mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: run_test.py currently does lots of downloading and test file/suite/case parsing. It doesn't work well outside of the CI environment Restructured the run_test.py and created tools/test/test_selections.py and move all test selection logic (reordering, categorizing slow test, creating shards) Follow up PRs should: - refactor those file read/write logic entangled inside test_selections.py into stats/ folder - restructure and add network independent test logics to test_test_selections.py Pull Request resolved: https://github.com/pytorch/pytorch/pull/61124 Test Plan: - tools/test - CI Related PR: This follows the refactoring example in: https://github.com/pytorch/pytorch/issues/60373 Reviewed By: malfet Differential Revision: D29558981 Pulled By: walterddr fbshipit-source-id: 7f0fd9b4720a918d82918766c002295e8df04169
113 lines
4.7 KiB
Python
113 lines
4.7 KiB
Python
import random
|
|
import unittest
|
|
|
|
from tools.testing.test_selections import calculate_shards
|
|
from typing import Dict, List, Tuple
|
|
|
|
|
|
class TestCalculateShards(unittest.TestCase):
|
|
tests: List[str] = [
|
|
'super_long_test',
|
|
'long_test1',
|
|
'long_test2',
|
|
'normal_test1',
|
|
'normal_test2',
|
|
'normal_test3',
|
|
'short_test1',
|
|
'short_test2',
|
|
'short_test3',
|
|
'short_test4',
|
|
'short_test5',
|
|
]
|
|
|
|
test_times: Dict[str, float] = {
|
|
'super_long_test': 55,
|
|
'long_test1': 22,
|
|
'long_test2': 18,
|
|
'normal_test1': 9,
|
|
'normal_test2': 7,
|
|
'normal_test3': 5,
|
|
'short_test1': 1,
|
|
'short_test2': 0.6,
|
|
'short_test3': 0.4,
|
|
'short_test4': 0.3,
|
|
'short_test5': 0.01,
|
|
}
|
|
|
|
def assert_shards_equal(
|
|
self,
|
|
expected_shards: List[Tuple[float, List[str]]],
|
|
actual_shards: List[Tuple[float, List[str]]]
|
|
) -> None:
|
|
for expected, actual in zip(expected_shards, actual_shards):
|
|
self.assertAlmostEqual(expected[0], actual[0])
|
|
self.assertListEqual(expected[1], actual[1])
|
|
|
|
def test_calculate_2_shards_with_complete_test_times(self) -> None:
|
|
expected_shards = [
|
|
(60, ['super_long_test', 'normal_test3']),
|
|
(58.31, ['long_test1', 'long_test2', 'normal_test1', 'normal_test2', 'short_test1', 'short_test2',
|
|
'short_test3', 'short_test4', 'short_test5'])
|
|
]
|
|
self.assert_shards_equal(expected_shards, calculate_shards(2, self.tests, self.test_times))
|
|
|
|
|
|
def test_calculate_5_shards_with_complete_test_times(self) -> None:
|
|
expected_shards = [
|
|
(55.0, ['super_long_test']),
|
|
(22.0, ['long_test1', ]),
|
|
(18.0, ['long_test2', ]),
|
|
(11.31, ['normal_test1', 'short_test1', 'short_test2', 'short_test3', 'short_test4', 'short_test5']),
|
|
(12.0, ['normal_test2', 'normal_test3']),
|
|
]
|
|
self.assert_shards_equal(expected_shards, calculate_shards(5, self.tests, self.test_times))
|
|
|
|
|
|
def test_calculate_2_shards_with_incomplete_test_times(self) -> None:
|
|
incomplete_test_times = {k: v for k, v in self.test_times.items() if 'test1' in k}
|
|
expected_shards = [
|
|
(22.0, ['long_test1', 'long_test2', 'normal_test3', 'short_test3', 'short_test5']),
|
|
(10.0, ['normal_test1', 'short_test1', 'super_long_test', 'normal_test2', 'short_test2', 'short_test4']),
|
|
]
|
|
self.assert_shards_equal(expected_shards, calculate_shards(2, self.tests, incomplete_test_times))
|
|
|
|
|
|
def test_calculate_5_shards_with_incomplete_test_times(self) -> None:
|
|
incomplete_test_times = {k: v for k, v in self.test_times.items() if 'test1' in k}
|
|
expected_shards = [
|
|
(22.0, ['long_test1', 'normal_test2', 'short_test5']),
|
|
(9.0, ['normal_test1', 'normal_test3']),
|
|
(1.0, ['short_test1', 'short_test2']),
|
|
(0.0, ['super_long_test', 'short_test3']),
|
|
(0.0, ['long_test2', 'short_test4']),
|
|
]
|
|
self.assert_shards_equal(expected_shards, calculate_shards(5, self.tests, incomplete_test_times))
|
|
|
|
def test_calculate_2_shards_against_optimal_shards(self) -> None:
|
|
for _ in range(100):
|
|
random.seed(120)
|
|
random_times = {k: random.random() * 10 for k in self.tests}
|
|
# all test times except first two
|
|
rest_of_tests = [i for k, i in random_times.items() if k != 'super_long_test' and k != 'long_test1']
|
|
sum_of_rest = sum(rest_of_tests)
|
|
random_times['super_long_test'] = max(sum_of_rest / 2, max(rest_of_tests))
|
|
random_times['long_test1'] = sum_of_rest - random_times['super_long_test']
|
|
# An optimal sharding would look like the below, but we don't need to compute this for the test:
|
|
# optimal_shards = [
|
|
# (sum_of_rest, ['super_long_test', 'long_test1']),
|
|
# (sum_of_rest, [i for i in self.tests if i != 'super_long_test' and i != 'long_test1']),
|
|
# ]
|
|
calculated_shards = calculate_shards(2, self.tests, random_times)
|
|
max_shard_time = max(calculated_shards[0][0], calculated_shards[1][0])
|
|
if sum_of_rest != 0:
|
|
# The calculated shard should not have a ratio worse than 7/6 for num_shards = 2
|
|
self.assertGreaterEqual(7.0 / 6.0, max_shard_time / sum_of_rest)
|
|
sorted_tests = sorted(self.tests)
|
|
sorted_shard_tests = sorted(calculated_shards[0][1] + calculated_shards[1][1])
|
|
# All the tests should be represented by some shard
|
|
self.assertEqual(sorted_tests, sorted_shard_tests)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|