mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Relevant #72643 Benchmarked versus unfused torch implementation and torch.compile implementation. Around 9x speedup vs unfused implementation on cuda and slightly faster vs inductor compile on 5090. ```py import torch import torch.nn as nn class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.eps = eps self.scale = nn.Parameter(torch.ones(dim)) def forward(self, x): norm_x = x.norm(2, dim=-1, keepdim=True) rms_x = norm_x * torch.rsqrt(torch.tensor(x.shape[-1], dtype=x.dtype)) x_normed = x / (rms_x + self.eps) return self.scale * x_normed def benchmark_rmsnorm_cuda(input_shape, normalized_dim, num_iterations=100, warmup_iterations=10, dtype=torch.float16): rms_norm_layer = torch.nn.RMSNorm(normalized_dim, device='cuda', dtype=dtype) input_data = torch.randn(input_shape, device='cuda', dtype=dtype) for _ in range(warmup_iterations): _ = rms_norm_layer(input_data) torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() for _ in range(num_iterations): _ = rms_norm_layer(input_data) end_event.record() torch.cuda.synchronize() elapsed_time_ms = start_event.elapsed_time(end_event) avg_time_ms = elapsed_time_ms / num_iterations print(f"--- RMSNorm CUDA Benchmark ---") print(f"Input Shape: {input_shape}") print(f"Normalized Dimension: {normalized_dim}") print(f"Benchmark Iterations: {num_iterations}") print(f"--- Fused Implementation ---") print(f"Average Time per Iteration: {avg_time_ms:.4f} ms") print(f"Total Time for {num_iterations} Iterations: {elapsed_time_ms:.3f} ms") compiled_rms_norm = torch.compile(RMSNorm(dim=normalized_dim)).cuda() for _ in range(warmup_iterations): _ = compiled_rms_norm(input_data) torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() for _ in range(num_iterations): _ = compiled_rms_norm(input_data) end_event.record() torch.cuda.synchronize() elapsed_time_ms = start_event.elapsed_time(end_event) avg_time_ms = elapsed_time_ms / num_iterations print(f"--- TorchCompile Implementation ---") print(f"Average Time per Iteration: {avg_time_ms:.4f} ms") print(f"Total Time for {num_iterations} Iterations: {elapsed_time_ms:.3f} ms") print("-" * 50) if __name__ == '__main__': parameter_sets = [ {'batch_size': 16, 'sequence_length': 256, 'hidden_features': 512, 'dtype': torch.float16}, {'batch_size': 32, 'sequence_length': 512, 'hidden_features': 768, 'dtype': torch.float16}, {'batch_size': 64, 'sequence_length': 1024, 'hidden_features': 1024, 'dtype': torch.float16}, {'batch_size': 32, 'sequence_length': 512, 'hidden_features': 768, 'dtype': torch.float32}, {'batch_size': 8, 'sequence_length': 2048, 'hidden_features': 2048, 'dtype': torch.float16}, ] num_benchmark_iterations = 200 num_warmup_iterations = 20 for params in parameter_sets: batch_size = params['batch_size'] sequence_length = params['sequence_length'] hidden_features = params['hidden_features'] data_type = params.get('dtype', torch.float16) shape = (batch_size, sequence_length, hidden_features) norm_dim_to_normalize = hidden_features print(f"Benchmarking with: BS={batch_size}, SeqLen={sequence_length}, Hidden={hidden_features}, DType={data_type}") benchmark_rmsnorm_cuda(input_shape=shape, normalized_dim=norm_dim_to_normalize, num_iterations=num_benchmark_iterations, warmup_iterations=num_warmup_iterations, dtype=data_type) ``` Here are the triton compile tests ran on a 5090 (comparing this branch vs main) ```py import torch import torch.nn as nn from torch._inductor.utils import run_and_get_code, run_fw_bw_and_get_code torch.manual_seed(0) device = torch.device("cuda") for batch in range(0, 9): for i in range(9, 16): normalized_shape_arg = (2**batch, 2**i) input_tensor = torch.randn(2**batch, 2**i, device=device, requires_grad=True) weight_tensor = torch.randn(2**batch, 2**i,device=device, requires_grad=True) model = torch.nn.functional.rms_norm compiled_model = torch.compile(model) loss = torch.randn_like(input_tensor) num_iter = 5 for j in range(num_iter): output = compiled_model(input_tensor, normalized_shape_arg, weight_tensor) output.backward(loss) start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() num_iter = 10 for j in range(num_iter): output = compiled_model(input_tensor, normalized_shape_arg, weight_tensor) output.backward(loss) end_event.record() torch.cuda.synchronize() elapsed_time_ms = start_event.elapsed_time(end_event) avg_time_ms = round(elapsed_time_ms / num_iter, 5) print(2**batch, 2**i, avg_time_ms) ``` main ``` 32 512 0.1812 32 1024 0.19021 32 2048 0.18871 32 4096 0.17019 32 8192 0.21944 32 16384 0.38871 32 32768 0.83282 64 512 0.14705 64 1024 0.13987 64 2048 0.14111 64 4096 0.21699 64 8192 0.43141 64 16384 0.90652 64 32768 2.18573 128 512 0.19361 128 1024 0.1963 128 2048 0.20122 128 4096 0.38888 128 8192 0.93795 128 16384 2.23437 128 32768 5.50079 256 512 0.16722 256 1024 0.22856 256 2048 0.39421 256 4096 0.96621 256 8192 2.48746 256 16384 5.53571 256 32768 11.97932 ``` current branch ``` 32 512 0.16328 32 1024 0.18104 32 2048 0.15508 32 4096 0.14356 32 8192 0.20111 32 16384 0.45974 32 32768 0.94799 64 512 0.16874 64 1024 0.18701 64 2048 0.16107 64 4096 0.20152 64 8192 0.46568 64 16384 0.96599 64 32768 2.21661 128 512 0.14982 128 1024 0.15565 128 2048 0.22241 128 4096 0.46128 128 8192 0.88883 128 16384 2.3097 128 32768 5.84448 256 512 0.14346 256 1024 0.2007 256 2048 0.45927 256 4096 0.87876 256 8192 2.10571 256 16384 5.73948 256 32768 12.98581 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/153666 Approved by: https://github.com/ngimel, https://github.com/albanD
1153 lines
33 KiB
C++
1153 lines
33 KiB
C++
#pragma once
|
|
|
|
// NB: Must be at the top of file to avoid including the deprecated "math.h".
|
|
// https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio
|
|
#ifdef _MSC_VER
|
|
#ifndef _USE_MATH_DEFINES
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
#include <cmath>
|
|
#endif
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <torch/csrc/autograd/generated/Functions.h>
|
|
|
|
namespace torch::autograd::generated::details {
|
|
|
|
extern const char* kCudnnDoubleBackwardMsg;
|
|
|
|
// A simple way to imperatively compute index ranges for slots
|
|
// that have been flattened
|
|
struct TORCH_API IndexRangeGenerator {
|
|
IndexRange range(size_t range_size) {
|
|
i += range_size;
|
|
return {i - range_size, i};
|
|
}
|
|
size_t size() {
|
|
return i;
|
|
}
|
|
|
|
private:
|
|
size_t i = 0;
|
|
};
|
|
|
|
TORCH_API Tensor toNonOptFwGrad(const std::optional<Tensor>& t);
|
|
TORCH_API Tensor toNonOptPrimal(const std::optional<Tensor>& t);
|
|
TORCH_API Tensor toNonOptTensor(const std::optional<Tensor>& t);
|
|
|
|
inline std::optional<Tensor> wrap_opt_if(const Tensor& t, const bool cond) {
|
|
using OptTensor = std::optional<Tensor>;
|
|
return cond ? OptTensor(t) : static_cast<OptTensor>(std::nullopt);
|
|
}
|
|
|
|
TORCH_API Tensor
|
|
apply_loss_reduction(const Tensor& unreduced, int64_t reduction);
|
|
TORCH_API bool any_variable_defined(const variable_list& variables);
|
|
TORCH_API void copy_range(
|
|
variable_list& out,
|
|
IndexRange range,
|
|
const at::Tensor& t);
|
|
TORCH_API void copy_range(
|
|
variable_list& out,
|
|
IndexRange range,
|
|
at::ArrayRef<at::Tensor> t);
|
|
TORCH_API at::Tensor copysign_tensor_self_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& result);
|
|
TORCH_API at::Tensor not_implemented(const char* name, const char* reason = "");
|
|
TORCH_API std::vector<Tensor> not_implemented_list(
|
|
const char* name,
|
|
const char* reason = "");
|
|
at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result);
|
|
at::Tensor maybe_multiply(const at::Tensor& t, const at::Scalar& s);
|
|
int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim);
|
|
Tensor restore_reduced_dims(
|
|
const Tensor& output,
|
|
IntArrayRef dims,
|
|
bool keepdim);
|
|
Tensor scale_grad_by_count(
|
|
const Tensor& grad,
|
|
const Tensor& mask,
|
|
IntArrayRef dims);
|
|
at::Tensor norm_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
const std::optional<at::Scalar>& p_,
|
|
const at::Tensor& norm);
|
|
at::Tensor norm_backward(
|
|
at::Tensor grad,
|
|
const at::Tensor& self,
|
|
const std::optional<at::Scalar>& p_,
|
|
at::Tensor norm,
|
|
at::IntArrayRef dim,
|
|
bool keepdim);
|
|
Tensor norm_jvp(
|
|
const Tensor& self_p,
|
|
const Tensor& self_t,
|
|
const std::optional<Scalar>& p_,
|
|
Tensor norm,
|
|
IntArrayRef dim,
|
|
bool keepdim);
|
|
Tensor norm_jvp(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const std::optional<Scalar>& p_,
|
|
Tensor norm);
|
|
Tensor _nested_from_padded_backward(
|
|
const Tensor& grad,
|
|
const Tensor& input,
|
|
const bool do_transform_0213);
|
|
std::tuple<Tensor, Tensor, Tensor> linear_double_backward(
|
|
const variable_list& grads,
|
|
const Tensor& self,
|
|
const Tensor& grad_output,
|
|
const Tensor& weight);
|
|
Tensor linalg_vector_norm_jvp(
|
|
const Tensor& self_p,
|
|
const Tensor& self_t,
|
|
const Scalar& scalar_ord,
|
|
Tensor norm,
|
|
const at::OptionalIntArrayRef& opt_dim,
|
|
bool keepdim);
|
|
at::Tensor linalg_vector_norm_backward(
|
|
at::Tensor grad,
|
|
const at::Tensor& self,
|
|
const at::Scalar& ord,
|
|
at::Tensor norm,
|
|
const at::OptionalIntArrayRef& opt_dim,
|
|
bool keepdim);
|
|
at::Tensor pow_backward(
|
|
at::Tensor grad,
|
|
const at::Tensor& self,
|
|
const at::Scalar& exponent_);
|
|
at::Tensor pow_backward_self(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
const at::Tensor& exponent);
|
|
at::Tensor pow_backward_exponent(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
const at::Tensor& exponent,
|
|
const at::Tensor& result);
|
|
at::Tensor pow_backward_exponent(
|
|
const at::Tensor& grad,
|
|
const at::Scalar& base,
|
|
const at::Tensor& exponent,
|
|
const at::Tensor& result);
|
|
at::Tensor angle_backward(const at::Tensor& grad, const at::Tensor& self);
|
|
template <typename T>
|
|
at::Tensor mul_tensor_backward(const Tensor& grad, T other, ScalarType self_st);
|
|
template <typename T>
|
|
at::Tensor div_tensor_self_backward(
|
|
const Tensor& grad,
|
|
T other,
|
|
ScalarType self_st,
|
|
const std::optional<std::string_view>& rounding_mode = std::nullopt);
|
|
at::Tensor div_tensor_other_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& other,
|
|
const std::optional<std::string_view>& rounding_mode = std::nullopt);
|
|
at::Tensor mvlgamma_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
int64_t p);
|
|
at::Tensor permute_backwards(const at::Tensor& grad, at::IntArrayRef fwd_dims);
|
|
at::Tensor rad2deg_backward(const at::Tensor& grad);
|
|
at::Tensor deg2rad_backward(const at::Tensor& grad);
|
|
at::Tensor unsqueeze_multiple(
|
|
const at::Tensor& t,
|
|
at::OptionalIntArrayRef opt_dim,
|
|
size_t n_dims);
|
|
at::Tensor sum_backward(
|
|
const at::Tensor& grad,
|
|
at::SymIntArrayRef sizes,
|
|
at::OptionalIntArrayRef opt_dims,
|
|
bool keepdim);
|
|
at::Tensor sum_backward(
|
|
const at::Tensor& grad,
|
|
c10::SymIntArrayRef sizes,
|
|
c10::IntArrayRef dims,
|
|
bool keepdim);
|
|
at::Tensor nansum_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
at::OptionalIntArrayRef dims,
|
|
bool keepdim);
|
|
std::vector<int64_t> reverse_list(const at::IntArrayRef list);
|
|
std::vector<c10::SymInt> reverse_list_symint(const c10::SymIntArrayRef list);
|
|
at::Tensor reverse_dim(const at::Tensor& t, int64_t dim);
|
|
at::Tensor prod_safe_zeros_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& inp,
|
|
int64_t dim);
|
|
at::Tensor prod_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
const at::Tensor& result);
|
|
at::Tensor prod_backward(
|
|
at::Tensor grad,
|
|
const at::Tensor& input,
|
|
at::Tensor result,
|
|
int64_t dim,
|
|
bool keepdim);
|
|
at::Tensor solve_jvp(
|
|
const Tensor& X,
|
|
const Tensor& A,
|
|
const Tensor& dA,
|
|
const Tensor& dB);
|
|
at::Tensor solve_backward_self(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
const at::Tensor& A);
|
|
at::Tensor solve_backward_A(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
const at::Tensor& A,
|
|
const at::Tensor& solution);
|
|
at::Tensor cumsum_backward(const at::Tensor& grad, int64_t dim);
|
|
at::Tensor logsumexp_backward(
|
|
at::Tensor grad,
|
|
const at::Tensor& self,
|
|
at::Tensor result,
|
|
at::IntArrayRef dim,
|
|
bool keepdim);
|
|
at::Tensor logsumexp_jvp(
|
|
const at::Tensor& self_p,
|
|
const at::Tensor& self_t,
|
|
IntArrayRef dim,
|
|
bool keepdim);
|
|
at::Tensor safe_logsumexp_jvp(
|
|
const at::Tensor& self_p,
|
|
const at::Tensor& self_t,
|
|
IntArrayRef dim,
|
|
bool keepdim);
|
|
at::Tensor logcumsumexp_backward(
|
|
at::Tensor grad,
|
|
const at::Tensor& self,
|
|
const at::Tensor& result,
|
|
int64_t dim);
|
|
at::Tensor logcumsumexp_jvp(
|
|
const at::Tensor& self_p,
|
|
const at::Tensor& self_t,
|
|
int64_t dim);
|
|
at::Tensor unbind_backward(const variable_list& grads, int64_t dim);
|
|
at::Tensor unbind_backward_nested(
|
|
const variable_list& grads,
|
|
const Tensor& nt_sizes,
|
|
int64_t dim,
|
|
const at::TensorOptions& options);
|
|
at::Tensor unbind_backward_nested_jagged(
|
|
const variable_list& grads,
|
|
const Tensor& self,
|
|
int64_t dim);
|
|
at::Tensor unsqueeze_to(const at::Tensor& self, c10::SymIntArrayRef sym_sizes);
|
|
at::Tensor unsqueeze_to(
|
|
const at::Tensor& self,
|
|
int64_t dim,
|
|
c10::SymIntArrayRef sym_sizes);
|
|
at::Tensor unsqueeze_to(
|
|
const at::Tensor& self,
|
|
IntArrayRef dim,
|
|
c10::SymIntArrayRef sym_sizes);
|
|
std::vector<at::Tensor> cat_tensors_backward(
|
|
const at::Tensor& grad,
|
|
const std::vector<std::vector<c10::SymInt>>& sizes,
|
|
const std::vector<ScalarType>& dtypes,
|
|
int64_t dim);
|
|
std::vector<at::Tensor> stack_tensors_backward(
|
|
const at::Tensor& grad,
|
|
int64_t dim,
|
|
const std::vector<ScalarType>& dtypes);
|
|
std::vector<at::Tensor> block_diag_backward(
|
|
const at::Tensor& grad,
|
|
const std::vector<std::vector<int64_t>>& sizes,
|
|
const std::vector<ScalarType>& dtypes);
|
|
at::Tensor clamp_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
const std::optional<at::Scalar>& min,
|
|
const std::optional<at::Scalar>& max);
|
|
at::Tensor clamp_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
const at::Tensor& min,
|
|
const at::Tensor& max);
|
|
std::tuple<at::Tensor, at::Tensor> clamp_backward_min_max(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
const at::Tensor& min,
|
|
const at::Tensor& max,
|
|
const std::array<bool, 2>&);
|
|
at::Tensor clamp_jvp(
|
|
const Tensor& self_p,
|
|
const Tensor& self_t,
|
|
const Tensor& min_p,
|
|
const Tensor& min_t,
|
|
const Tensor& max_p,
|
|
const Tensor& max_t);
|
|
at::SymIntArrayRef strides_or_error(
|
|
const Tensor& input,
|
|
std::string_view const& input_name);
|
|
at::Tensor mm_mat1_backward(
|
|
const Tensor& grad,
|
|
const Tensor& mat2,
|
|
at::SymIntArrayRef mat1_sizes,
|
|
at::SymIntArrayRef mat1_strides,
|
|
c10::Layout mat1_layout,
|
|
const Scalar& alpha);
|
|
at::Tensor mm_mat2_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& mat1,
|
|
at::SymIntArrayRef sizes,
|
|
at::SymIntArrayRef strides,
|
|
c10::Layout layout,
|
|
const at::Scalar& alpha);
|
|
at::Tensor _grouped_mm_mat1_backward(
|
|
const Tensor& grad,
|
|
const Tensor& mat2,
|
|
at::SymIntArrayRef mat1_sizes,
|
|
at::SymIntArrayRef mat1_strides,
|
|
c10::Layout mat1_layout,
|
|
std::optional<Tensor> offs,
|
|
const Scalar& alpha);
|
|
at::Tensor _grouped_mm_mat2_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& mat1,
|
|
at::SymIntArrayRef sizes,
|
|
at::SymIntArrayRef strides,
|
|
c10::Layout layout,
|
|
std::optional<Tensor> offs,
|
|
const at::Scalar& alpha);
|
|
at::Tensor mm_mat1_sparse_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& mat1,
|
|
const at::Tensor& mat2,
|
|
const at::Scalar& alpha);
|
|
std::tuple<Tensor, Tensor, Tensor> sparse_sampled_addmm_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const std::optional<Tensor>& mat1,
|
|
const std::optional<Tensor>& mat2,
|
|
const Scalar& alpha,
|
|
const Scalar& beta,
|
|
const std::array<bool, 3>& grad_input_mask);
|
|
at::Tensor sparse_mask_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& mask,
|
|
c10::Layout self_layout);
|
|
at::Tensor sparse_sparse_matmul_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& mat1,
|
|
const at::Tensor& mat2,
|
|
int64_t grad_order);
|
|
at::Tensor renorm_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
const at::Scalar& p,
|
|
int64_t dim,
|
|
const at::Scalar& maxnorm);
|
|
at::Tensor renorm_jvp(
|
|
const at::Tensor& self_p,
|
|
const at::Tensor& self_t,
|
|
const at::Scalar& p,
|
|
int64_t dim,
|
|
const at::Scalar& maxnorm);
|
|
at::Tensor repeat_backward(
|
|
at::Tensor grad,
|
|
at::SymIntArrayRef repeats,
|
|
at::SymIntArrayRef input_shape);
|
|
at::Tensor _fused_dropout_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& mask,
|
|
double p1m);
|
|
at::Tensor infinitely_differentiable_native_dropout_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& mask,
|
|
double scale);
|
|
at::Tensor native_dropout_double_backward(
|
|
const at::Tensor& ggI,
|
|
const at::Tensor& grad,
|
|
const at::Tensor& mask,
|
|
double scale);
|
|
at::Tensor evenly_distribute_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
const at::Tensor& value);
|
|
Tensor sgn_backward(const Tensor& x, const Tensor& gx, const Tensor& sgn);
|
|
Tensor masked_fill_backward(const Tensor& grad, const Tensor& mask);
|
|
at::Tensor var_backward(
|
|
at::Tensor grad,
|
|
const at::Tensor& self,
|
|
at::OptionalIntArrayRef dim,
|
|
const std::optional<c10::Scalar>& correction,
|
|
bool keepdim);
|
|
at::Tensor var_jvp(
|
|
const at::Tensor& self_t,
|
|
const at::Tensor& self_p,
|
|
const at::Tensor& result,
|
|
at::OptionalIntArrayRef dim_opt,
|
|
const std::optional<c10::Scalar>& correction,
|
|
bool keepdim);
|
|
at::Tensor std_backward(
|
|
const at::Tensor& result,
|
|
const at::Tensor& grad,
|
|
const at::Tensor& self,
|
|
at::OptionalIntArrayRef dim,
|
|
const std::optional<c10::Scalar>& correction,
|
|
bool keepdim);
|
|
Tensor mean_backward(
|
|
const Tensor& grad,
|
|
c10::SymIntArrayRef shape,
|
|
at::OptionalIntArrayRef opt_dim,
|
|
c10::SymInt numel,
|
|
bool keepdim);
|
|
Tensor var_mean_backward(
|
|
const Tensor& gvar,
|
|
const Tensor& gmean,
|
|
const Tensor& self,
|
|
at::OptionalIntArrayRef dim_opt,
|
|
const std::optional<c10::Scalar>& correction,
|
|
bool keepdim);
|
|
Tensor std_mean_backward(
|
|
const Tensor& gstd,
|
|
const Tensor& gmean,
|
|
const Tensor& self,
|
|
const Tensor& std,
|
|
at::OptionalIntArrayRef dim_opt,
|
|
const std::optional<c10::Scalar>& correction,
|
|
bool keepdim);
|
|
at::Tensor cholesky_backward(
|
|
const at::Tensor& grad,
|
|
bool upper,
|
|
const at::Tensor& L);
|
|
at::Tensor cholesky_jvp(
|
|
const at::Tensor& input_tangent,
|
|
const at::Tensor& L,
|
|
bool upper);
|
|
at::Tensor cholesky_inverse_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& L,
|
|
bool upper,
|
|
const at::Tensor& inverse);
|
|
at::Tensor cholesky_inverse_jvp(
|
|
const at::Tensor& F,
|
|
const at::Tensor& dF,
|
|
const at::Tensor& X,
|
|
bool upper);
|
|
Tensor pinv_jvp(const Tensor& A, const Tensor& pinvA, const Tensor& dA);
|
|
Tensor pinv_backward(const Tensor& grad, const Tensor& pinvA, const Tensor& A);
|
|
Tensor chunk_backward_nested(
|
|
const std::vector<torch::autograd::Variable>& grads,
|
|
const Tensor& self,
|
|
int64_t chunks,
|
|
int64_t dim);
|
|
at::Tensor split_with_sizes_backward(
|
|
const std::vector<torch::autograd::Variable>& grads,
|
|
c10::SymIntArrayRef split_sizes,
|
|
int64_t dim,
|
|
c10::SymIntArrayRef sizes,
|
|
const at::TensorOptions& options);
|
|
at::Tensor _nested_split_with_sizes_backward(
|
|
const std::vector<torch::autograd::Variable>& grads,
|
|
c10::SymIntArrayRef split_sizes,
|
|
int64_t dim,
|
|
const Tensor& nt_sizes,
|
|
const at::TensorOptions& options);
|
|
at::Tensor split_backward(
|
|
const std::vector<torch::autograd::Variable>& grads,
|
|
const c10::SymInt& split_size,
|
|
int64_t dim,
|
|
c10::SymIntArrayRef sizes,
|
|
const at::TensorOptions& options);
|
|
at::Tensor max_pool_double_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& indices,
|
|
int dim);
|
|
at::Tensor error_for_max_pool2d_double_backward();
|
|
at::Tensor glu_double_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& grad_output,
|
|
const at::Tensor& input,
|
|
int64_t dim);
|
|
at::Tensor glu_double_backward_grad_output(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
int64_t dim);
|
|
at::Tensor infinitely_differentiable_silu_backward(
|
|
const at::Tensor& grad_output,
|
|
const at::Tensor& input);
|
|
at::Tensor infinitely_differentiable_mish_backward(
|
|
const at::Tensor& grad_output,
|
|
const at::Tensor& input);
|
|
Tensor infinitely_differentiable_logit_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
std::optional<double> eps);
|
|
Tensor binary_cross_entropy_target_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& target,
|
|
const std::optional<Tensor>& weight,
|
|
int64_t reduction);
|
|
Tensor binary_cross_entropy_double_backward_target(
|
|
const Tensor& grad,
|
|
const Tensor& grad_output,
|
|
const Tensor& self,
|
|
const Tensor& target,
|
|
const std::optional<Tensor>& weight,
|
|
int64_t reduction);
|
|
Tensor binary_cross_entropy_with_logits_backward(
|
|
const Tensor& grad,
|
|
const Tensor& input,
|
|
const Tensor& target,
|
|
const std::optional<Tensor>& weight_opt,
|
|
const std::optional<Tensor>& pos_weight_opt,
|
|
int64_t reduction);
|
|
at::Tensor binary_cross_entropy_with_logits_target_backward(
|
|
const at::Tensor& grad_output,
|
|
const at::Tensor& self,
|
|
const at::Tensor& target,
|
|
const std::optional<at::Tensor>& weight,
|
|
const std::optional<at::Tensor>& pos_weight,
|
|
int64_t reduction);
|
|
at::Tensor log_sigmoid_double_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input);
|
|
at::Tensor softmax_double_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& grad_output,
|
|
int dim,
|
|
const at::Tensor& output);
|
|
at::Tensor binary_cross_entropy_double_backward(
|
|
const at::Tensor& grad_output,
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
const at::Tensor& target,
|
|
const std::optional<at::Tensor>& weight,
|
|
int64_t reduction);
|
|
at::Tensor binary_cross_entropy_double_backward_grad_output(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
const at::Tensor& target,
|
|
const std::optional<at::Tensor>& weight,
|
|
int64_t reduction);
|
|
at::Tensor smooth_l1_loss_double_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
const at::Tensor& target,
|
|
int64_t reduction,
|
|
double beta);
|
|
at::Tensor huber_loss_double_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
const at::Tensor& target,
|
|
int64_t reduction,
|
|
double delta);
|
|
at::Tensor huber_loss_double_backward_grad_output(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& grad_output,
|
|
const at::Tensor& input,
|
|
const at::Tensor& target,
|
|
int64_t reduction,
|
|
double delta);
|
|
at::Tensor mse_loss_double_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
int64_t reduction);
|
|
at::Tensor soft_margin_loss_double_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
const at::Tensor& target,
|
|
int64_t reduction);
|
|
at::Tensor soft_margin_loss_double_backward_grad_output(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& grad_output,
|
|
const at::Tensor& input,
|
|
const at::Tensor& target,
|
|
int64_t reduction);
|
|
at::Tensor softplus_double_backward(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
const at::Scalar& beta,
|
|
const at::Scalar& threshold);
|
|
std::tuple<at::Tensor, at::Tensor> slogdet_jvp(
|
|
const at::Tensor& LU,
|
|
const at::Tensor& pivots,
|
|
const at::Tensor& dA,
|
|
const at::Tensor& sign,
|
|
const bool use_A_T);
|
|
at::Tensor slogdet_backward(
|
|
const at::Tensor& grad_sign,
|
|
const at::Tensor& grad_logabsdet,
|
|
const at::Tensor& A,
|
|
const at::Tensor& signdet,
|
|
const at::Tensor& LU,
|
|
const at::Tensor& pivots);
|
|
at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self);
|
|
at::Tensor sinc_backward(const at::Tensor& grad, const at::Tensor& self);
|
|
at::Tensor sparse_constructor_values_backward(
|
|
const at::Tensor& sparse_grad_out,
|
|
const at::Tensor& indices);
|
|
at::Tensor embedding_dense_double_backward_symint(
|
|
const at::Tensor& grad,
|
|
const at::Tensor& indices,
|
|
const c10::SymInt& padding_idx);
|
|
at::Tensor index_backward(
|
|
at::Tensor zeros_like_self,
|
|
const torch::List<std::optional<Tensor>>& indices,
|
|
const at::Tensor& grad);
|
|
at::Tensor _cudnn_ctc_loss_backward(
|
|
const at::Tensor& grad_out,
|
|
const at::Tensor& loss,
|
|
const at::Tensor& raw_grad,
|
|
bool zero_infinity);
|
|
at::Tensor elu_double_backward(
|
|
const Tensor& grad,
|
|
const Tensor& grad_output,
|
|
const Scalar& alpha,
|
|
const Scalar& scale,
|
|
const Scalar& input_scale,
|
|
bool is_result,
|
|
const Tensor& self_or_result);
|
|
|
|
Tensor svd_backward(
|
|
const Tensor& gU,
|
|
const Tensor& gS,
|
|
const Tensor& gVh,
|
|
const Tensor& U,
|
|
const Tensor& S,
|
|
const Tensor& Vh);
|
|
|
|
std::tuple<Tensor, Tensor, Tensor> linalg_svd_jvp(
|
|
const Tensor& dA,
|
|
const Tensor& U,
|
|
const Tensor& S,
|
|
const Tensor& Vh,
|
|
const bool full_matrices);
|
|
Tensor slice_backward_wrapper(
|
|
const at::Tensor& grad,
|
|
const c10::SymIntArrayRef& input_sizes,
|
|
int64_t dim,
|
|
std::optional<c10::SymInt> start,
|
|
std::optional<c10::SymInt> end,
|
|
c10::SymInt step);
|
|
std::tuple<Tensor, Tensor> linalg_eig_jvp(
|
|
const Tensor& dA,
|
|
const Tensor& L,
|
|
const Tensor& V,
|
|
const bool is_hermitian);
|
|
Tensor linalg_eig_backward(
|
|
const Tensor& gL,
|
|
const Tensor& gV,
|
|
const Tensor& L,
|
|
const Tensor& V,
|
|
const bool is_hermitian,
|
|
const bool symeig_eigenvectors = true);
|
|
Tensor linalg_lstsq_solution_jvp(
|
|
const Tensor& A,
|
|
const Tensor& B_,
|
|
const Tensor& dA,
|
|
const Tensor& dB_);
|
|
Tensor linalg_lstsq_residuals_jvp(
|
|
const Tensor& A,
|
|
const Tensor& B_,
|
|
const Tensor& dA,
|
|
const Tensor& dB_,
|
|
const Tensor& X_,
|
|
const Tensor& L);
|
|
std::tuple<Tensor, Tensor> triangular_solve_backward(
|
|
const Tensor& grad_x,
|
|
const Tensor& grad_m,
|
|
const Tensor& b,
|
|
const Tensor& a,
|
|
const Tensor& x,
|
|
const bool upper,
|
|
const bool transpose,
|
|
const bool unitriangular,
|
|
std::array<bool, 2> output_mask);
|
|
Tensor triangular_solve_jvp(
|
|
const Tensor& X,
|
|
const Tensor& A,
|
|
const Tensor& dA,
|
|
const Tensor& dB,
|
|
const bool upper,
|
|
const bool transpose,
|
|
const bool unitriangular);
|
|
Tensor linalg_solve_triangular_forward_AD(
|
|
const Tensor& A_t,
|
|
const Tensor& B_t,
|
|
const Tensor& A,
|
|
const Tensor& X,
|
|
const bool upper,
|
|
const bool left,
|
|
const bool unitriangular);
|
|
std::tuple<Tensor, Tensor> linalg_solve_triangular_backward(
|
|
const Tensor& grad,
|
|
const Tensor& A,
|
|
const Tensor& X,
|
|
const bool upper,
|
|
const bool left,
|
|
const bool unitriangular,
|
|
std::array<bool, 2> output_mask);
|
|
std::tuple<Tensor, Tensor, Tensor> _trilinear_backward(
|
|
const Tensor& grad_out,
|
|
const std::optional<Tensor>& i1,
|
|
const std::optional<Tensor>& i2,
|
|
const std::optional<Tensor>& i3,
|
|
IntArrayRef expand1,
|
|
IntArrayRef expand2,
|
|
IntArrayRef expand3,
|
|
IntArrayRef sumdim,
|
|
std::array<bool, 3> grad_mask);
|
|
std::tuple<Tensor, Tensor> linalg_qr_jvp(
|
|
const Tensor& dA,
|
|
const Tensor& Q,
|
|
const Tensor& R,
|
|
const std::string_view mode);
|
|
Tensor linalg_qr_backward(
|
|
const Tensor& gQ,
|
|
const Tensor& gR,
|
|
const Tensor& Q,
|
|
const Tensor& R,
|
|
const std::string_view mode);
|
|
Tensor linalg_matrix_exp_differential(
|
|
const Tensor& self,
|
|
const Tensor& grad,
|
|
bool adjoint);
|
|
std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward(
|
|
const Tensor& input,
|
|
const std::optional<Tensor>& gamma,
|
|
const Tensor& ggI,
|
|
const Tensor& ggG,
|
|
const Tensor& ggB,
|
|
const Tensor& gO,
|
|
const std::optional<Tensor>& running_mean,
|
|
const std::optional<Tensor>& running_var,
|
|
bool training,
|
|
double eps,
|
|
const std::optional<Tensor>& save_mean,
|
|
const std::optional<Tensor>& save_invstd,
|
|
std::array<bool, 3> output_mask);
|
|
std::tuple<Tensor, Tensor> _euclidean_dist_backward(
|
|
const Tensor& grad,
|
|
const Tensor& x1,
|
|
const Tensor& x2,
|
|
const Tensor& res);
|
|
Tensor fft_backward(
|
|
const Tensor& self,
|
|
const Tensor& grad,
|
|
int64_t signal_ndim,
|
|
bool complex_input,
|
|
bool complex_output,
|
|
bool inverse,
|
|
IntArrayRef checked_signal_sizes,
|
|
int64_t normalization,
|
|
bool onesided,
|
|
IntArrayRef output_sizes);
|
|
Tensor fft_r2c_backward(
|
|
const Tensor& grad,
|
|
at::IntArrayRef dim,
|
|
int64_t normalization,
|
|
bool onesided,
|
|
const c10::SymInt& last_dim_size);
|
|
Tensor fft_c2r_backward(
|
|
const Tensor& grad,
|
|
IntArrayRef dim,
|
|
int64_t normalization);
|
|
Tensor constant_pad_nd_backward(const Tensor& grad, c10::SymIntArrayRef pad);
|
|
std::tuple<Tensor, Tensor> cholesky_solve_backward(
|
|
const Tensor& grad_x,
|
|
const Tensor& self,
|
|
const Tensor& input2,
|
|
const Tensor& result,
|
|
const bool upper,
|
|
std::array<bool, 2> output_mask);
|
|
Tensor cholesky_solve_jvp(
|
|
const Tensor& X,
|
|
const Tensor& U,
|
|
const Tensor& dU,
|
|
const Tensor& dB,
|
|
const bool upper);
|
|
std::tuple<Tensor, Tensor, Tensor>
|
|
infinitely_differentiable_native_group_norm_backward(
|
|
const Tensor& dY,
|
|
const Tensor& dmean,
|
|
const Tensor& drstd,
|
|
const Tensor& X,
|
|
const Tensor& mean,
|
|
const Tensor& rstd,
|
|
const std::optional<Tensor>& gamma,
|
|
c10::SymInt N,
|
|
const c10::SymInt& C,
|
|
c10::SymInt HxW,
|
|
int64_t group,
|
|
double eps,
|
|
std::array<bool, 3> grad_input_mask);
|
|
Tensor gelu_double_backward(
|
|
const Tensor& ggI,
|
|
const Tensor& gO,
|
|
const Tensor& input,
|
|
std::string_view approximate);
|
|
Tensor as_strided_backward(
|
|
Tensor grad,
|
|
const TensorGeometry& input_geometry,
|
|
c10::SymIntArrayRef sizes,
|
|
c10::SymIntArrayRef strides,
|
|
const std::optional<c10::SymInt>& storage_offset_);
|
|
Tensor as_strided_scatter_backward(
|
|
const Tensor& grad,
|
|
const TensorGeometry& input_geometry,
|
|
const TensorGeometry& src_geometry,
|
|
c10::SymIntArrayRef sizes,
|
|
c10::SymIntArrayRef strides,
|
|
std::optional<c10::SymInt> storage_offset);
|
|
std::tuple<Tensor, Tensor> atan2_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& other,
|
|
std::array<bool, 2> output_mask);
|
|
Tensor amaxamin_jvp(
|
|
const Tensor& x,
|
|
const Tensor& dx,
|
|
const Tensor& result,
|
|
IntArrayRef dim,
|
|
bool keepdim);
|
|
std::tuple<Tensor, Tensor, Tensor> layer_norm_double_backward(
|
|
const Tensor& input,
|
|
const std::optional<Tensor>& gamma,
|
|
const Tensor& ggI,
|
|
const Tensor& ggG,
|
|
const Tensor& ggB,
|
|
const Tensor& gO,
|
|
const Tensor& save_mean,
|
|
const Tensor& save_invstd,
|
|
c10::SymIntArrayRef normalized_shape,
|
|
std::array<bool, 3> output_mask);
|
|
|
|
std::tuple<Tensor, Tensor> infinitely_differentiable_native_rms_norm_backward(
|
|
const Tensor& dY,
|
|
const Tensor& drstd,
|
|
const Tensor& input,
|
|
IntArrayRef normalized_shape,
|
|
const Tensor& rstd,
|
|
const std::optional<Tensor>& weight_opt,
|
|
std::array<bool, 2> grad_input_mask);
|
|
|
|
std::tuple<Tensor, Tensor> householder_product_backward(
|
|
const Tensor& grad,
|
|
const Tensor& result,
|
|
const Tensor& input,
|
|
const Tensor& tau,
|
|
const bool flip_order = false);
|
|
Tensor householder_product_jvp(
|
|
const Tensor& dV,
|
|
const Tensor& dtau,
|
|
const Tensor& prod,
|
|
const Tensor& V,
|
|
const Tensor& tau);
|
|
std::tuple<Tensor, Tensor, Tensor> ormqr_backward(
|
|
const Tensor& grad,
|
|
const Tensor& result,
|
|
const Tensor& self,
|
|
const Tensor& tau,
|
|
const Tensor& other,
|
|
bool left,
|
|
bool transpose,
|
|
std::array<bool, 3> grad_output_mask);
|
|
std::tuple<Tensor, Tensor> polar_backward(
|
|
const Tensor& grad,
|
|
const Tensor& result);
|
|
Tensor i1_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& result);
|
|
Tensor i1e_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& result);
|
|
Tensor linalg_lu_solve_LU(
|
|
const Tensor& grad,
|
|
const Tensor& LU,
|
|
const Tensor& pivots,
|
|
const Tensor& X,
|
|
const bool left,
|
|
const bool adjoint);
|
|
Tensor linalg_lu_solve_jvp(
|
|
const Tensor& X,
|
|
const Tensor& LU,
|
|
const Tensor& pivots,
|
|
const Tensor& dLU,
|
|
const Tensor& dB,
|
|
const bool left,
|
|
const bool adjoint);
|
|
std::tuple<Tensor, Tensor> linalg_solve_backward(
|
|
const Tensor& gX,
|
|
const Tensor& X,
|
|
const Tensor& A,
|
|
const Tensor& LU,
|
|
const Tensor& pivots,
|
|
const bool left,
|
|
const bool B_requires_grad);
|
|
Tensor linalg_solve_jvp(
|
|
const Tensor& dA,
|
|
const Tensor& dB,
|
|
const Tensor& X,
|
|
const Tensor& LU,
|
|
const Tensor& pivots,
|
|
const bool left,
|
|
const bool use_A_T);
|
|
Tensor lu_unpack_backward(
|
|
const Tensor& L_grad,
|
|
const Tensor& U_grad,
|
|
const c10::SymInt& m,
|
|
const c10::SymInt& n);
|
|
|
|
Tensor linalg_det_backward(
|
|
const Tensor& grad,
|
|
const Tensor& det,
|
|
const Tensor& A,
|
|
const Tensor& LU,
|
|
const Tensor& pivots);
|
|
Tensor linalg_det_jvp(
|
|
const Tensor& dA,
|
|
const Tensor& det,
|
|
const Tensor& LU,
|
|
const Tensor& pivots,
|
|
const bool use_A_T);
|
|
std::tuple<Tensor, Tensor> linalg_lstsq_backward(
|
|
const Tensor& gX_,
|
|
const Tensor& gL,
|
|
const Tensor& A,
|
|
const Tensor& B_,
|
|
const Tensor& X_,
|
|
const std::array<bool, 2>& grad_input_mask);
|
|
Tensor linalg_lu_backward(
|
|
const Tensor& L_grad,
|
|
const Tensor& U_grad,
|
|
const Tensor& P,
|
|
const Tensor& L,
|
|
const Tensor& U,
|
|
const bool pivot);
|
|
|
|
std::tuple<Tensor, Tensor> linalg_lu_jvp(
|
|
const Tensor& dA,
|
|
const Tensor& P,
|
|
const Tensor& L,
|
|
const Tensor& U,
|
|
const bool pivot);
|
|
|
|
Tensor lu_factor_ex_backward(
|
|
const Tensor& grad,
|
|
const Tensor& LU,
|
|
const Tensor& pivs,
|
|
const bool pivot);
|
|
Tensor lu_factor_ex_jvp(
|
|
const Tensor& dX,
|
|
const Tensor& LU,
|
|
const Tensor& pivs,
|
|
const bool pivot);
|
|
|
|
Tensor batch_norm_jvp(
|
|
const Tensor& input_p,
|
|
const Tensor& input_t,
|
|
const Tensor& weight_p,
|
|
const Tensor& weight_t,
|
|
const Tensor& bias_p,
|
|
const Tensor& bias_t,
|
|
const std::optional<Tensor>& running_mean,
|
|
const std::optional<Tensor>& running_var,
|
|
const Tensor& saved_mean,
|
|
const Tensor& saved_invstd,
|
|
bool train,
|
|
double eps);
|
|
|
|
Tensor layer_norm_jvp(
|
|
const Tensor& input_p,
|
|
const Tensor& input_t,
|
|
const Tensor& weight_p,
|
|
const Tensor& weight_t,
|
|
const Tensor& bias_p,
|
|
const Tensor& bias_t,
|
|
const Tensor& saved_mean,
|
|
const Tensor& saved_invstd,
|
|
c10::SymIntArrayRef normalized_shape);
|
|
|
|
Tensor rms_norm_jvp(
|
|
const Tensor& input_p,
|
|
const Tensor& input_t,
|
|
const Tensor& weight_p,
|
|
const Tensor& weight_t,
|
|
const Tensor& saved_rstd,
|
|
IntArrayRef normalized_shape);
|
|
|
|
Tensor rms_norm_rstd_jvp(
|
|
const Tensor& input_p,
|
|
const Tensor& input_t,
|
|
const Tensor& saved_rstd,
|
|
IntArrayRef normalized_shape);
|
|
|
|
Tensor group_norm_jvp(
|
|
const Tensor& input_p,
|
|
const Tensor& input_t,
|
|
const Tensor& weight_p,
|
|
const Tensor& weight_t,
|
|
const Tensor& bias_p,
|
|
const Tensor& bias_t,
|
|
const Tensor& saved_mean,
|
|
const Tensor& saved_invstd,
|
|
int64_t groups);
|
|
Tensor group_norm_mean_jvp(
|
|
const Tensor& input_t,
|
|
const Tensor& mean_p,
|
|
int64_t groups);
|
|
Tensor group_norm_invstd_jvp(
|
|
const Tensor& input_p,
|
|
const Tensor& input_t,
|
|
const Tensor& mean_p,
|
|
const Tensor& invstd_p,
|
|
int64_t groups);
|
|
|
|
Tensor convolution_jvp(
|
|
const Tensor& input_p,
|
|
const Tensor& input_t,
|
|
const Tensor& weight_p,
|
|
const Tensor& weight_t,
|
|
const Tensor& bias_p,
|
|
const Tensor& bias_t,
|
|
at::SymIntArrayRef stride,
|
|
at::SymIntArrayRef padding,
|
|
at::SymIntArrayRef dilation,
|
|
bool transposed,
|
|
at::SymIntArrayRef output_padding,
|
|
const c10::SymInt& groups);
|
|
|
|
Tensor _convolution_jvp(
|
|
const Tensor& input_p,
|
|
const Tensor& input_t,
|
|
const Tensor& weight_p,
|
|
const Tensor& weight_t,
|
|
const Tensor& bias_p,
|
|
const Tensor& bias_t,
|
|
at::SymIntArrayRef stride,
|
|
at::SymIntArrayRef padding,
|
|
at::SymIntArrayRef dilation,
|
|
bool transposed,
|
|
at::SymIntArrayRef output_padding,
|
|
const c10::SymInt& groups,
|
|
bool benchmark,
|
|
bool deterministic,
|
|
bool cudnn_enabled,
|
|
bool allow_tf32);
|
|
|
|
Tensor convolution_backward_jvp_grad_bias(
|
|
const Tensor& grad_out_t,
|
|
const Tensor& grad_bias);
|
|
|
|
Tensor cat_jvp(const at::ITensorListRef& tensors, int64_t dim);
|
|
Tensor block_diag_jvp(at::TensorList tensors);
|
|
Tensor stack_jvp(at::TensorList tensors, int64_t dim);
|
|
Tensor cumprod_jvp(
|
|
const Tensor& self_t,
|
|
const Tensor& self_p,
|
|
const Tensor& result,
|
|
int dim);
|
|
Tensor gather_with_keepdimed_indices(
|
|
const Tensor& input,
|
|
int64_t dim,
|
|
const Tensor& indices,
|
|
bool keepdim);
|
|
Tensor evenly_read_jvp(
|
|
const Tensor& fw_grad,
|
|
const Tensor& input,
|
|
const Tensor& value);
|
|
Tensor warn_backwards(const Tensor& grad_output);
|
|
|
|
std::tuple<Tensor, Tensor> _cudnn_convolution_backward(
|
|
const at::Tensor& self,
|
|
const at::Tensor& grad_output,
|
|
const at::Tensor& weight,
|
|
at::SymIntArrayRef padding,
|
|
at::SymIntArrayRef output_padding,
|
|
at::SymIntArrayRef stride,
|
|
at::SymIntArrayRef dilation,
|
|
bool transposed,
|
|
c10::SymInt groups,
|
|
::std::array<bool, 2> output_mask);
|
|
|
|
Tensor scatter_reduce_jvp(
|
|
const Tensor& self_p,
|
|
const Tensor& self_t,
|
|
int dim,
|
|
const Tensor& index,
|
|
const Tensor& src_p,
|
|
const Tensor& src_t,
|
|
std::string_view reduce,
|
|
bool include_self,
|
|
const Tensor& result);
|
|
|
|
std::tuple<Tensor, Tensor> scatter_reduce_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
int dim,
|
|
const Tensor& index,
|
|
const Tensor& src,
|
|
std::string_view reduce,
|
|
bool include_self,
|
|
const Tensor& result);
|
|
|
|
Tensor _to_copy_backward(
|
|
const Tensor& grad,
|
|
const c10::TensorOptions& self_options);
|
|
|
|
std::tuple<Tensor, Tensor> index_reduce_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
int dim,
|
|
const Tensor& index,
|
|
const Tensor& source,
|
|
std::string_view reduce,
|
|
bool include_self,
|
|
const Tensor& result);
|
|
|
|
Tensor take_backward(
|
|
const Tensor& grad,
|
|
const Tensor& self,
|
|
const Tensor& indices);
|
|
|
|
Tensor to_sparse_backward(
|
|
const Tensor& grad,
|
|
const c10::Layout self_layout,
|
|
const c10::OptionalArrayRef<c10::SymInt>& self_blocksize);
|
|
|
|
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor>
|
|
mkldnn_rnn_layer_differentiable_backward(
|
|
const Tensor& input,
|
|
const Tensor& weight0,
|
|
const Tensor& weight1,
|
|
const Tensor& weight2,
|
|
const Tensor& weight3,
|
|
const Tensor& hx_,
|
|
const Tensor& cx_tmp,
|
|
const Tensor& output,
|
|
const Tensor& hy_,
|
|
const Tensor& cy_,
|
|
const std::optional<Tensor>& grad_output_r_opt,
|
|
const std::optional<Tensor>& grad_hy_r_opt,
|
|
const std::optional<Tensor>& grad_cy_r_opt,
|
|
bool reverse,
|
|
int64_t mode,
|
|
int64_t hidden_size,
|
|
int64_t num_layers,
|
|
bool has_biases,
|
|
bool train,
|
|
bool bidirectional,
|
|
at::IntArrayRef batch_sizes,
|
|
bool batch_first,
|
|
const at::Tensor& workspace);
|
|
|
|
Tensor values_backward(const Tensor& grad, const Tensor& self);
|
|
|
|
} // namespace torch::autograd::generated::details
|