mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This is a follow-up PR of the reverted one https://github.com/pytorch/pytorch/pull/148981 re-opening for visibility : Modified TorchInductor’s autotuning flow so that each best_config JSON file also includes the Triton “base32” (or base64) cache key. Motivation Debugging & Analysis: With this change, we can quickly identify which compiled binary and IRs belongs to a given best config. The impact is minimal since it is only an extra field in .best_config. It can help advanced performance tuning or kernel-level debugging. Also, since Triton already stores cubin/hsaco in its cache, developers/researchers can avoid to set store_cubin = True since they can get the cubin/hsaco in the Triton cache and with the code provided in this PR, they can easily match the best_config with the right Triton cache directory for the "best" kernel. Pull Request resolved: https://github.com/pytorch/pytorch/pull/154618 Approved by: https://github.com/jansel
97 lines
3.2 KiB
Python
97 lines
3.2 KiB
Python
# Owner(s): ["module: inductor"]
|
|
|
|
import glob
|
|
import json
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
|
|
import torch
|
|
from torch._inductor import config
|
|
from torch.testing._internal.common_utils import IS_LINUX, skipIfXpu
|
|
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
|
|
|
|
|
|
try:
|
|
import triton # noqa: F401
|
|
except ImportError as e:
|
|
if __name__ == "__main__":
|
|
sys.exit(0)
|
|
raise unittest.SkipTest("requires triton") from e
|
|
|
|
from torch._inductor.test_case import run_tests, TestCase
|
|
|
|
|
|
def trivial_kernel(x):
|
|
return torch.sin(x) + torch.cos(x)
|
|
|
|
|
|
class TestKernelBestConfig(TestCase):
|
|
device_type = GPU_TYPE
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
# Save the original configuration and environment variables.
|
|
cls.original_compile_threads = config.compile_threads
|
|
cls.original_max_autotune = config.max_autotune
|
|
cls.original_inductor_env = os.environ.get("TORCHINDUCTOR_CACHE_DIR", "")
|
|
cls.original_triton_env = os.environ.get("TRITON_CACHE_DIR", "")
|
|
super().setUpClass()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
# Restore the original configuration and environment variables.
|
|
os.environ["TORCHINDUCTOR_CACHE_DIR"] = cls.original_inductor_env
|
|
os.environ["TRITON_CACHE_DIR"] = cls.original_triton_env
|
|
config.compile_threads = cls.original_compile_threads
|
|
config.max_autotune = cls.original_max_autotune
|
|
super().tearDownClass()
|
|
|
|
@skipIfXpu
|
|
def test_best_config_has_triton_cache_key(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
os.environ["TORCHINDUCTOR_CACHE_DIR"] = tmpdir
|
|
triton_cache_dir = os.path.join(tmpdir, "triton_cache")
|
|
os.environ["TRITON_CACHE_DIR"] = triton_cache_dir
|
|
|
|
config.compile_threads = 0
|
|
config.max_autotune = True
|
|
|
|
compiled_fn = torch.compile(trivial_kernel)
|
|
|
|
x = torch.randn(32, 10, device=GPU_TYPE)
|
|
compiled_fn(x)
|
|
|
|
# Search for .best_config files in the inductor cache directory.
|
|
best_config_files = glob.glob(
|
|
os.path.join(tmpdir, "**", "*.best_config"), recursive=True
|
|
)
|
|
self.assertGreater(
|
|
len(best_config_files),
|
|
0,
|
|
f"No best_config files found in {tmpdir}. Directory contents: {os.listdir(tmpdir)}",
|
|
)
|
|
|
|
# Validate that each best_config file contains a real triton_cache_hash,
|
|
# and that a corresponding Triton cache directory exists.
|
|
for file_path in best_config_files:
|
|
with open(file_path) as f:
|
|
data = json.load(f)
|
|
self.assertIn(
|
|
"triton_cache_hash",
|
|
data,
|
|
f"Missing triton_cache_hash in {os.path.basename(file_path)}",
|
|
)
|
|
cache_hash = data["triton_cache_hash"]
|
|
expected_path = os.path.join(triton_cache_dir, cache_hash)
|
|
self.assertTrue(
|
|
os.path.exists(expected_path),
|
|
f"Triton cache directory missing: {expected_path}",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if IS_LINUX and HAS_GPU:
|
|
run_tests()
|