Files
pytorch/test/inductor/test_fp8.py
Jeff Daily 5656d45c8f forward fix #164481 (#164578)
PR #164481 added unit test test_scaled_mm_preserves_strides in test/inductor/test_fp8.py. It was missing the adjustment for ROCm's F8 types on MI300.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164578
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-03 15:44:34 +00:00

1013 lines
38 KiB
Python

# Owner(s): ["module: inductor"]
import functools
import unittest
from typing import Union
import torch
from torch import Tensor
from torch._inductor import config, utils
from torch._inductor.pattern_matcher import PatternMatcherPass
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import run_and_get_code
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FP8,
PLATFORM_SUPPORTS_MX_GEMM,
)
from torch.testing._internal.common_quantized import ceil_div, to_blocked
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
)
from torch.testing._internal.inductor_utils import (
_quantize_rowwise,
_quantize_tensorwise,
_to_fp8_saturated,
HAS_CPU,
HAS_CUDA_AND_TRITON,
)
from torch.testing._internal.jit_utils import FileCheck
from torch.utils._triton import has_triton_tma_device
torch.set_float32_matmul_precision("high")
f8_msg = "FP8 is only supported on H100+, SM 8.9 and MI300+ devices"
def _fix_fp8_dtype_for_rocm(
dtype: Union[torch.dtype, list[torch.dtype], tuple[torch.dtype]], device
) -> Union[torch.dtype, list[torch.dtype], tuple[torch.dtype]]:
# This function is used to change FP8 data types
# with MI300 supported FP8 types if device is GPU:
# e4m3fn -> e4m3fnuz
# e5m2 -> e5m2fnuz
# Supports single, tuple and list of dtypes
# Keeps the same test name for CUDA and ROCm
# Also it allows to enable FP8 inductor tests for CPU
if (
torch.version.hip
and ("cuda" in device)
and ("gfx94" in torch.cuda.get_device_properties(0).gcnArchName.split(":")[0])
):
# MI300 uses different float8 dtypes
if isinstance(dtype, tuple):
return tuple(_fix_fp8_dtype_for_rocm(x, device) for x in dtype)
if isinstance(dtype, list):
return [_fix_fp8_dtype_for_rocm(x, device) for x in dtype]
if dtype == torch.float8_e4m3fn:
return torch.float8_e4m3fnuz
elif dtype == torch.float8_e5m2:
return torch.float8_e5m2fnuz
return dtype
@instantiate_parametrized_tests
class TestFP8Types(TestCase):
@parametrize("float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("device", ("cuda", "cpu"))
def test_xblock_for_small_numel(self, float8_dtype: torch.dtype, device: str):
"""
TritonOverrides.to_dtype will set min_elem_per_thread to 2 or 4
depends on the variant of fp8 type.
This cause triton_heuristics.triton_config pick a XBLOCK larger
than numel and fail the config sanity check.
We should not pick a XBLOCK larger than xnumel
"""
float8_dtype = _fix_fp8_dtype_for_rocm(float8_dtype, device=device)
if device == "cuda" and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(f8_msg)
def f(x):
return x.to(dtype=float8_dtype)
x = torch.randn(1, device=device)
expected = f(x)
actual = torch.compile(f)(x)
torch.testing.assert_close(expected.half(), actual.half(), rtol=1e-2, atol=1e-2)
@parametrize("dtype", (torch.float16, torch.bfloat16))
@parametrize("device", ("cuda", "cpu"))
def test_eager_fallback(self, dtype: torch.dtype, device: torch.device):
if device == "cuda" and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(f8_msg)
weight_shape = (32, 16)
e4m3_type = torch.float8_e4m3fn
e4m3_type = _fix_fp8_dtype_for_rocm(e4m3_type, device=device)
def fp8_matmul_unwrapped(x):
a_scale = torch.Tensor([1.0]).to(device=device)
b_scale = torch.Tensor([1.0]).to(device=device)
output_scale = None
input_bias = torch.rand(32, device=device, dtype=dtype)
weight = torch.rand(*weight_shape, device=device, dtype=dtype).T.to(
e4m3_type
)
a_inverse_scale = 1 / a_scale
b_inverse_scale = 1 / b_scale
output = torch._scaled_mm(
x,
weight,
bias=input_bias,
out_dtype=dtype,
scale_a=a_inverse_scale,
scale_b=b_inverse_scale,
scale_result=output_scale,
)
return output
compiled_fp8_matmul = torch.compile(
fp8_matmul_unwrapped, backend="inductor", dynamic=True
)
x_shape = (16, 16)
x = torch.rand(*x_shape, device=device, dtype=dtype).to(e4m3_type)
y_fp8 = compiled_fp8_matmul(x) # noqa: F841
x_shape = (15, 16)
x = torch.rand(*x_shape, device=device, dtype=dtype).to(e4m3_type)
y_fp8 = compiled_fp8_matmul(x) # noqa: F841
@parametrize("dtype", (torch.float16, torch.bfloat16, torch.float))
@parametrize("shape", ("15,3,13", "4,2048,4096"))
@parametrize("dst_types", [(torch.float8_e4m3fn, torch.float8_e5m2)])
@parametrize("device", ("cuda", "cpu"))
def test_valid_cast(
self, dtype: torch.dtype, shape: str, dst_types: tuple, device: torch.device
):
if device == "cuda" and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(f8_msg)
dst_types = _fix_fp8_dtype_for_rocm(dst_types, device=device)
e4m3, e5m2 = dst_types
def fp8_cast(x):
y0 = x.to(dtype=e4m3).to(dtype)
y1 = x.to(dtype=e5m2).to(dtype)
return y0, y1
compiled_fp8_cast = torch.compile(fp8_cast, backend="inductor", dynamic=True)
shape = [int(dim) for dim in shape.split(",")]
x = torch.rand(*shape, device=device, dtype=dtype)
y0_fp8, y1_fp8 = compiled_fp8_cast(x)
torch.testing.assert_close(y0_fp8, x, rtol=5e-1, atol=5e-1)
torch.testing.assert_close(y1_fp8, x, rtol=5e-1, atol=5e-1)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
def test_bad_cast(self):
def fp8_cast(x, dtype):
return x.to(dtype=dtype)
compiled_fp8_cast = torch.compile(fp8_cast, backend="inductor", dynamic=True)
x_shape = (16, 16, 16)
with self.assertRaisesRegex(
torch._dynamo.exc.BackendCompilerFailed,
"Conversions between float8_e5m2 and float8_e4m3fn is not supported!",
):
x = torch.rand(*x_shape, device="cuda").to(dtype=torch.float8_e4m3fn)
compiled_fp8_cast(x, torch.float8_e5m2)
with self.assertRaisesRegex(
torch._dynamo.exc.BackendCompilerFailed,
"Conversions between float8_e5m2 and float8_e4m3fn is not supported!",
):
x = torch.rand(*x_shape, device="cuda").to(dtype=torch.float8_e5m2)
compiled_fp8_cast(x, torch.float8_e4m3fn)
@parametrize("src_dtype", (torch.float16, torch.bfloat16, torch.float))
@parametrize("dst_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("shape", ("16,16,16", "4,2048,4096"))
@parametrize("device", ("cuda", "cpu"))
def test_to_fp8_saturated(
self,
src_dtype: torch.dtype,
dst_dtype: torch.dtype,
shape: str,
device: torch.device,
):
if device == "cuda" and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(f8_msg)
dst_dtype = _fix_fp8_dtype_for_rocm(dst_dtype, device=device)
def fp8_saturated(x, dtype):
return _to_fp8_saturated(x, dtype)
compiled_fp8_cast = torch.compile(
fp8_saturated, backend="inductor", dynamic=True
)
shape = [int(dim) for dim in shape.split(",")]
x = torch.rand(*shape, device=device, dtype=src_dtype)
y_compiled = compiled_fp8_cast(x, dst_dtype)
y = fp8_saturated(x, dst_dtype)
torch.testing.assert_close(y_compiled.half(), y.half(), rtol=5e-1, atol=5e-1)
@parametrize("float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("shape", ("1,1,15", "1,10,15", "1,10,512", "1,10,4096", "4,2048,4096"))
@parametrize("device", ("cuda", "cpu"))
def test_amax_fp8_quant(
self, float8_dtype: torch.dtype, shape: str, device: torch.device
):
float8_dtype = _fix_fp8_dtype_for_rocm(float8_dtype, device=device)
if device == "cuda" and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(
"FP8 is only supported on H100+ and sm_89 and MI300+ devices"
)
shape = [int(dim) for dim in shape.split(",")]
batch_size, sequence_length, hidden_size = shape
def amax_fp8(x: Tensor, scale: Tensor):
y = torch.amax(torch.abs(x))
y_scaled = y.to(dtype=torch.float) * scale
bits_fp8 = _to_fp8_saturated(y_scaled, float8_dtype)
return bits_fp8
compiled_amax_fp8_quant = torch.compile(amax_fp8, backend="inductor")
x_shape = (batch_size, sequence_length, hidden_size)
x = torch.rand(*x_shape, device=device, dtype=torch.half)
scale = torch.tensor(0.2, device=device, dtype=torch.float)
y_compiled = compiled_amax_fp8_quant(x, scale)
y = amax_fp8(x, scale)
torch.testing.assert_close(y_compiled.half(), y.half(), rtol=1e-2, atol=1e-2)
@parametrize("float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("shape", ("1,1,15", "1,10,15", "1,10,512", "1,10,4096", "4,2048,4096"))
@parametrize("device", ("cuda", "cpu"))
def test_amax_along_with_fp8_quant(
self, float8_dtype: torch.dtype, shape: str, device: torch.device
):
if device == "cuda" and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(f8_msg)
float8_dtype = _fix_fp8_dtype_for_rocm(float8_dtype, device=device)
shape = [int(dim) for dim in shape.split(",")]
batch_size, sequence_length, hidden_size = shape
def amax_fp8(x: Tensor, scale: Tensor, amax_buffer: Tensor):
amax_buffer.fill_(torch.amax(torch.abs(x)))
x_scaled = x.to(dtype=torch.float) * scale
bits_fp8 = _to_fp8_saturated(x_scaled, float8_dtype)
return bits_fp8
compiled_amax_fp8_quant = torch.compile(amax_fp8, backend="inductor")
x_shape = (batch_size, sequence_length, hidden_size)
x = torch.rand(*x_shape, device=device, dtype=torch.half)
scale = torch.tensor(1.0, device=device, dtype=torch.float)
amax_buffer_compiled = torch.zeros((1), device=device, dtype=torch.half)
y_compiled = compiled_amax_fp8_quant(x, scale, amax_buffer_compiled)
amax_buffer = torch.zeros((1), device=device, dtype=torch.half)
y = amax_fp8(x, scale, amax_buffer)
torch.testing.assert_close(y_compiled.half(), y.half(), rtol=1e-1, atol=1e-1)
torch.testing.assert_close(
amax_buffer_compiled, amax_buffer, rtol=1e-2, atol=1e-2
)
@parametrize("float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("amax_keep_dim", (True, False))
@parametrize("shape", ("1,1,15", "1,10,15", "1,10,512", "1,10,4096", "4,2048,4096"))
@parametrize("device", ("cuda", "cpu"))
def test_layernorm_fp8_quant(
self,
float8_dtype: torch.dtype,
amax_keep_dim: bool,
shape: str,
device: torch.device,
):
if device == "cuda" and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(
"FP8 is only supported on H100+ and sm_89 and MI300+ devices"
)
float8_dtype = _fix_fp8_dtype_for_rocm(float8_dtype, device=device)
shape = [int(dim) for dim in shape.split(",")]
batch_size, sequence_length, hidden_size = shape
def ln_fp8(x: Tensor, scale: Tensor, amax_buffer: Tensor):
x = torch.nn.functional.layer_norm(
x.to(dtype=torch.float),
[hidden_size],
weight=None,
bias=None,
eps=1e-05,
)
amax_buffer.fill_(
torch.amax(torch.abs(x), keepdim=amax_keep_dim).reshape(-1)[0]
)
x_scaled = x * scale
bits_fp8 = _to_fp8_saturated(x_scaled, float8_dtype)
return bits_fp8
compiled_ln_fp8_quant = torch.compile(ln_fp8, backend="inductor")
x_shape = (batch_size, sequence_length, hidden_size)
x = torch.rand(*x_shape, device=device, dtype=torch.half)
scale = torch.tensor(0.2, device=device, dtype=torch.float)
amax_buffer_compiled = torch.zeros((1), device=device, dtype=torch.half)
y_compiled = compiled_ln_fp8_quant(x, scale, amax_buffer_compiled)
amax_buffer = torch.zeros((1), device=device, dtype=torch.half)
y = ln_fp8(x, scale, amax_buffer)
torch.testing.assert_close(y_compiled.half(), y.half(), rtol=1e-1, atol=1e-1)
torch.testing.assert_close(
amax_buffer_compiled, amax_buffer, rtol=1e-2, atol=1e-2
)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@parametrize("float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("shape", ("4,2048,4096",))
@parametrize("keepdim", (False, True))
def test_layernorm_fp8_quant_benchmark(
self,
float8_dtype: torch.dtype,
shape: str,
keepdim: bool,
):
float8_dtype = _fix_fp8_dtype_for_rocm(float8_dtype, device="cuda")
shape = [int(dim) for dim in shape.split(",")]
batch_size, sequence_length, hidden_size = shape
def ln(x: Tensor):
x = torch.nn.functional.layer_norm(
x.to(dtype=torch.float),
[hidden_size],
weight=None,
bias=None,
eps=1e-05,
)
return x
def ln_fp8(x: Tensor, scale: Tensor, amax_buffer: Tensor):
x = torch.nn.functional.layer_norm(
x.to(dtype=torch.float),
[hidden_size],
weight=None,
bias=None,
eps=1e-05,
)
amax = torch.amax(torch.abs(x), keepdim=keepdim)
amax_buffer.view_as(amax).copy_(amax)
x_scaled = x * scale
bits_fp8 = _to_fp8_saturated(x_scaled, float8_dtype)
return bits_fp8
compiled_ln_fp8_quant = torch.compile(ln_fp8, backend="inductor")
x_shape = (batch_size, sequence_length, hidden_size)
x = torch.rand(*x_shape, device="cuda", dtype=torch.half)
scale = torch.tensor(0.2, device="cuda", dtype=torch.float)
amax_buffer_compiled = torch.zeros((1), device="cuda", dtype=torch.half)
amax_buffer = torch.zeros((1), device="cuda", dtype=torch.half)
_ = compiled_ln_fp8_quant(x, scale, amax_buffer_compiled)
compiled_latency = utils.do_bench_using_profiling(
functools.partial(compiled_ln_fp8_quant, x, scale, amax_buffer_compiled)
)
eager_latency = utils.do_bench_using_profiling(
functools.partial(ln_fp8, x, scale, amax_buffer)
)
compiled_ln = torch.compile(ln, backend="inductor")
_ = compiled_ln(x)
ln_latency = utils.do_bench_using_profiling(functools.partial(compiled_ln, x))
print(
f"Config: {float8_dtype=}, {shape=}, {keepdim=}. "
f"Benchmark results: Inductor: {compiled_latency}ms, Eager: {eager_latency}ms, "
f"LN only Inductor: {ln_latency}ms."
)
@instantiate_parametrized_tests
class TestFP8Lowering(TestCase):
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@parametrize("dtype", (torch.bfloat16, torch.float32))
@parametrize("shape", ("16,16,32", "16,32,32", "1024,1024,512"))
@parametrize("has_bias", (False, True))
@parametrize("use_fast_accum", (False, True))
@parametrize(
"persistent_matmul", [False, True] if has_triton_tma_device() else [False]
)
def test_tensorwise_scaling(
self,
dtype: torch.dtype,
shape: str,
has_bias: bool,
use_fast_accum: bool,
persistent_matmul: bool,
):
if dtype is torch.float32 and has_bias:
self.skipTest("bias is not supported when output dtype is float32")
device = "cuda"
dtype_float8 = torch.float8_e4m3fn
dtype_float8 = _fix_fp8_dtype_for_rocm(dtype_float8, device)
shape = [int(dim) for dim in shape.split(",")]
M, K, N = shape # Matmul Y = X [M, K] x W [N, K]
# input and output dtypes of _scaled_mm do not need to be the same, but
# typically in a model they are
x = torch.randn(M, K, dtype=dtype, device=device)
w = torch.randn(N, K, dtype=dtype, device=device)
bias = None
if has_bias:
bias = torch.randn(N, device=device, dtype=torch.bfloat16)
# quantize weight (prior to inference)
w_fp8, w_inverse_scale = _quantize_tensorwise(w, dtype_float8)
w_t_fp8 = w_fp8.t()
# quantize input x
x_fp8, x_inverse_scale = _quantize_tensorwise(x, dtype_float8)
def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias):
y = torch._scaled_mm(
x_fp8,
w_t_fp8,
x_inverse_scale,
w_inverse_scale,
bias,
out_dtype=dtype,
use_fast_accum=use_fast_accum,
)
return y
y_eager = linear(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
with config.patch({"triton.enable_persistent_tma_matmul": persistent_matmul}):
linear_compiled = torch.compile(
linear, backend="inductor", mode="max-autotune"
)
y_compiled = linear_compiled(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
self.assertEqual(y_eager.dtype, dtype)
self.assertEqual(y_compiled.dtype, dtype)
# depending on the kernel config (BLOCK_M size, etc) selected during Inductor
# autotuning for the compiled case, the results can be different because of
# the way blocks of results are accumulated (float addition not associative), so
# setting a small absolute tolerance in these tests
if dtype == torch.bfloat16:
self.assertEqual(y_eager, y_compiled, rtol=5e-2, atol=0.07)
else:
self.assertEqual(y_eager, y_compiled, rtol=1e-2, atol=0.05)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
def test_scaled_mm_preserves_strides(self):
"""Test that scaled_mm preserves stride ordering through a custom pass."""
GPU_TYPE = "cuda"
def f(a, b, scale_a, scale_b):
# Convert to fp8 with correct strides for scaled_mm
dtype_float8 = torch.float8_e4m3fn
dtype_float8 = _fix_fp8_dtype_for_rocm(dtype_float8, GPU_TYPE)
a_fp8 = a.to(dtype_float8).contiguous() # row-major
b_fp8 = b.t().contiguous().t().to(dtype_float8) # column-major
return torch._scaled_mm(
a_fp8, b_fp8, scale_a, scale_b, out_dtype=torch.bfloat16
)
class ScaledMMStridePass(PatternMatcherPass):
def __init__(self) -> None:
super().__init__()
self.called = False
def __call__(self, g: torch.fx.Graph):
# Directly manipulate the graph without using pattern matching
for node in g.nodes:
if (
node.op == "call_function"
and node.target == torch.ops.aten._scaled_mm.default
):
# Insert clone operations before scaled_mm
with g.inserting_before(node):
a_fp8, b_fp8 = node.args[0], node.args[1]
# Clone the inputs to potentially change stride ordering
a_cloned = g.call_function(
torch.ops.aten.clone,
(a_fp8,),
{"memory_format": torch.contiguous_format},
)
b_cloned = g.call_function(
torch.ops.aten.clone,
(b_fp8,),
{"memory_format": torch.contiguous_format},
)
# Replace the arguments in the scaled_mm call
node.args = (a_cloned, b_cloned) + node.args[2:]
self.called = True
g.lint()
return g
stride_pass = ScaledMMStridePass()
# Create inputs with correct strides for scaled_mm
a = torch.randn((64, 128), dtype=torch.bfloat16, device=GPU_TYPE)
b = torch.randn((128, 64), dtype=torch.bfloat16, device=GPU_TYPE)
scale_a = torch.tensor(1.0, device=GPU_TYPE)
scale_b = torch.tensor(1.0, device=GPU_TYPE)
# First, verify that f works without the pass (baseline)
expected = f(a, b, scale_a, scale_b)
from torch._inductor import config
with config.patch(post_grad_custom_post_pass=stride_pass):
f_compiled = torch.compile(f, dynamic=False)
result = f_compiled(a, b, scale_a, scale_b)
# Verify the pattern was called
self.assertTrue(stride_pass.called, "Stride ordering pass was not called")
# Verify correctness - the pass should preserve correctness
# even though it modified strides
self.assertEqual(expected, result, atol=1e-2, rtol=1e-2)
# Verify the generated code contains the clones inserted by our pass
_, (wrapper,) = run_and_get_code(f_compiled, a, b, scale_a, scale_b)
self.assertIn("scaled_mm", wrapper.lower())
# The clones should be visible in the generated code
self.assertIn("clone", wrapper.lower())
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@unittest.skipIf(
not has_triton_tma_device(), "Need device-side TMA support in Triton"
)
@parametrize("dtype", (torch.bfloat16, torch.float32))
@parametrize("shape", ("16,32,32", "1024,1024,512"))
@parametrize("use_fast_accum", (False, True))
def test_tensorwise_scaling_tma_template(
self,
dtype: torch.dtype,
shape: str,
use_fast_accum: bool,
):
device = "cuda"
dtype_float8 = torch.float8_e4m3fn
dtype_float8 = _fix_fp8_dtype_for_rocm(dtype_float8, device)
shape = [int(dim) for dim in shape.split(",")]
M, K, N = shape # Matmul Y = X [M, K] x W [N, K]
# input and output dtypes of _scaled_mm do not need to be the same, but
# typically in a model they are
x = torch.randn(M, K, dtype=dtype, device=device)
w = torch.randn(N, K, dtype=dtype, device=device)
bias = None
# quantize weight (prior to inference)
w_fp8, w_inverse_scale = _quantize_tensorwise(w, dtype_float8)
w_t_fp8 = w_fp8.t()
# quantize input x
x_fp8, x_inverse_scale = _quantize_tensorwise(x, dtype_float8)
def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias):
y = torch._scaled_mm(
x_fp8,
w_t_fp8,
x_inverse_scale,
w_inverse_scale,
bias,
out_dtype=dtype,
use_fast_accum=use_fast_accum,
)
return y
y_eager = linear(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
with config.patch(
{
"triton.enable_persistent_tma_matmul": True,
"test_configs.autotune_choice_name_regex": "triton_scaled_mm_device_tma",
"max_autotune_gemm_backends": "TRITON",
"max_autotune": True,
}
):
linear_compiled = torch.compile(
linear, backend="inductor", mode="max-autotune"
)
y_compiled, code = run_and_get_code(
linear_compiled,
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
FileCheck().check("SCALING_ROWWISE : tl.constexpr = False").run(code[0])
self.assertEqual(y_eager.dtype, dtype)
self.assertEqual(y_compiled.dtype, dtype)
# depending on the kernel config (BLOCK_M size, etc) selected during Inductor
# autotuning for the compiled case, the results can be different because of
# the way blocks of results are accumulated (float addition not associative), so
# setting a small absolute tolerance in these tests
torch.testing.assert_close(y_eager, y_compiled, rtol=1e-2, atol=0.05)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@parametrize("shape", ("16,16,32", "16,32,32", "1024,1024,512"))
@parametrize("has_bias", (False, True))
@parametrize("use_fast_accum", (False, True))
@parametrize(
"persistent_matmul", [False, True] if has_triton_tma_device() else [False]
)
def test_rowwise_scaling(
self, shape: str, has_bias: bool, use_fast_accum: bool, persistent_matmul: bool
):
# Only bf16 output type is supported for row-wise scaling, not fp32
dtype: torch.dtype = torch.bfloat16
device = "cuda"
dtype_float8 = torch.float8_e4m3fn
dtype_float8 = _fix_fp8_dtype_for_rocm(dtype_float8, device)
shape = [int(dim) for dim in shape.split(",")]
M, K, N = shape # Matmul Y = X [M, K] x W [N, K]
x = torch.randn(M, K, dtype=dtype, device=device)
w = torch.randn(N, K, dtype=dtype, device=device)
bias = None
if has_bias:
bias = torch.randn(N, device=device, dtype=torch.bfloat16)
# quantize weight (prior to inference)
w_fp8, w_inverse_scale = _quantize_rowwise(w, dtype_float8)
w_t_fp8 = w_fp8.t()
w_inverse_scale = w_inverse_scale.t() # scale_b should be (1, N)
# quantize input x
x_fp8, x_inverse_scale = _quantize_rowwise(x, dtype_float8)
def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias):
y = torch._scaled_mm(
x_fp8,
w_t_fp8,
x_inverse_scale,
w_inverse_scale,
bias,
out_dtype=dtype,
use_fast_accum=use_fast_accum,
)
return y
y_eager = linear(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
with config.patch({"triton.enable_persistent_tma_matmul": persistent_matmul}):
linear_compiled = torch.compile(
linear, backend="inductor", mode="max-autotune"
)
y_compiled = linear_compiled(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
self.assertEqual(y_eager.dtype, dtype)
self.assertEqual(y_compiled.dtype, dtype)
torch.testing.assert_close(y_eager, y_compiled, rtol=5e-2, atol=0.07)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@unittest.skipIf(
not has_triton_tma_device(), "Need device-side TMA support in Triton"
)
@parametrize("shape", ("16,32,32", "1024,1024,512"))
@parametrize("use_fast_accum", (False, True))
def test_rowwise_scaling_tma_template(
self,
shape: str,
use_fast_accum: bool,
):
# Only bf16 output type is supported for row-wise scaling, not fp32
dtype: torch.dtype = torch.bfloat16
device = "cuda"
dtype_float8 = torch.float8_e4m3fn
dtype_float8 = _fix_fp8_dtype_for_rocm(dtype_float8, device)
shape = [int(dim) for dim in shape.split(",")]
M, K, N = shape # Matmul Y = X [M, K] x W [N, K]
x = torch.randn(M, K, dtype=dtype, device=device)
w = torch.randn(N, K, dtype=dtype, device=device)
bias = None
# quantize weight (prior to inference)
w_fp8, w_inverse_scale = _quantize_rowwise(w, dtype_float8)
w_t_fp8 = w_fp8.t()
w_inverse_scale = w_inverse_scale.t() # scale_b should be (1, N)
# quantize input x
x_fp8, x_inverse_scale = _quantize_rowwise(x, dtype_float8)
def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias):
y = torch._scaled_mm(
x_fp8,
w_t_fp8,
x_inverse_scale,
w_inverse_scale,
bias,
out_dtype=dtype,
use_fast_accum=use_fast_accum,
)
return y
y_eager = linear(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
with config.patch(
{
"triton.enable_persistent_tma_matmul": True,
"test_configs.autotune_choice_name_regex": "triton_scaled_mm_device_tma",
"max_autotune_gemm_backends": "TRITON",
"max_autotune": True,
}
):
linear_compiled = torch.compile(
linear, backend="inductor", mode="max-autotune"
)
y_compiled, code = run_and_get_code(
linear_compiled,
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
FileCheck().check("SCALING_ROWWISE : tl.constexpr = True").run(code[0])
self.assertEqual(y_eager.dtype, dtype)
self.assertEqual(y_compiled.dtype, dtype)
torch.testing.assert_close(y_eager, y_compiled, rtol=1e-2, atol=0.05)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@parametrize("M", (1, 3, 33, 257, 1024))
@parametrize("K", (16, 32, 1024))
@parametrize("N", (16, 2048))
@parametrize(
"persistent_matmul", [False, True] if has_triton_tma_device() else [False]
)
def test_tensorwise_scaling_acceptable_input_dims(
self, M: int, K: int, N: int, persistent_matmul: bool
):
# alignment requirements: K and N divisible by 16
dtype: torch.dtype = torch.bfloat16
use_fast_accum = True
device = "cuda"
dtype_float8 = torch.float8_e4m3fn
dtype_float8 = _fix_fp8_dtype_for_rocm(dtype_float8, device)
x = torch.randn(M, K, dtype=dtype, device=device)
w = torch.randn(N, K, dtype=dtype, device=device)
bias = None
w_fp8, w_inverse_scale = _quantize_tensorwise(w, dtype_float8)
w_t_fp8 = w_fp8.t()
x_fp8, x_inverse_scale = _quantize_tensorwise(x, dtype_float8)
def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias):
y = torch._scaled_mm(
x_fp8,
w_t_fp8,
x_inverse_scale,
w_inverse_scale,
bias,
out_dtype=dtype,
use_fast_accum=use_fast_accum,
)
return y
y_eager = linear(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
with config.patch({"triton.enable_persistent_tma_matmul": persistent_matmul}):
linear_compiled = torch.compile(
linear, backend="inductor", mode="max-autotune"
)
y_compiled = linear_compiled(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
self.assertEqual(y_eager.dtype, dtype)
self.assertEqual(y_compiled.dtype, dtype)
torch.testing.assert_close(y_eager, y_compiled, rtol=5e-2, atol=0.07)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@parametrize("M", (1, 3, 33, 257, 1024))
@parametrize("K", (16, 32, 1024))
@parametrize("N", (16, 2048))
@parametrize(
"persistent_matmul", [False, True] if has_triton_tma_device() else [False]
)
def test_rowwise_scaling_acceptable_input_dims(
self, M: int, K: int, N: int, persistent_matmul: bool
):
dtype: torch.dtype = torch.bfloat16
use_fast_accum = True
device = "cuda"
dtype_float8 = torch.float8_e4m3fn
dtype_float8 = _fix_fp8_dtype_for_rocm(dtype_float8, device)
x = torch.randn(M, K, dtype=dtype, device=device)
w = torch.randn(N, K, dtype=dtype, device=device)
bias = torch.randn(N, device=device, dtype=torch.bfloat16)
w_fp8, w_inverse_scale = _quantize_rowwise(w, dtype_float8)
w_t_fp8 = w_fp8.t()
w_inverse_scale = w_inverse_scale.t() # scale_b should be (1, N)
x_fp8, x_inverse_scale = _quantize_rowwise(x, dtype_float8)
def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias):
y = torch._scaled_mm(
x_fp8,
w_t_fp8,
x_inverse_scale,
w_inverse_scale,
bias,
out_dtype=dtype,
use_fast_accum=use_fast_accum,
)
return y
y_eager = linear(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
with config.patch({"triton.enable_persistent_tma_matmul": persistent_matmul}):
linear_compiled = torch.compile(
linear, backend="inductor", mode="max-autotune"
)
y_compiled = linear_compiled(
x_fp8,
x_inverse_scale,
w_t_fp8,
w_inverse_scale,
bias,
)
self.assertEqual(y_eager.dtype, dtype)
self.assertEqual(y_compiled.dtype, dtype)
torch.testing.assert_close(y_eager, y_compiled, rtol=1e-2, atol=0.07)
@unittest.skipIf(not PLATFORM_SUPPORTS_MX_GEMM, "Not supported on non B200")
def test_mx_fp8_max_autotune(self):
M, K, N = 128, 32, 128
BLOCK_SIZE = 32
device = "cuda"
dtype = torch.bfloat16
A_ref = torch.eye(M, device=device, dtype=torch.bfloat16)
B_ref = torch.eye(N, device=device, dtype=torch.bfloat16)
A = A_ref.to(torch.float8_e4m3fn)
B = B_ref.to(torch.float8_e4m3fn)
A_scale = torch.full(
(M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu
)
B_scale = torch.full(
(N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu
)
A_scale = to_blocked(A_scale)
B_scale = to_blocked(B_scale)
def linear(A, B, A_scale, B_scale):
y = torch._scaled_mm(
A,
B.t(),
A_scale,
B_scale,
out_dtype=torch.bfloat16,
use_fast_accum=False,
)
return y
y_eager = linear(A, B, A_scale, B_scale)
linear_compiled = torch.compile(linear, backend="inductor", mode="max-autotune")
y_compiled = linear_compiled(A, B, A_scale, B_scale)
self.assertEqual(y_eager.dtype, dtype)
self.assertEqual(y_compiled.dtype, dtype)
torch.testing.assert_close(y_eager, y_compiled, rtol=1e-2, atol=0.07)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
def test_unacceptable_input_dims(self):
# for compiled ops, type checking is in torch/_meta_registrations.py
dtype: torch.dtype = torch.bfloat16
device = "cuda"
dtype_float8 = torch.float8_e4m3fn
dtype_float8 = _fix_fp8_dtype_for_rocm(dtype_float8, device)
M, K, N = 64, 15, 2048 # K needs to be a multiple of 16
x = torch.randn(M, K, dtype=dtype, device=device)
w = torch.randn(N, K, dtype=dtype, device=device)
bias = torch.randn(N, device=device, dtype=torch.bfloat16)
w_fp8, w_inverse_scale = _quantize_tensorwise(w, dtype_float8)
w_t_fp8 = w_fp8.t()
def linear(x, w_t_fp8, w_inverse_scale, bias):
x_fp8, x_inverse_scale = _quantize_tensorwise(x, dtype_float8)
y = torch._scaled_mm(
x_fp8,
w_t_fp8,
x_inverse_scale,
w_inverse_scale,
bias,
out_dtype=dtype,
use_fast_accum=True,
)
return y
linear_compiled = torch.compile(linear, backend="inductor", mode="max-autotune")
with self.assertRaises(torch._dynamo.exc.TorchRuntimeError) as cm:
linear_compiled(
x,
w_t_fp8,
w_inverse_scale,
bias,
)
self.assertTrue(
f"Expected self.size(1) to be divisible by 16, but got self.size(1)={K}"
in str(cm.exception)
)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
def test_unacceptable_scale_dims_rowwise_scaling(self):
dtype: torch.dtype = torch.bfloat16
device = "cuda"
dtype_float8 = torch.float8_e4m3fn
dtype_float8 = _fix_fp8_dtype_for_rocm(dtype_float8, device)
M, K, N = 233, 32, 128
x = torch.randn(M, K, dtype=dtype, device=device)
w = torch.randn(N, K, dtype=dtype, device=device)
bias = torch.randn(N, device=device, dtype=torch.bfloat16)
w_fp8, w_inverse_scale = _quantize_rowwise(w, dtype_float8)
w_t_fp8 = w_fp8.t()
def linear(x, w_t_fp8, w_inverse_scale, bias):
x_fp8, x_inverse_scale = _quantize_rowwise(x, dtype_float8)
y = torch._scaled_mm(
x_fp8,
w_t_fp8,
w_inverse_scale.t(), # testing with w and x scales switched
x_inverse_scale,
bias,
out_dtype=dtype,
use_fast_accum=True,
)
return y
linear_compiled = torch.compile(linear, backend="inductor", mode="max-autotune")
with self.assertRaises(torch._dynamo.exc.TorchRuntimeError) as cm:
linear_compiled(
x,
w_t_fp8,
w_inverse_scale,
bias,
)
self.assertTrue("Invalid scaling configuration." in str(cm.exception))
if __name__ == "__main__":
if HAS_CUDA_AND_TRITON or HAS_CPU:
run_tests()