)
.def("check_dag", &testing::FileCheck::check_dag)
.def("check_count", &testing::FileCheck::check_count)
.def(
"check_count",
[](testing::FileCheck& f,
const std::string& str,
size_t count,
bool exactly) { return f.check_count(str, count, exactly); },
"Check Count",
py::arg("str"),
py::arg("count"),
py::arg("exactly") = false)
.def(
"run",
[](testing::FileCheck& f, const std::string& str) {
return f.run(str);
})
.def(
"run", [](testing::FileCheck& f, const Graph& g) { return f.run(g); })
.def(
"run",
[](testing::FileCheck& f,
const std::string& input,
const std::string& output) { return f.run(input, output); },
"Run",
py::arg("checks_file"),
py::arg("test_file"))
.def(
"run",
[](testing::FileCheck& f, const std::string& input, const Graph& g) {
return f.run(input, g);
},
"Run",
py::arg("checks_file"),
py::arg("graph"));
m.def(
"_logging_set_logger",
[](logging::LoggerBase* logger) { return logging::setLogger(logger); },
py::return_value_policy::reference);
py::class_<logging::LoggerBase, std::shared_ptr<logging::LoggerBase>>(
m, "LoggerBase");
py::enum_<logging::LockingLogger::AggregationType>(m, "AggregationType")
.value("SUM", logging::LockingLogger::AggregationType::SUM)
.value("AVG", logging::LockingLogger::AggregationType::AVG)
.export_values();
py::class_<
logging::LockingLogger,
logging::LoggerBase,
std::shared_ptr<logging::LockingLogger>>(m, "LockingLogger")
.def(py::init<>())
.def("set_aggregation_type", &logging::LockingLogger::setAggregationType)
.def("get_counter_val", &logging::LockingLogger::getCounterValue);
py::class_<
logging::NoopLogger,
logging::LoggerBase,
std::shared_ptr<logging::NoopLogger>>(m, "NoopLogger")
.def(py::init<>());
}
} // namespace script
} // namespace jit
} // namespace torch