Files
pytorch/test/jit/test_builtins.py
soulitzer 71aefd5595 [reland] Allow setting grad_dtype on leaf tensors (#164751)
ghstack-source-id: e44b3941530be83a630ec93f1478eec741ffca2e
Pull-Request-resolved: https://github.com/pytorch/pytorch/pull/162815

Fixes #ISSUE_NUMBER

Relanding due to internal weirdness. Separate PR to codev w/o ghstack.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164751
Approved by: https://github.com/albanD
2025-10-08 20:23:13 +00:00

459 lines
15 KiB
Python

# Owner(s): ["oncall: jit"]
import inspect
import os
import sys
import unittest
from typing import Dict, List
import torch
from torch.testing import FileCheck
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.common_utils import raise_on_run_directly
from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA
class TestBuiltins(JitTestCase):
"""
Tests for TorchScript support of Python builtin functions.
"""
def test_has_attr(self):
class HasA(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.a = 0
class HasB(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.b = 1
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.mods = torch.nn.ModuleList([HasA(), HasB()])
def forward(self):
# use a list to encode hasattr results
l = torch.jit.annotate(List[int], [])
for mod in self.mods:
l.append(int(hasattr(mod, "a")))
l.append(int(hasattr(mod, "b")))
# actually retrieve the attr to test static refinement
if hasattr(mod, "a"):
l.append(mod.a)
if hasattr(mod, "b"):
l.append(mod.b)
return l
self.checkModule(Mod(), ())
def test_has_attr_invalid_args(self):
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.mod = torch.nn.Linear(1, 1)
def forward(self, name):
# not allowed, `name` must be static.
return hasattr(self.mod, name)
with self.assertRaisesRegexWithHighlight(RuntimeError, "hasattr", "name"):
torch.jit.script(Mod())
class Mod(torch.nn.Module):
def forward(self, name):
# not allowed, `torch.rand` is not a class type
return hasattr(torch.rand(2, 3), name)
with self.assertRaisesRegexWithHighlight(RuntimeError, "hasattr", "name"):
torch.jit.script(Mod())
def test_del(self):
def fn(x: List[int]) -> List[int]:
a = x * 2
del a
return x
self.checkScript(fn, ([1, 2, 3],))
with self.assertRaisesRegexWithHighlight(RuntimeError, "undefined value", "a"):
@torch.jit.script
def fn(x):
a = x**2
del a
return a # noqa: F821
with self.assertRaisesRegexWithHighlight(RuntimeError, "undefined value", "a"):
@torch.jit.script
def fn(x):
a = x**2
if a:
del a
return a
with self.assertRaisesRegexWithHighlight(RuntimeError, "undefined value", "b"):
@torch.jit.script
def fn(x):
a = x**2
del b # noqa: F821
return a
def test_del_multiple_operands(self):
def fn(x: List[int]) -> List[int]:
a, b, c = x[0], x[1], x[2]
del a, b, c
return x
self.checkScript(fn, ([1, 2, 3],))
def del_list_multiple_operands(x: List[int]) -> List[int]:
del x[0], x[1]
return x
py_out = del_list_multiple_operands([0, 1, 2])
jit_out = torch.jit.script(del_list_multiple_operands)([0, 1, 2])
self.assertEqual(py_out, jit_out)
def del_dict_multiple_operands(x: Dict[str, int]) -> Dict[str, int]:
del x["hi"], x["there"]
return x
py_out = del_dict_multiple_operands({"hi": 5, "there": 6})
jit_out = torch.jit.script(del_dict_multiple_operands)({"hi": 5, "there": 6})
self.assertEqual(py_out, jit_out)
def test_torch_check(self):
"""Test torch._check functionality with flexible argument handling"""
def test_check_basic(x):
torch._check(x.sum().item() > -1000)
return x
def test_check_with_message(x):
torch._check(x.sum().item() > -1000, "Tensor sum must be reasonable")
return x
def test_check_with_kwarg_message(x):
torch._check(
x.sum().item() > -1000, message="Tensor sum must be reasonable"
)
return x
def test_check_cond_kwarg(x):
torch._check(cond=x.sum().item() > -1000)
return x
def test_check_both_kwargs(x):
torch._check(cond=x.sum().item() > -1000, message="Both as kwargs")
return x
def test_check_kwargs_reversed(x):
torch._check(message="Reversed order", cond=x.sum().item() > -1000)
return x
def test_check_in_loop(x):
sizes = torch.jit.annotate(List[int], x.tolist())
for s in sizes:
torch._check(s > -100)
return x
test_tensor = torch.tensor([1, 2, 3])
# Test all variations
self.checkScript(test_check_basic, (test_tensor,))
self.checkScript(test_check_with_message, (test_tensor,))
self.checkScript(test_check_with_kwarg_message, (test_tensor,))
self.checkScript(test_check_cond_kwarg, (test_tensor,))
self.checkScript(test_check_both_kwargs, (test_tensor,))
self.checkScript(test_check_kwargs_reversed, (test_tensor,))
self.checkScript(test_check_in_loop, (test_tensor,))
# Test that the compiled functions work correctly
scripted_basic = torch.jit.script(test_check_basic)
scripted_with_message = torch.jit.script(test_check_with_message)
scripted_with_kwarg = torch.jit.script(test_check_with_kwarg_message)
scripted_cond_kwarg = torch.jit.script(test_check_cond_kwarg)
scripted_both_kwargs = torch.jit.script(test_check_both_kwargs)
scripted_kwargs_reversed = torch.jit.script(test_check_kwargs_reversed)
scripted_in_loop = torch.jit.script(test_check_in_loop)
# These should all succeed without throwing
result1 = scripted_basic(test_tensor)
result2 = scripted_with_message(test_tensor)
result3 = scripted_with_kwarg(test_tensor)
result4 = scripted_cond_kwarg(test_tensor)
result5 = scripted_both_kwargs(test_tensor)
result6 = scripted_kwargs_reversed(test_tensor)
result7 = scripted_in_loop(test_tensor)
# Results should be the same as input
for result in [result1, result2, result3, result4, result5, result6, result7]:
self.assertEqual(result, test_tensor)
# Check that the message constants are present in the graphs
FileCheck().check("Tensor sum must be reasonable").run(
scripted_with_message.graph
)
FileCheck().check("Tensor sum must be reasonable").run(
scripted_with_kwarg.graph
)
FileCheck().check("Both as kwargs").run(scripted_both_kwargs.graph)
FileCheck().check("Reversed order").run(scripted_kwargs_reversed.graph)
# Verify the graphs contain some computation (not just empty)
basic_graph_str = str(scripted_basic.graph)
self.assertTrue(
len(basic_graph_str) > 100, "Basic graph should contain some computation"
)
# Verify the loop case contains a loop
FileCheck().check("prim::Loop").run(scripted_in_loop.graph)
for scripted_func in [
scripted_basic,
scripted_with_message,
scripted_with_kwarg,
scripted_cond_kwarg,
scripted_both_kwargs,
scripted_kwargs_reversed,
]:
FileCheck().check("prim::If").check("prim::RaiseException").run(
scripted_func.graph
)
def test_torch_check_invalid_args(self):
"""Test torch._check with invalid arguments"""
# Test too many arguments
with self.assertRaisesRegex(
RuntimeError, "torch._check\\(\\) expects 1 or 2 arguments"
):
@torch.jit.script
def too_many_args(x):
torch._check(True, "msg", "extra")
return x
# Test invalid keyword argument
with self.assertRaisesRegex(RuntimeError, "unexpected keyword argument"):
@torch.jit.script
def invalid_kwarg(x):
torch._check(True, invalid_arg="msg")
return x
# Test duplicate cond argument (positional + keyword)
with self.assertRaisesRegex(
RuntimeError, "multiple values for argument 'cond'"
):
@torch.jit.script
def duplicate_cond(x):
torch._check(True, cond=False)
return x
# Test missing required cond argument
with self.assertRaisesRegex(RuntimeError, "missing required argument 'cond'"):
@torch.jit.script
def missing_cond(x):
torch._check(message="msg only")
return x
# Test no arguments at all
with self.assertRaisesRegex(
RuntimeError, "torch._check\\(\\) expects 1 or 2 arguments"
):
@torch.jit.script
def no_args(x):
torch._check()
return x
# Test too many total arguments (positional + keyword)
with self.assertRaisesRegex(
RuntimeError, "torch._check\\(\\) expects 1 or 2 arguments"
):
@torch.jit.script
def too_many_total_args(x):
torch._check(True, "msg", cond=False)
return x
class TestTensorBuiltins(JitTestCase):
def test_tensor_properties(self):
def should_keep(tensor, name):
if inspect.isroutine(getattr(tensor, name)):
return False
if name.startswith("_"):
return False
return True
tensor = torch.arange(4, dtype=torch.float).view(2, 2)
keys = dir(tensor)
# real and imag are only implemented for complex tensors.
self.assertRaises(RuntimeError, lambda: should_keep(tensor, "imag"))
keys.remove("imag")
properties = [p for p in keys if should_keep(tensor, p)]
code_template = """
def fn(x):
return x.{}
"""
EQUALITY_MISMATCH = {
# TorchScript doesn't have real enums so they return an int instead
# of the actual value
"dtype",
"layout",
}
MISSING_PROPERTIES = {
"grad_fn",
# This is an undocumented property so it's not included
"output_nr",
# This has a longer implementation, maybe not worth copying to
# TorchScript if named tensors don't work there anyways
"names",
# We don't plan to support grad_dtype in TorchScript
"grad_dtype",
}
for p in properties:
if p in MISSING_PROPERTIES:
continue
code = code_template.format(p)
cu = torch.jit.CompilationUnit()
cu.define(code)
if p in EQUALITY_MISMATCH:
continue
self.assertEqual(getattr(tensor, p), cu.fn(tensor))
def test_tensor_subscript_assign(self):
def fn1(x):
a = torch.zeros_like(x, dtype=torch.uint8)
a[torch.tensor(0)] = torch.tensor(2, dtype=torch.uint8)
return a
def fn2(x):
a = torch.zeros_like(x, dtype=torch.uint8)
a[0] = 2
return a
def fn3(x):
a = torch.zeros_like(x, dtype=torch.uint8)
a[torch.tensor(0)] = 2
return a
def fn4(x):
a = torch.zeros_like(x, dtype=torch.uint8)
a[0] = torch.tensor(2, dtype=torch.uint8)
return a
def fn5(x):
a = torch.zeros_like(x, dtype=torch.float32)
a[torch.tensor(0)] = 2
return a
for fn in (fn1, fn2, fn3, fn4, fn5):
self.checkScript(fn, (torch.zeros(2, dtype=torch.uint8),))
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
def test_tensor_subscript_assign_device(self):
def fn6(x):
a = torch.zeros_like(x, dtype=torch.float32, device="cuda")
a[torch.tensor(0)] = 2
return a
self.checkScript(fn6, (torch.zeros(2, dtype=torch.float32, device="cuda"),))
def test_tensor_item(self):
def test_scalar_cast(x):
scalar = x.item()
return int(scalar), float(scalar)
graph = torch.jit.script(test_scalar_cast).graph
FileCheck().check("(int, float) = prim::TupleConstruct").run(graph)
self.checkScript(test_scalar_cast, (torch.tensor(1.0),))
self.checkScript(test_scalar_cast, (torch.tensor(1),))
def test_method_on_number(self):
def func():
c = 1
return c.add(1)
with self.assertRaisesRegex(RuntimeError, "object has no attribute or method"):
torch.jit.script(func)
# testing implicit conversion of tensors to scalars to match function arguments
def test_scalar_to_num_conversions(self):
@torch.jit.script
def multiple_defs(x):
c = 1
x = x + c
return x
self.assertTrue("ImplicitTensorToNum" not in str(multiple_defs.graph))
@torch.jit.script
def tensor_to_int_script(x, tensor):
return x.unsqueeze(tensor)
# location present in error message
with self.assertRaisesRegex(RuntimeError, "x.unsqueeze"):
tensor_to_int_script(torch.tensor([2]), torch.tensor([2, 2]))
def tensor_to_int(x, tensor):
return x.unsqueeze(tensor)
@torch.jit.script
def tensor_to_float_script(x, tensor):
return x.addcmul(tensor, tensor, value=tensor)
def tensor_to_float(x, tensor):
return x.addcmul(tensor, tensor, value=tensor)
x = torch.zeros(10)
# float tensor, float tensor with grad, int tensor (can't set grad on int tensor)
tensors = [
torch.tensor(1.1),
torch.tensor(1.1, requires_grad=True),
torch.tensor(0),
torch.tensor([2]),
]
script_funs = [tensor_to_int_script, tensor_to_float_script]
funs = [tensor_to_int, tensor_to_float]
# return the result, or whether exception was thrown
def test_func(func, x, tensor):
try:
result = func(x, tensor)
except RuntimeError:
result = True
except TypeError:
result = True
return result
# assert result or exception equal for each (function, inputs)
for tensor in tensors:
for i in range(len(script_funs)):
self.assertEqual(
test_func(script_funs[i], x, tensor), test_func(funs[i], x, tensor)
)
if __name__ == "__main__":
raise_on_run_directly("test/test_jit.py")