Files
pytorch/.github/scripts/generate_ci_workflows.py
zhouzhuojie 2abf3594d5 Fix unassigned ciflow trigger (#65354)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/65250#issuecomment-923120764

this is a limitation of github action triggers, it's hard to introduce condition before the workflow, that's why we intentionally pick the rare event ("unassigned"). The fix I think for people didn't opt-in ciflow and manually unassign, is to run all the CI (otherwise we introduce new condition on this and not worth to make things even complex).

`unassigned` event payload looks like this, just to make sure `github.event.assignee.login` is pointing to the right location.

```
  {
    "action": "unassigned",
    "assignee": {
      "avatar_url": "https://avatars.githubusercontent.com/u/658840?v=4",
      "events_url": "https://api.github.com/users/zhouzhuojie/events{/privacy}",
      "followers_url": "https://api.github.com/users/zhouzhuojie/followers",
      "following_url": "https://api.github.com/users/zhouzhuojie/following{/other_user}",
      "gists_url": "https://api.github.com/users/zhouzhuojie/gists{/gist_id}",
      "gravatar_id": "",
      "html_url": "https://github.com/zhouzhuojie",
      "id": 658840,
      "login": "zhouzhuojie",
      "node_id": "MDQ6VXNlcjY1ODg0MA==",
      "organizations_url": "https://api.github.com/users/zhouzhuojie/orgs",
      "received_events_url": "https://api.github.com/users/zhouzhuojie/received_events",
      "repos_url": "https://api.github.com/users/zhouzhuojie/repos",
      "site_admin": false,
      "starred_url": "https://api.github.com/users/zhouzhuojie/starred{/owner}{/repo}",
      "subscriptions_url": "https://api.github.com/users/zhouzhuojie/subscriptions",
      "type": "User",
      "url": "https://api.github.com/users/zhouzhuojie"
    },
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65354

Reviewed By: malfet, seemethere, janeyx99

Differential Revision: D31060212

Pulled By: zhouzhuojie

fbshipit-source-id: ce815cc96e8a00016646d6f02f0917169fa652dc
2021-09-20 12:33:23 -07:00

587 lines
23 KiB
Python
Executable File

#!/usr/bin/env python3
from dataclasses import asdict, dataclass, field
from pathlib import Path
from typing import Dict, Set
import jinja2
import json
import os
import sys
from typing_extensions import Literal
YamlShellBool = Literal["''", 1]
Arch = Literal["windows", "linux"]
DOCKER_REGISTRY = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
GITHUB_DIR = Path(__file__).resolve().parent.parent
WINDOWS_CPU_TEST_RUNNER = "windows.4xlarge"
WINDOWS_CUDA_TEST_RUNNER = "windows.8xlarge.nvidia.gpu"
WINDOWS_RUNNERS = {
WINDOWS_CPU_TEST_RUNNER,
WINDOWS_CUDA_TEST_RUNNER,
}
LINUX_CPU_TEST_RUNNER = "linux.2xlarge"
LINUX_CUDA_TEST_RUNNER = "linux.8xlarge.nvidia.gpu"
LINUX_RUNNERS = {
LINUX_CPU_TEST_RUNNER,
LINUX_CUDA_TEST_RUNNER,
}
CUDA_RUNNERS = {
WINDOWS_CUDA_TEST_RUNNER,
LINUX_CUDA_TEST_RUNNER,
}
CPU_RUNNERS = {
WINDOWS_CPU_TEST_RUNNER,
LINUX_CPU_TEST_RUNNER,
}
LABEL_CIFLOW_ALL = "ciflow/all"
LABEL_CIFLOW_BAZEL = "ciflow/bazel"
LABEL_CIFLOW_COVERAGE = "ciflow/coverage"
LABEL_CIFLOW_CPU = "ciflow/cpu"
LABEL_CIFLOW_CUDA = "ciflow/cuda"
LABEL_CIFLOW_DEFAULT = "ciflow/default"
LABEL_CIFLOW_LIBTORCH = "ciflow/libtorch"
LABEL_CIFLOW_LINUX = "ciflow/linux"
LABEL_CIFLOW_SCHEDULED = "ciflow/scheduled"
LABEL_CIFLOW_SLOW = "ciflow/slow"
LABEL_CIFLOW_WIN = "ciflow/win"
LABEL_CIFLOW_XLA = "ciflow/xla"
LABEL_CIFLOW_NOARCH = "ciflow/noarch"
@dataclass
class CIFlowConfig:
enabled: bool = False
# For use to enable workflows to run on pytorch/pytorch-canary
run_on_canary: bool = False
labels: Set[str] = field(default_factory=set)
trigger_action: str = 'unassigned'
trigger_actor: str = 'pytorchbot'
root_job_name: str = 'ciflow_should_run'
root_job_condition: str = ''
# trigger_action_only controls if we listen only on the trigger_action of a pull_request.
# If it's False, we listen on all default pull_request actions, this is useful when
# ciflow (via probot) is not automated yet.
trigger_action_only: bool = False
def gen_root_job_condition(self) -> None:
# TODO: Make conditions strict
# At the beginning of the rollout of ciflow, we keep everything the same as what we have
# Once fully rollout, we can have strict constraints
# e.g. ADD env.GITHUB_ACTOR == '{self.trigger_actor}
# REMOVE github.event.action !='{self.trigger_action}'
label_conditions = [
f"contains(github.event.pull_request.labels.*.name, '{label}')" for label in sorted(self.labels)]
if self.run_on_canary:
self.root_job_condition = "(github.repository_owner == 'pytorch') && "
else:
self.root_job_condition = "(github.repository == 'pytorch/pytorch') && "
self.root_job_condition += f"((github.event_name != 'pull_request') || (github.event.assignee.login != 'pytorchbot' ) || " \
f"(github.event.action !='{self.trigger_action}') || " \
f"({' || '.join(label_conditions)}))"
def reset_root_job(self) -> None:
self.root_job_name = ''
self.root_job_condition = ''
def __post_init__(self) -> None:
if not self.enabled:
self.reset_root_job()
return
self.labels.add(LABEL_CIFLOW_ALL)
self.gen_root_job_condition()
@dataclass
class CIFlowRuleset:
version = 'v1'
output_file = f'{GITHUB_DIR}/generated-ciflow-ruleset.json'
label_rules: Dict[str, Set[str]] = field(default_factory=dict)
def add_label_rule(self, labels: Set[str], workflow_name: str) -> None:
for label in labels:
if label in self.label_rules:
self.label_rules[label].add(workflow_name)
else:
self.label_rules[label] = {workflow_name}
def generate_json(self) -> None:
GENERATED = "generated" # Note that please keep the variable GENERATED otherwise phabricator will hide the whole file
output = {
"__comment": f"@{GENERATED} DO NOT EDIT MANUALLY, Generation script: .github/scripts/generate_ci_workflows.py",
"version": self.version,
"label_rules": {
label: sorted(list(workflows))
for label, workflows in self.label_rules.items()
}
}
with open(self.output_file, 'w') as outfile:
json.dump(output, outfile, indent=2, sort_keys=True)
outfile.write('\n')
@dataclass
class CIWorkflow:
# Required fields
arch: Arch
build_environment: str
test_runner_type: str
# Optional fields
ciflow_config: CIFlowConfig = field(default_factory=CIFlowConfig)
cuda_version: str = ''
docker_image_base: str = ''
enable_doc_jobs: bool = False
exclude_test: bool = False
is_coverage: bool = False
is_libtorch: bool = False
is_scheduled: str = ''
num_test_shards: int = 1
on_pull_request: bool = False
only_build_on_pull_request: bool = False
only_run_smoke_tests_on_pull_request: bool = False
num_test_shards_on_pull_request: int = -1
distributed_test: bool = True
# The following variables will be set as environment variables,
# so it's easier for both shell and Python scripts to consume it if false is represented as the empty string.
enable_jit_legacy_test: YamlShellBool = "''"
enable_distributed_test: YamlShellBool = "''"
enable_multigpu_test: YamlShellBool = "''"
enable_nogpu_no_avx_test: YamlShellBool = "''"
enable_nogpu_no_avx2_test: YamlShellBool = "''"
enable_slow_test: YamlShellBool = "''"
enable_docs_test: YamlShellBool = "''"
enable_backwards_compat_test: YamlShellBool = "''"
enable_xla_test: YamlShellBool = "''"
enable_noarch_test: YamlShellBool = "''"
def __post_init__(self) -> None:
if self.is_libtorch:
self.exclude_test = True
if not self.on_pull_request:
self.only_build_on_pull_request = False
if self.distributed_test:
self.enable_distributed_test = 1
# If num_test_shards_on_pull_request is not user-defined, default to num_test_shards unless we are
# only running smoke tests on the pull request.
if self.num_test_shards_on_pull_request == -1:
# Don't waste resources on runner spinup and cooldown for another shard if we are only running a few tests
if self.only_run_smoke_tests_on_pull_request:
self.num_test_shards_on_pull_request = 1
else:
self.num_test_shards_on_pull_request = self.num_test_shards
self.assert_valid()
def assert_valid(self) -> None:
err_message = f"invalid test_runner_type for {self.arch}: {self.test_runner_type}"
if self.arch == 'linux':
assert self.test_runner_type in LINUX_RUNNERS, err_message
if self.arch == 'windows':
assert self.test_runner_type in WINDOWS_RUNNERS, err_message
if self.ciflow_config.enabled:
# make sure if LABEL_CIFLOW_DEFAULT is set, we then need to set trigger_action_only to False
assert self.ciflow_config.trigger_action_only != (LABEL_CIFLOW_DEFAULT in self.ciflow_config.labels)
assert self.on_pull_request
assert LABEL_CIFLOW_ALL in self.ciflow_config.labels
assert LABEL_CIFLOW_ALL in self.ciflow_config.root_job_condition
if self.arch == 'linux':
assert LABEL_CIFLOW_LINUX in self.ciflow_config.labels
if self.arch == 'windows':
assert LABEL_CIFLOW_WIN in self.ciflow_config.labels
if self.test_runner_type in CUDA_RUNNERS:
assert LABEL_CIFLOW_CUDA in self.ciflow_config.labels
if self.test_runner_type in CPU_RUNNERS:
assert LABEL_CIFLOW_CPU in self.ciflow_config.labels
def generate_workflow_file(self, workflow_template: jinja2.Template) -> None:
output_file_path = GITHUB_DIR / f"workflows/generated-{self.build_environment}.yml"
with open(output_file_path, "w") as output_file:
GENERATED = "generated" # Note that please keep the variable GENERATED otherwise phabricator will hide the whole file
output_file.writelines([f"# @{GENERATED} DO NOT EDIT MANUALLY\n"])
try:
content = workflow_template.render(asdict(self))
except Exception as e:
print(f"Failed on template: {workflow_template}", file=sys.stderr)
raise e
output_file.write(content)
if content[-1] != "\n":
output_file.write("\n")
print(output_file_path)
WINDOWS_WORKFLOWS = [
CIWorkflow(
arch="windows",
build_environment="win-vs2019-cpu-py3",
cuda_version="cpu",
test_runner_type=WINDOWS_CPU_TEST_RUNNER,
on_pull_request=True,
num_test_shards=2,
ciflow_config=CIFlowConfig(
enabled=True,
run_on_canary=True,
labels={LABEL_CIFLOW_DEFAULT, LABEL_CIFLOW_CPU, LABEL_CIFLOW_WIN}
),
),
CIWorkflow(
arch="windows",
build_environment="win-vs2019-cuda10.2-py3",
cuda_version="10.2",
test_runner_type=WINDOWS_CUDA_TEST_RUNNER,
on_pull_request=True,
num_test_shards=2,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels={LABEL_CIFLOW_CUDA, LABEL_CIFLOW_WIN}
),
),
CIWorkflow(
arch="windows",
build_environment="win-vs2019-cuda11.3-py3",
cuda_version="11.3",
test_runner_type=WINDOWS_CUDA_TEST_RUNNER,
num_test_shards=2,
on_pull_request=True,
only_run_smoke_tests_on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
run_on_canary=True,
labels={LABEL_CIFLOW_DEFAULT, LABEL_CIFLOW_CUDA, LABEL_CIFLOW_WIN}
),
),
CIWorkflow(
arch="windows",
build_environment="periodic-win-vs2019-cuda11.1-py3",
cuda_version="11.1",
test_runner_type=WINDOWS_CUDA_TEST_RUNNER,
num_test_shards=2,
is_scheduled="45 0,4,8,12,16,20 * * *",
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels={LABEL_CIFLOW_SCHEDULED, LABEL_CIFLOW_WIN, LABEL_CIFLOW_CUDA}
),
),
]
LINUX_WORKFLOWS = [
CIWorkflow(
arch="linux",
build_environment="linux-xenial-py3.6-gcc5.4",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
test_runner_type=LINUX_CPU_TEST_RUNNER,
on_pull_request=True,
enable_jit_legacy_test=1,
enable_doc_jobs=True,
enable_docs_test=1,
enable_backwards_compat_test=1,
num_test_shards=2,
ciflow_config=CIFlowConfig(
enabled=True,
run_on_canary=True,
labels={LABEL_CIFLOW_DEFAULT, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CPU}
),
),
# ParallelTBB does not have a maintainer and is currently flaky
# CIWorkflow(
# arch="linux",
# build_environment="paralleltbb-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# # This is a master only job despite on_pull_request is set to True
# on_pull_request=True,
# ciflow_config=CIFlowConfig(
# enabled=True,
# trigger_action_only=True,
# labels={LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CPU},
# ),
# ),
CIWorkflow(
arch="linux",
build_environment="parallelnative-linux-xenial-py3.6-gcc5.4",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
test_runner_type=LINUX_CPU_TEST_RUNNER,
# This is a master only job despite on_pull_request is set to True
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels={LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CPU},
),
),
# Build PyTorch with BUILD_CAFFE2=OFF
CIWorkflow(
arch="linux",
build_environment="puretorch-linux-xenial-py3.6-gcc5.4",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
test_runner_type=LINUX_CPU_TEST_RUNNER,
exclude_test=True,
# This is a master only job despite on_pull_request is set to True
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels={LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CPU},
),
),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc7",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-asan",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang7-onnx",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang7-onnx",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
CIWorkflow(
arch="linux",
build_environment="linux-bionic-cuda10.2-py3.9-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
num_test_shards=2,
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
run_on_canary=True,
trigger_action_only=True,
labels={LABEL_CIFLOW_SLOW, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CUDA}
),
),
CIWorkflow(
arch="linux",
build_environment="linux-xenial-cuda10.2-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
enable_jit_legacy_test=1,
enable_multigpu_test=1,
enable_nogpu_no_avx_test=1,
enable_nogpu_no_avx2_test=1,
enable_slow_test=1,
num_test_shards=2,
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels=set([LABEL_CIFLOW_SLOW, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CUDA]),
),
),
CIWorkflow(
arch="linux",
build_environment="libtorch-linux-xenial-cuda10.2-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
is_libtorch=True,
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels=set([LABEL_CIFLOW_LIBTORCH, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CUDA]),
),
),
CIWorkflow(
arch="linux",
build_environment="linux-xenial-cuda11.3-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
num_test_shards=2,
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
labels=set([LABEL_CIFLOW_DEFAULT, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CUDA]),
),
),
CIWorkflow(
arch="linux",
build_environment="libtorch-linux-xenial-cuda11.3-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
is_libtorch=True,
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels=set([LABEL_CIFLOW_LIBTORCH, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CUDA]),
),
),
CIWorkflow(
arch="linux",
build_environment="periodic-linux-xenial-cuda11.1-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
num_test_shards=2,
is_scheduled="45 0,4,8,12,16,20 * * *",
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels={LABEL_CIFLOW_SCHEDULED, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CUDA}
),
),
CIWorkflow(
arch="linux",
build_environment="periodic-libtorch-linux-xenial-cuda11.1-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
is_libtorch=True,
is_scheduled="45 0,4,8,12,16,20 * * *",
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels={LABEL_CIFLOW_SCHEDULED, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_LIBTORCH, LABEL_CIFLOW_CUDA},
),
),
CIWorkflow(
arch="linux",
build_environment="linux-bionic-py3.8-gcc9-coverage",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.8-gcc9",
test_runner_type=LINUX_CPU_TEST_RUNNER,
on_pull_request=True,
is_coverage=True,
num_test_shards=2,
ciflow_config=CIFlowConfig(
enabled=True,
labels={LABEL_CIFLOW_DEFAULT, LABEL_CIFLOW_COVERAGE, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CPU},
),
),
CIWorkflow(
arch="linux",
build_environment="linux-bionic-py3.6-clang9",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
test_runner_type=LINUX_CPU_TEST_RUNNER,
on_pull_request=True,
num_test_shards=2,
distributed_test=False,
enable_noarch_test=1,
ciflow_config=CIFlowConfig(
enabled=True,
labels={LABEL_CIFLOW_DEFAULT, LABEL_CIFLOW_LINUX, LABEL_CIFLOW_CPU, LABEL_CIFLOW_XLA, LABEL_CIFLOW_NOARCH},
),
),
# CIWorkflow(
# arch="linux",
# build_environment="linux-bionic-rocm3.9-py3.6",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-rocm3.9-py3.6",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-android-ndk-r19c-x86_32",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-android-ndk-r19c-x86_64",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v7a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v8a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-mobile",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-mobile-custom-dynamic",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-mobile-custom-static",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-mobile-code-analysis",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
]
BAZEL_WORKFLOWS = [
CIWorkflow(
arch="linux",
build_environment="linux-xenial-py3.6-gcc7-bazel-test",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7",
test_runner_type=LINUX_CPU_TEST_RUNNER,
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
labels={LABEL_CIFLOW_DEFAULT, LABEL_CIFLOW_BAZEL, LABEL_CIFLOW_CPU, LABEL_CIFLOW_LINUX},
),
),
]
if __name__ == "__main__":
jinja_env = jinja2.Environment(
variable_start_string="!{{",
loader=jinja2.FileSystemLoader(str(GITHUB_DIR.joinpath("templates"))),
undefined=jinja2.StrictUndefined,
)
template_and_workflows = [
(jinja_env.get_template("linux_ci_workflow.yml.j2"), LINUX_WORKFLOWS),
(jinja_env.get_template("windows_ci_workflow.yml.j2"), WINDOWS_WORKFLOWS),
(jinja_env.get_template("bazel_ci_workflow.yml.j2"), BAZEL_WORKFLOWS),
]
# Delete the existing generated files first, this should align with .gitattributes file description.
existing_workflows = GITHUB_DIR.glob("workflows/generated-*")
for w in existing_workflows:
try:
os.remove(w)
except Exception as e:
print(f"Error occurred when deleting file {w}: {e}")
ciflow_ruleset = CIFlowRuleset()
for template, workflows in template_and_workflows:
for workflow in workflows:
workflow.generate_workflow_file(workflow_template=template)
if workflow.ciflow_config.enabled:
ciflow_ruleset.add_label_rule(workflow.ciflow_config.labels, workflow.build_environment)
elif workflow.on_pull_request:
# If ciflow is disabled but still on_pull_request, we can denote
# it as a special label LABEL_CIFLOW_DEFAULT in the ruleset, which will be later
# turned into an actual LABEL_CIFLOW_DEFAULT label in the workflow.
# During the rollout phase, it has the same effect as LABEL_CIFLOW_DEFAULT
ciflow_ruleset.add_label_rule({LABEL_CIFLOW_DEFAULT}, workflow.build_environment)
ciflow_ruleset.generate_json()