Files
pytorch/functorch/examples/dp_cifar10/cifar10_transforms.py
Sergii Dymchenko 727ee853b4 Apply TorchFix TOR203 fixes (#143691)
Codemodded via `torchfix . --select=TOR203 --fix`.
This is a step to unblock https://github.com/pytorch/pytorch/pull/141076
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143691
Approved by: https://github.com/malfet
2024-12-23 18:21:03 +00:00

496 lines
14 KiB
Python

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Runs CIFAR10 training with differential privacy.
"""
import argparse
import logging
import shutil
import sys
from datetime import datetime, timedelta
import numpy as np
from torchvision import models, transforms
from torchvision.datasets import CIFAR10
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
from torch.func import functional_call, grad_and_value, vmap
logging.basicConfig(
format="%(asctime)s:%(levelname)s:%(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
stream=sys.stdout,
)
logger = logging.getLogger("ddp")
logger.setLevel(level=logging.INFO)
def save_checkpoint(state, is_best, filename="checkpoint.tar"):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, "model_best.pth.tar")
def accuracy(preds, labels):
return (preds == labels).mean()
def compute_norms(sample_grads):
batch_size = sample_grads[0].shape[0]
norms = [
sample_grad.view(batch_size, -1).norm(2, dim=-1) for sample_grad in sample_grads
]
norms = torch.stack(norms, dim=0).norm(2, dim=0)
return norms, batch_size
def clip_and_accumulate_and_add_noise(
model, max_per_sample_grad_norm=1.0, noise_multiplier=1.0
):
sample_grads = tuple(param.grad_sample for param in model.parameters())
# step 0: compute the norms
sample_norms, batch_size = compute_norms(sample_grads)
# step 1: compute clipping factors
clip_factor = max_per_sample_grad_norm / (sample_norms + 1e-6)
clip_factor = clip_factor.clamp(max=1.0)
# step 2: clip
grads = tuple(
torch.einsum("i,i...", clip_factor, sample_grad) for sample_grad in sample_grads
)
# step 3: add gaussian noise
stddev = max_per_sample_grad_norm * noise_multiplier
noises = tuple(
torch.normal(0, stddev, grad_param.shape, device=grad_param.device)
for grad_param in grads
)
grads = tuple(noise + grad_param for noise, grad_param in zip(noises, grads))
# step 4: assign the new grads, delete the sample grads
for param, param_grad in zip(model.parameters(), grads):
param.grad = param_grad / batch_size
del param.grad_sample
def train(args, model, train_loader, optimizer, epoch, device):
start_time = datetime.now()
criterion = nn.CrossEntropyLoss()
losses = []
top1_acc = []
for i, (images, target) in enumerate(tqdm(train_loader)):
images = images.to(device)
target = target.to(device)
# Step 1: compute per-sample-grads
# To use vmap+grad to compute per-sample-grads, the forward pass
# must be re-formulated on a single example.
# We use the `grad` operator to compute forward+backward on a single example,
# and finally `vmap` to do forward+backward on multiple examples.
def compute_loss_and_output(weights, image, target):
images = image.unsqueeze(0)
targets = target.unsqueeze(0)
output = functional_call(model, weights, images)
loss = criterion(output, targets)
return loss, output.squeeze(0)
# `grad(f)` is a functional API that returns a function `f'` that
# computes gradients by running both the forward and backward pass.
# We want to extract some intermediate
# values from the computation (i.e. the loss and output).
#
# To extract the loss, we use the `grad_and_value` API, that returns the
# gradient of the weights w.r.t. the loss and the loss.
#
# To extract the output, we use the `has_aux=True` flag.
# `has_aux=True` assumes that `f` returns a tuple of two values,
# where the first is to be differentiated and the second "auxiliary value"
# is not to be differentiated. `f'` returns the gradient w.r.t. the loss,
# the loss, and the auxiliary value.
grads_loss_output = grad_and_value(compute_loss_and_output, has_aux=True)
weights = dict(model.named_parameters())
# detaching weights since we don't need to track gradients outside of transforms
# and this is more performant
detached_weights = {k: v.detach() for k, v in weights.items()}
sample_grads, (sample_loss, output) = vmap(grads_loss_output, (None, 0, 0))(
detached_weights, images, target
)
loss = sample_loss.mean()
for name, grad_sample in sample_grads.items():
weights[name].grad_sample = grad_sample.detach()
# Step 2: Clip the per-sample-grads, sum them to form grads, and add noise
clip_and_accumulate_and_add_noise(
model, args.max_per_sample_grad_norm, args.sigma
)
preds = np.argmax(output.detach().cpu().numpy(), axis=1)
labels = target.detach().cpu().numpy()
losses.append(loss.item())
# measure accuracy and record loss
acc1 = accuracy(preds, labels)
top1_acc.append(acc1)
# make sure we take a step after processing the last mini-batch in the
# epoch to ensure we start the next epoch with a clean state
optimizer.step()
optimizer.zero_grad()
if i % args.print_freq == 0:
print(
f"\tTrain Epoch: {epoch} \t"
f"Loss: {np.mean(losses):.6f} "
f"Acc@1: {np.mean(top1_acc):.6f} "
)
train_duration = datetime.now() - start_time
return train_duration
def test(args, model, test_loader, device):
model.eval()
criterion = nn.CrossEntropyLoss()
losses = []
top1_acc = []
with torch.no_grad():
for images, target in tqdm(test_loader):
images = images.to(device)
target = target.to(device)
output = model(images)
loss = criterion(output, target)
preds = np.argmax(output.detach().cpu().numpy(), axis=1)
labels = target.detach().cpu().numpy()
acc1 = accuracy(preds, labels)
losses.append(loss.item())
top1_acc.append(acc1)
top1_avg = np.mean(top1_acc)
print(f"\tTest set:" f"Loss: {np.mean(losses):.6f} " f"Acc@1: {top1_avg :.6f} ")
return np.mean(top1_acc)
# flake8: noqa: C901
def main():
args = parse_args()
if args.debug >= 1:
logger.setLevel(level=logging.DEBUG)
device = args.device
if args.secure_rng:
try:
import torchcsprng as prng
except ImportError as e:
msg = (
"To use secure RNG, you must install the torchcsprng package! "
"Check out the instructions here: https://github.com/pytorch/csprng#installation"
)
raise ImportError(msg) from e
generator = prng.create_random_device_generator("/dev/urandom")
else:
generator = None
normalize = [
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
train_transform = transforms.Compose(normalize)
test_transform = transforms.Compose(normalize)
train_dataset = CIFAR10(
root=args.data_root, train=True, download=True, transform=train_transform
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=int(args.sample_rate * len(train_dataset)),
generator=generator,
num_workers=args.workers,
pin_memory=True,
)
test_dataset = CIFAR10(
root=args.data_root, train=False, download=True, transform=test_transform
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.batch_size_test,
shuffle=False,
num_workers=args.workers,
)
best_acc1 = 0
model = models.__dict__[args.architecture](
pretrained=False, norm_layer=(lambda c: nn.GroupNorm(args.gn_groups, c))
)
model = model.to(device)
if args.optim == "SGD":
optimizer = optim.SGD(
model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
elif args.optim == "RMSprop":
optimizer = optim.RMSprop(model.parameters(), lr=args.lr)
elif args.optim == "Adam":
optimizer = optim.Adam(model.parameters(), lr=args.lr)
else:
raise NotImplementedError("Optimizer not recognized. Please check spelling")
# Store some logs
accuracy_per_epoch = []
time_per_epoch = []
for epoch in range(args.start_epoch, args.epochs + 1):
if args.lr_schedule == "cos":
lr = args.lr * 0.5 * (1 + np.cos(np.pi * epoch / (args.epochs + 1)))
for param_group in optimizer.param_groups:
param_group["lr"] = lr
train_duration = train(args, model, train_loader, optimizer, epoch, device)
top1_acc = test(args, model, test_loader, device)
# remember best acc@1 and save checkpoint
is_best = top1_acc > best_acc1
best_acc1 = max(top1_acc, best_acc1)
time_per_epoch.append(train_duration)
accuracy_per_epoch.append(float(top1_acc))
save_checkpoint(
{
"epoch": epoch + 1,
"arch": "Convnet",
"state_dict": model.state_dict(),
"best_acc1": best_acc1,
"optimizer": optimizer.state_dict(),
},
is_best,
filename=args.checkpoint_file + ".tar",
)
time_per_epoch_seconds = [t.total_seconds() for t in time_per_epoch]
avg_time_per_epoch = sum(time_per_epoch_seconds) / len(time_per_epoch_seconds)
metrics = {
"accuracy": best_acc1,
"accuracy_per_epoch": accuracy_per_epoch,
"avg_time_per_epoch_str": str(timedelta(seconds=int(avg_time_per_epoch))),
"time_per_epoch": time_per_epoch_seconds,
}
logger.info(
"\nNote:\n- 'total_time' includes the data loading time, training time and testing time.\n- 'time_per_epoch' measures the training time only.\n"
)
logger.info(metrics)
def parse_args():
parser = argparse.ArgumentParser(description="PyTorch CIFAR10 DP Training")
parser.add_argument(
"-j",
"--workers",
default=2,
type=int,
metavar="N",
help="number of data loading workers (default: 2)",
)
parser.add_argument(
"--epochs",
default=90,
type=int,
metavar="N",
help="number of total epochs to run",
)
parser.add_argument(
"--start-epoch",
default=1,
type=int,
metavar="N",
help="manual epoch number (useful on restarts)",
)
parser.add_argument(
"-b",
"--batch-size-test",
default=256,
type=int,
metavar="N",
help="mini-batch size for test dataset (default: 256)",
)
parser.add_argument(
"--sample-rate",
default=0.005,
type=float,
metavar="SR",
help="sample rate used for batch construction (default: 0.005)",
)
parser.add_argument(
"--lr",
"--learning-rate",
default=0.1,
type=float,
metavar="LR",
help="initial learning rate",
dest="lr",
)
parser.add_argument(
"--momentum", default=0.9, type=float, metavar="M", help="SGD momentum"
)
parser.add_argument(
"--wd",
"--weight-decay",
default=0,
type=float,
metavar="W",
help="SGD weight decay",
dest="weight_decay",
)
parser.add_argument(
"-p",
"--print-freq",
default=10,
type=int,
metavar="N",
help="print frequency (default: 10)",
)
parser.add_argument(
"--resume",
default="",
type=str,
metavar="PATH",
help="path to latest checkpoint (default: none)",
)
parser.add_argument(
"-e",
"--evaluate",
dest="evaluate",
action="store_true",
help="evaluate model on validation set",
)
parser.add_argument(
"--seed", default=None, type=int, help="seed for initializing training. "
)
parser.add_argument(
"--sigma",
type=float,
default=1.5,
metavar="S",
help="Noise multiplier (default 1.0)",
)
parser.add_argument(
"-c",
"--max-per-sample-grad_norm",
type=float,
default=10.0,
metavar="C",
help="Clip per-sample gradients to this norm (default 1.0)",
)
parser.add_argument(
"--secure-rng",
action="store_true",
default=False,
help="Enable Secure RNG to have trustworthy privacy guarantees."
"Comes at a performance cost. Opacus will emit a warning if secure rng is off,"
"indicating that for production use it's recommender to turn it on.",
)
parser.add_argument(
"--delta",
type=float,
default=1e-5,
metavar="D",
help="Target delta (default: 1e-5)",
)
parser.add_argument(
"--checkpoint-file",
type=str,
default="checkpoint",
help="path to save check points",
)
parser.add_argument(
"--data-root",
type=str,
default="../cifar10",
help="Where CIFAR10 is/will be stored",
)
parser.add_argument(
"--log-dir",
type=str,
default="/tmp/stat/tensorboard",
help="Where Tensorboard log will be stored",
)
parser.add_argument(
"--optim",
type=str,
default="SGD",
help="Optimizer to use (Adam, RMSprop, SGD)",
)
parser.add_argument(
"--lr-schedule", type=str, choices=["constant", "cos"], default="cos"
)
parser.add_argument(
"--device", type=str, default="cpu", help="Device on which to run the code."
)
parser.add_argument(
"--architecture",
type=str,
default="resnet18",
help="model from torchvision to run",
)
parser.add_argument(
"--gn-groups",
type=int,
default=8,
help="Number of groups in GroupNorm",
)
parser.add_argument(
"--clip-per-layer",
"--clip_per_layer",
action="store_true",
default=False,
help="Use static per-layer clipping with the same clipping threshold for each layer. Necessary for DDP. If `False` (default), uses flat clipping.",
)
parser.add_argument(
"--debug",
type=int,
default=0,
help="debug level (default: 0)",
)
return parser.parse_args()
if __name__ == "__main__":
main()