Files
pytorch/torch/_inductor/debug.py
Avik Chaudhuri 711c8c821e shape guards (#161178)
Summary: This PR introduces shape guards to export. Previously only value ranges,  equalities, and specializations would be tracked for symbolic expressions, and we had a forward hook to check them. Instead now we create a function to check shape guards and call it in the exported program.

Test Plan:
updated several tests

Rollback Plan:

Differential Revision: D80713603

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161178
Approved by: https://github.com/tugsbayasgalan
2025-09-08 22:44:09 +00:00

1321 lines
45 KiB
Python

import collections
import contextlib
import copy
import dataclasses
import functools
import io
import itertools
import json
import logging
import os
import os.path
import pickle
import pstats
import shutil
import traceback
from collections.abc import Iterator, Sequence
from typing import Any, Callable, IO, Optional, Union
from unittest.mock import patch
import torch
from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled
from torch import fx as fx
from torch._dynamo.repro.after_aot import save_graph_repro
from torch._dynamo.utils import get_debug_dir
from torch._inductor import utils
from torch._logging import getArtifactLogger
from torch._logging._internal import trace_structured
from torch._utils_internal import signpost_event
from torch.fx.graph_module import GraphModule
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
from torch.fx.passes.tools_common import legalize_graph
from torch.types import FileLike
from torch.utils._ordered_set import OrderedSet
from torch.utils._pytree import tree_map
from . import config, ir # noqa: F811, this is needed
from .ir import ExternKernel
from .scheduler import (
BaseSchedulerNode,
FusedSchedulerNode,
NopKernelSchedulerNode,
OutputNode,
SchedulerNode,
)
from .virtualized import V
log = logging.getLogger(__name__)
# Graph execution tracking for debugging
GRAPH_EXECUTION_ORDER: Optional[list[dict[str, object]]] = None
RECORD_GRAPH_EXECUTION: bool = False
GRAPH_COMPILE_IDS: Optional[dict[int, Optional[str]]] = None
ir_pre_fusion_log = getArtifactLogger(__name__, "ir_pre_fusion")
ir_post_fusion_log = getArtifactLogger(__name__, "ir_post_fusion")
SchedulerNodeList = list[Any]
BufMeta = collections.namedtuple("BufMeta", ["name", "n_origin"])
GRAPHVIZ_COMMAND_SCALABLE = ["dot", "-Gnslimit=2", "-Gnslimit1=2", "-Gmaxiter=5000"]
@functools.cache
def has_dot() -> bool:
return shutil.which("dot") is not None
def draw_buffers(
nodes: list[BaseSchedulerNode],
print_graph: bool = False,
fname: Optional[str] = None,
) -> None:
"""
Draw a graph in fname.svg.
"""
if not has_dot():
log.warning("draw_buffers() requires `graphviz` package")
return
if fname is None:
fname = get_graph_being_compiled()
graph = create_fx_from_snodes(nodes)
for node in graph.nodes:
if "fusion_meta" not in node.meta:
continue
group = node.meta["fusion_meta"].group
if isinstance(group, tuple):
if isinstance(group[1], int):
group = (group[1],)
else:
group = group[1]
# gather meta data
dtype = None
if isinstance(node, ir.ComputedBuffer):
dtype = node.data.dtype
metadata = TensorMetadata(group, dtype, None, None, None, None, None) # type: ignore[arg-type]
node.meta["tensor_meta"] = metadata
if print_graph:
print(graph)
gm = GraphModule({}, graph)
legalize_graph(gm)
gm.graph.lint()
draw_graph(
gm, fname, clear_meta=False, dot_graph_shape=config.trace.dot_graph_shape
)
def create_fx_from_snodes(snodes: list[BaseSchedulerNode]) -> fx.Graph:
"""
Creates a FX Graph from a list of SchedulerNode objects.
"""
def get_fake_func(name: str) -> Callable[..., int]:
def func1(*args: Any) -> int:
return 0
func1.__name__ = name
return func1
FusionMeta = collections.namedtuple("FusionMeta", ["group", "snode", "type"])
buf_to_fx_node = {}
node_to_fx_node = {}
graph = torch.fx.Graph()
first_node = None
outputs = []
group: Any = None
# create call_function node for each Buffer and Kernel
for snode in snodes:
if snode.is_extern():
node_type = "extern"
group = node_type
elif snode.is_template():
node_type = "template"
group = node_type
elif isinstance(snode, NopKernelSchedulerNode):
node_type = "nop"
group = node_type
elif isinstance(snode, SchedulerNode):
node_type = "compute"
group = snode.group
elif isinstance(snode, FusedSchedulerNode):
node_type = "fused"
group = snode.group
else:
raise RuntimeError("Unknown node type")
fused_name = torch._inductor.utils.get_fused_kernel_name(
snode.get_nodes(), "original_aten"
)
func_name = f"{node_type}: {fused_name}"
node_func = get_fake_func(func_name)
kwargs = {}
if hasattr(snode, "get_device"):
kwargs = {"device": snode.get_device()}
fx_node = graph.call_function(node_func, args=(), kwargs=kwargs) # type: ignore[arg-type]
def in_output(snode: Union[BaseSchedulerNode, FusedSchedulerNode]) -> bool:
if isinstance(snode, FusedSchedulerNode):
return any(in_output(x) for x in snode.snodes)
return any(
isinstance(user.node, OutputNode)
for buf in snode.get_outputs()
for user in buf.users
)
if in_output(snode):
outputs.append(fx_node)
name = snode.get_name()
fx_node.name = name
fx_node.meta["fusion_meta"] = FusionMeta(group, snode, node_type)
node_to_fx_node[name] = fx_node
for buf in snode.get_outputs():
buf_to_fx_node[buf.get_name()] = fx_node
if first_node is None:
first_node = fx_node
# create edges between nodes
for snode in snodes:
name = snode.get_name()
deps = snode.read_writes.reads
fx_node = node_to_fx_node[name]
new_args = []
for dep in deps:
if dep.name in buf_to_fx_node:
dep_node = buf_to_fx_node[dep.name]
else:
with graph.inserting_before(first_node):
dep_node = graph.placeholder(dep.name)
buf_to_fx_node[dep.name] = dep_node
if dep_node == fx_node: # to avoid cycles
continue
new_args.append(dep_node)
fx_node.args = tuple(new_args)
graph.output(outputs[0] if len(outputs) == 1 else tuple(outputs))
return graph
def update_orig_fx_node_name_to_buf_name(
nodes: Optional[SchedulerNodeList],
node_name_to_buf_name: dict[str, str],
parent_buf_name: Optional[str] = None,
n_origins: int = 0,
) -> None:
if nodes is None:
return
for node in nodes:
# for FusedSchedulerNode, traverse recursively into get_nodes()
buf_name = node.get_name()
children_nodes = node.get_nodes()
if children_nodes is not None and len(children_nodes) > 1:
update_orig_fx_node_name_to_buf_name(
children_nodes,
node_name_to_buf_name,
buf_name if parent_buf_name is None else parent_buf_name,
)
continue
else:
assert len(children_nodes) == 1 and children_nodes[0] == node
ir_node = node.node
if ir_node is None or ir_node.origins is None:
continue
for origin in ir_node.origins:
node_name = origin.name
# when buf1 and buf2 both have origin=node1
# we draw node1 according to buf1
if node_name not in node_name_to_buf_name:
node_name_to_buf_name[node_name] = (
buf_name if parent_buf_name is None else parent_buf_name
)
def get_node_name_to_buf_meta(
node_name_to_buf_name: dict[str, str],
) -> dict[str, BufMeta]:
buf_name_to_n_node = {}
for node_name, buf_name in node_name_to_buf_name.items():
if buf_name not in buf_name_to_n_node:
buf_name_to_n_node[buf_name] = OrderedSet([node_name])
else:
buf_name_to_n_node[buf_name].add(node_name)
node_name_to_buf_meta = {}
for node_name, buf_name in node_name_to_buf_name.items():
n_node = len(buf_name_to_n_node[buf_name])
node_name_to_buf_meta[node_name] = BufMeta(buf_name, n_node)
return node_name_to_buf_meta
def annotate_orig_fx_with_snodes(
gm: torch.fx.GraphModule,
snodes: SchedulerNodeList,
) -> None:
"""
Creates a FX Graph from a list of SchedulerNode objects.
"""
node_name_to_buf_name: dict[str, str] = {}
update_orig_fx_node_name_to_buf_name(snodes, node_name_to_buf_name)
if node_name_to_buf_name is None:
return
node_name_to_buf_meta = get_node_name_to_buf_meta(node_name_to_buf_name)
for node in gm.graph.nodes:
if node.name in node_name_to_buf_meta:
node.meta["buf_meta"] = node_name_to_buf_meta.get(node.name)
@contextlib.contextmanager
def enable_aot_logging() -> Iterator[None]:
compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
import torch._functorch.aot_autograd
log = logging.getLogger(torch._functorch.aot_autograd.__name__)
stack = contextlib.ExitStack()
if not compile_debug:
try:
yield
finally:
stack.close()
return
# Enable all graphs to be logged to a file by setting the flags to True
# and the log level of the file logger to DEBUG
stack.enter_context(patch("functorch.compile.config.debug_partitioner", True))
path = os.path.join(get_debug_dir(), "torchinductor")
os.makedirs(path, exist_ok=True)
fh = logging.FileHandler(
os.path.join(
path,
f"aot_{get_aot_graph_name()}_debug.log",
)
)
fh.setLevel(logging.DEBUG)
fh.setFormatter(
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
)
log.addHandler(fh)
try:
yield
finally:
log.removeHandler(fh)
stack.close()
# Used for provenance tracking
# They are not stored in DebugContext because they are not set in
# _inductor_triton_kernel_to_post_grad_node_info's Debug Context
_inductor_post_to_pre_grad_nodes: dict[str, dict[str, list[str]]] = {}
_inductor_triton_kernel_to_post_grad_node_info: dict[str, list[str]] = {}
_pre_grad_graph_id: Optional[int] = None
_inductor_pre_grad_node_stack_trace: dict[str, str] = {}
_inductor_kernel_stack_trace: dict[str, list[str]] = {}
_inductor_kernel_provenance_debug_handle: int = 0
def reset_inductor_kernel_provenance_debug_handle() -> None:
global _inductor_kernel_provenance_debug_handle
_inductor_kernel_provenance_debug_handle = 0
@contextlib.contextmanager
def reset_provenance_globals() -> Iterator[None]:
"""Context manager that resets provenance tracking globals upon entering
and restores their original values when exiting."""
global _pre_grad_graph_id
global _inductor_post_to_pre_grad_nodes
global _inductor_triton_kernel_to_post_grad_node_info
global _inductor_pre_grad_node_stack_trace
global _inductor_kernel_stack_trace
# Store original values
original_pre_grad_graph_id = _pre_grad_graph_id
original_post_to_pre_grad_nodes = _inductor_post_to_pre_grad_nodes.copy()
original_triton_kernel_to_post_grad_node_info = (
_inductor_triton_kernel_to_post_grad_node_info.copy()
)
original_inductor_pre_grad_node_stack_trace = (
_inductor_pre_grad_node_stack_trace.copy()
)
original_inductor_kernel_stack_trace = _inductor_kernel_stack_trace.copy()
# Reset to default values
_pre_grad_graph_id = -1
_inductor_post_to_pre_grad_nodes = {}
_inductor_triton_kernel_to_post_grad_node_info = {}
_inductor_pre_grad_node_stack_trace = {}
_inductor_kernel_stack_trace = {}
try:
yield
finally:
# Restore original values
_pre_grad_graph_id = original_pre_grad_graph_id
_inductor_post_to_pre_grad_nodes = original_post_to_pre_grad_nodes
_inductor_triton_kernel_to_post_grad_node_info = (
original_triton_kernel_to_post_grad_node_info
)
_inductor_kernel_stack_trace = original_inductor_kernel_stack_trace
_inductor_pre_grad_node_stack_trace = (
original_inductor_pre_grad_node_stack_trace
)
class DebugContext:
_counter = itertools.count()
@staticmethod
def create_debug_dir(folder_name: str) -> Optional[str]:
debug_dir = config.trace.debug_dir or get_debug_dir()
for n in DebugContext._counter:
dirname = os.path.join(
debug_dir,
"torchinductor",
f"{folder_name}.{n}",
)
if not os.path.exists(dirname):
os.makedirs(dirname)
return dirname
return None
def __init__(self) -> None:
self._prof = None
self._path = None
self._stack = contextlib.ExitStack()
def copy(self, new_path: str) -> None:
if not self._path:
return
assert new_path.endswith(".debug"), new_path
from filelock import FileLock
try:
with FileLock(f"{new_path}.lock"):
if os.path.exists(new_path):
shutil.rmtree(new_path)
shutil.copytree(self._path, new_path)
except OSError:
log.warning(
"Failed to copy debug files from %s to %s", self._path, new_path
)
def fopen(
self,
filename: str,
write_mode: str = "w",
*args: Any,
**kwargs: Any,
) -> IO[Any]:
assert self._path
return open(os.path.join(self._path, filename), write_mode, *args, **kwargs)
@contextlib.contextmanager
def fopen_context(
self,
filename: str,
write_mode: str = "w",
*args: Any,
**kwargs: Any,
) -> Iterator[IO[Any]]:
assert self._path
with open(os.path.join(self._path, filename), write_mode, *args, **kwargs) as f:
yield f
def filename(self, suffix: str) -> str:
assert self._path
return os.path.join(self._path, suffix)
def upload_tar(self) -> None:
if config.trace.upload_tar is not None:
import tarfile
assert self._path
tar_file = os.path.join(
self._path, f"{os.path.basename(self._path)}.tar.gz"
)
with tarfile.open(tar_file, "w:gz") as tar:
tar.add(self._path, arcname=os.path.basename(self._path))
config.trace.upload_tar(tar_file)
def __enter__(self) -> None:
if config.debug:
log = logging.getLogger("torch._dynamo")
prev_level = log.level
log.setLevel(logging.DEBUG)
def reset_log_level(level: Any) -> None:
log.setLevel(level)
self._stack.callback(reset_log_level, prev_level)
self._stack.enter_context(V.set_debug_handler(self))
if not config.trace.enabled:
return
self._path = self.create_debug_dir(get_aot_graph_name()) # type: ignore[assignment]
if config.trace.debug_log:
self._setup_log_capture("debug.log", logging.DEBUG)
if config.trace.info_log:
self._setup_log_capture("info.log", logging.INFO)
def _setup_log_capture(
self,
filename: str,
level: int,
) -> None:
log = logging.getLogger("torch._inductor")
fd = self._stack.enter_context(self.fopen(filename))
ch = logging.StreamHandler(fd)
ch.setLevel(level)
ch.setFormatter(
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
)
log.addHandler(ch)
log.setLevel(min(log.level, level))
self._stack.callback(log.removeHandler, ch)
def __exit__(
self,
exc_type: Optional[type[BaseException]],
exc_val: Optional[BaseException],
exc_tb: Optional[Any],
) -> None:
if self._prof:
self._prof.disable()
self._save_profile_data()
if self._path:
self.upload_tar()
log.warning("%s debug trace: %s", get_graph_being_compiled(), self._path)
self._stack.close()
def _save_profile_data(self) -> None:
assert self._prof
self._prof.dump_stats(self.filename("compile.prof"))
with self.fopen("compile.stats") as fd:
stats = pstats.Stats(self._prof, stream=fd)
stats.strip_dirs()
stats.sort_stats("cumtime")
stats.print_stats(100)
stats.sort_stats("tottime")
stats.print_stats(100)
def __getattr__(self, name: str) -> Optional[Callable[..., None]]:
if config.trace.enabled and getattr(config.trace, name):
try:
return getattr(DebugFormatter(self), name)
except Exception:
log.warning("Ignoring exception in debug code", exc_info=True)
return None
else:
def ignored(*args: Any, **kwargs: Any) -> None:
pass
return ignored
class DebugFormatter:
def __init__(self, handler: DebugContext) -> None:
self.fopen = handler.fopen
self.fopen_context = handler.fopen_context
self.filename = handler.filename
self.handler = handler
def fx_graph(
self,
gm: torch.fx.GraphModule,
inputs: list[torch.Tensor],
) -> None:
with self.fopen("fx_graph_runnable.py") as fd:
save_dir = None
if torch._inductor.config.trace.save_real_tensors:
inputs = torch._subclasses.fake_utils.try_convert_fake_to_real(inputs)
save_dir = os.path.dirname(fd.name)
# dont try to use stable hash torchinductor compilation if saving real tensors
# and avoid recursively trying to save real tensors inside of the inductor compilation
# regardless
stable_hash = torch._inductor.config.trace.save_real_tensors
with torch._inductor.config.patch(
{"trace.enabled": False, "trace.save_real_tensors": False}
):
save_graph_repro(
fd,
gm,
inputs,
"inductor",
save_dir=save_dir,
stable_hash=stable_hash,
)
with self.fopen("fx_graph_readable.py") as fd:
fd.write(gm.print_readable(print_output=False))
def fx_graph_transformed(
self,
gm: torch.fx.GraphModule,
inputs: list[torch.Tensor],
) -> None:
with self.fopen("fx_graph_transformed.py") as fd:
fd.write(gm.print_readable(print_output=False))
def ir_pre_fusion(self, nodes: SchedulerNodeList) -> None:
with self.fopen("ir_pre_fusion.txt") as fd:
fd.write(self._write_ir(nodes))
def ir_post_fusion(self, nodes: SchedulerNodeList) -> None:
with self.fopen("ir_post_fusion.txt") as fd:
fd.write(self._write_ir(nodes))
@staticmethod
def _write_ir(nodes: SchedulerNodeList) -> str:
buf = io.StringIO()
for node in nodes:
buf.write(node.debug_str())
buf.write("\n\n\n")
return buf.getvalue()
def graph_diagram(self, nodes: SchedulerNodeList) -> None:
draw_buffers(nodes, fname=self.filename("graph_diagram.svg"))
def draw_orig_fx_graph(
self,
gm: torch.fx.GraphModule,
nodes: SchedulerNodeList,
) -> None:
annotate_orig_fx_with_snodes(gm, nodes)
draw_graph(
gm,
fname=self.filename("orig_fx_graph_diagram.svg"),
clear_meta=False,
prog=GRAPHVIZ_COMMAND_SCALABLE,
parse_stack_trace=True,
dot_graph_shape=config.trace.dot_graph_shape,
)
def output_code(self, filename: str, extension: str = "py") -> None:
shutil.copy(filename, self.filename(f"output_code.{extension}"))
def log_autotuning_results(
self,
name: str,
input_nodes: list[ir.IRNode],
timings: dict["ChoiceCaller", float], # type: ignore[name-defined] # noqa: F821
elapse: float,
precompile_elapse: float,
prescreening_elapse: Optional[float],
) -> None:
from .ir import FixedLayout
def build_node_info(node: ir.IRNode) -> dict[str, str]:
if hasattr(node, "name"):
node_name = node.name
else:
node_name = ""
node_info = {
"name": node_name,
"type": type(node).__name__,
}
try:
layout = node.get_output_spec()
if isinstance(layout, FixedLayout):
offset = 0
try:
offset = int(layout.offset)
except Exception:
try:
offset = V.graph.sizevars.size_hint(
layout.offset, fallback=0
)
except Exception:
pass
static_layout = FixedLayout(
layout.device,
dtype=layout.dtype,
size=[*V.graph.sizevars.size_hints(layout.size)],
stride=[*V.graph.sizevars.size_hints(layout.stride)],
offset=offset,
)
node_info["layout"] = str(static_layout)
else:
node_info["layout"] = str(layout)
except Exception:
pass
try:
node_info["dtype"] = str(node.get_dtype())
except Exception:
pass
try:
node_info["device"] = str(node.get_device())
except Exception:
pass
try:
node_info["stride"] = str(
V.graph.sizevars.size_hints(node.get_stride())
)
except Exception:
pass
try:
node_info["size"] = str(V.graph.sizevars.size_hints(node.get_size())) # type: ignore[arg-type]
except Exception:
pass
try:
node_info["numel"] = str(V.graph.sizevars.size_hint(node.get_numel()))
except Exception:
pass
if hasattr(node, "data") and isinstance(node.data, ir.IRNode):
node_info["data"] = build_node_info(node.data)
return node_info
general_properties = {
"op_name": name,
"cuda_device_name": torch.cuda.get_device_name(),
"cuda_device_count": torch.cuda.device_count(),
"input_nodes": [build_node_info(node) for node in input_nodes],
"autotuning_time": elapse,
"precompile_time": precompile_elapse,
"prescreening_time": prescreening_elapse,
}
with self.fopen_context(
"autotuning_result_json_list.txt", "at", encoding="utf-8"
) as fd:
for caller, time in timings.items():
info_dict = dict(caller.info_dict())
info_dict.update(general_properties)
info_dict["benchmark_result"] = time
json.dump(info_dict, fd)
fd.write("\n")
def log_ir_pre_fusion(nodes: SchedulerNodeList) -> None:
if ir_pre_fusion_log.isEnabledFor(logging.INFO):
ir_pre_fusion_log.info("BEFORE FUSION\n%s", DebugFormatter._write_ir(nodes))
V.debug.ir_pre_fusion(nodes)
def log_ir_post_fusion(nodes: SchedulerNodeList) -> None:
if ir_post_fusion_log.isEnabledFor(logging.INFO):
ir_post_fusion_log.info("AFTER FUSION\n%s", DebugFormatter._write_ir(nodes))
V.debug.ir_post_fusion(nodes)
def _dump_collective_schedule(schedule: list[Union[str, None]]) -> None:
try:
trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "inductor_collective_schedule",
"encoding": "json",
},
payload_fn=lambda: schedule,
)
except Exception:
log.debug(
"Failed to log inductor_collective_schedule via structured logging",
exc_info=True,
)
def log_collective_schedule(nodes: Sequence[BaseSchedulerNode]) -> None:
schedule = [
getattr(op, "python_kernel_name", None)
for node in nodes
if isinstance(op := getattr(node, "node", None), ir._CollectiveKernel)
]
# Only log when there is at least one collective op
if schedule:
_dump_collective_schedule(schedule)
def log_runtime_and_tensor_meta(node_runtimes: Sequence[tuple[Any, float]]) -> None:
"""Log per-op runtime estimates and output tensor metadata for TLParse."""
try:
to_size_hints = V.graph.sizevars.size_hints
def to_list(x: Optional[Sequence[Any]]) -> list[Any]:
return list(to_size_hints(x)) if x is not None else []
def dtype_to_str(dtype: Any) -> Optional[str]:
if dtype is None:
return None
s = str(dtype)
s = s.removeprefix("torch.")
return s
ops: list[dict[str, Any]] = []
for s, runtime_ns in node_runtimes:
name = getattr(s.node, "python_kernel_name", s.get_name())
op_type = "collective" if utils.is_collective(s.node) else "compute"
# Build outputs metadata if available
outputs: list[dict[str, Any]] = []
try:
for buf in s.get_outputs():
irnode = buf.node
shape = irnode.maybe_get_size()
stride = (
irnode.get_stride()
if isinstance(irnode.layout, ir.Layout)
else None
)
dtype = irnode.maybe_get_dtype()
outputs.append(
{
"shape": to_list(shape),
"stride": to_list(stride),
"dtype": dtype_to_str(dtype),
}
)
except Exception:
pass
ops.append(
{
"name": name,
"type": op_type,
"estimated_runtime_ns": runtime_ns,
"outputs": outputs,
}
)
trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "inductor_runtime_and_tensor_meta",
"encoding": "json",
},
payload_fn=lambda: {"ops": ops},
)
except Exception:
log.debug("Failed to log inductor_runtime_and_tensor_meta", exc_info=True)
def log_graph_execution() -> None:
"""Emit a structured artifact with the graph execution order."""
if not GRAPH_EXECUTION_ORDER:
return
try:
trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "graph_execution",
"encoding": "json",
},
payload_fn=lambda: {"graph_execution_order": GRAPH_EXECUTION_ORDER},
)
except Exception:
log.debug("Failed to log graph_execution", exc_info=True)
@contextlib.contextmanager
def record_and_log_graph_execution_order() -> Iterator[None]:
"""Record graph execution order and log it once on exit."""
global RECORD_GRAPH_EXECUTION, GRAPH_EXECUTION_ORDER, GRAPH_COMPILE_IDS
GRAPH_EXECUTION_ORDER = []
GRAPH_COMPILE_IDS = {}
RECORD_GRAPH_EXECUTION = True
try:
yield
finally:
log_graph_execution()
RECORD_GRAPH_EXECUTION = False
GRAPH_EXECUTION_ORDER = None
GRAPH_COMPILE_IDS = None
@dataclasses.dataclass
class TensorMetadataHolder:
tensor_metadata: TensorMetadata
device: torch.device
save_args_cnt = itertools.count()
def create_mapping_pre_post_grad_nodes(
pre_grad_graph_id: Optional[int],
post_to_pre_grad_nodes_json: dict[str, Any],
) -> dict[str, dict[str, list[str]]]:
"""
Create bidirectional mappings between pre_grad graph nodes
and post_grad graph code nodes, and vice versa.
"""
# return a dummy dict if there's any error
empty_return: dict[str, dict[str, list[str]]] = {
"preToPost": {},
"postToPre": {},
}
if not isinstance(post_to_pre_grad_nodes_json, dict):
log.error("Provenance tacking error: post_to_pre_grad_nodes_json is not a dict")
return empty_return
if not isinstance(pre_grad_graph_id, int):
# pre_grad_graph_id may be empty if there's no pre_grad graph
# and there's only a backward graph from backward pass engine
return empty_return
pre_to_post: dict[str, Any] = collections.defaultdict(OrderedSet)
post_to_pre: dict[str, Any] = collections.defaultdict(OrderedSet)
try:
def check_format(node: dict[str, Any]) -> bool:
if not isinstance(node, dict):
log.error(
"Provenance tacking error: node provenance in post_to_pre_grad_nodes_json is not a dict"
)
return False
if "graph_id" not in node or "name" not in node or "from_node" not in node:
log.error(
"Provenance tacking error: node provenance in post_to_pre_grad_nodes_json has wrong format"
)
return False
return True
for outer_key, node_array in post_to_pre_grad_nodes_json.items():
if not isinstance(node_array, list):
log.error(
"Provenance tacking error: post_to_pre_grad_nodes_json value is not a list"
)
return empty_return
for node in node_array:
if not check_format(node):
return empty_return
# Check the current node first
if node.get("graph_id") == pre_grad_graph_id:
pre_to_post[node["name"]].add(outer_key)
post_to_pre[outer_key].add(node["name"])
# Check nested from_node array recursively, add node with the right graph_id to the map
stack = [(n, outer_key) for n in node.get("from_node", [])]
while stack:
current_node, parent_key = stack.pop()
if not check_format(current_node):
return empty_return
if current_node.get("graph_id") == pre_grad_graph_id:
pre_to_post[current_node["name"]].add(parent_key)
post_to_pre[parent_key].add(current_node["name"])
stack.extend(
(n, parent_key) for n in current_node.get("from_node", [])
)
def convert_sets_to_lists(d: dict[str, Any]) -> None:
for key in d:
d[key] = list(d[key])
d = dict(d)
# convert to list because set is not JSON serializable
convert_sets_to_lists(pre_to_post)
convert_sets_to_lists(post_to_pre)
return {
"preToPost": pre_to_post,
"postToPre": post_to_pre,
}
except Exception as e:
# Since this is just logging code, it should never interfere with regular
# program execution, so we use this try-except to guard against any error
signpost_event(
"inductor",
"provenance_tracking_error",
{
"function": "create_mapping_pre_post_grad_nodes",
"error_msg": str(e),
"stack_trace": traceback.format_exc(),
},
)
log.error("post_to_pre_grad_nodes_json: %s", post_to_pre_grad_nodes_json)
log.error("pre_grad_graph_id: %s", pre_grad_graph_id)
return empty_return
def create_node_mapping_kernel_to_post_grad(
triton_kernel_to_post_grad_json: dict[str, Any],
) -> dict[str, dict[str, Any]]:
"""Create bidirectional mappings between triton kernel name and post_grad
graph code nodes, and vice versa.
"""
# return a dummy dict if there's any error
empty_return: dict[str, dict[str, Any]] = {
"cppCodeToPost": {},
"postToCppCode": {},
}
if not isinstance(triton_kernel_to_post_grad_json, dict):
log.error(
"Provenance tacking error: triton_kernel_to_post_grad_json is not a dict"
)
return empty_return
post_to_cpp_code: dict[str, Any] = collections.defaultdict(OrderedSet)
try:
for outer_key, node_array in triton_kernel_to_post_grad_json.items():
if not isinstance(node_array, list):
log.error(
"Provenance tacking error: triton_kernel_to_post_grad_json value is not a list"
)
return empty_return
for curr_node in node_array:
post_to_cpp_code[curr_node].add(outer_key)
def convert_sets_to_lists(d: dict[str, Any]) -> None:
for key in d:
d[key] = list(d[key])
d = dict(d)
# convert to list because set is not JSON serializable
convert_sets_to_lists(post_to_cpp_code)
return {
"cppCodeToPost": triton_kernel_to_post_grad_json,
"postToCppCode": post_to_cpp_code,
}
except Exception as e:
# Since this is just logging code, it should never interfere with regular
# program execution, so we use this try-except to guard against any error
signpost_event(
"inductor",
"provenance_tracking_error",
{
"function": "create_mapping_kernel_to_post_grad",
"error_msg": str(e),
"stack_trace": traceback.format_exc(),
},
)
log.error(
"triton_kernel_to_post_grad_json: %s", triton_kernel_to_post_grad_json
)
return empty_return
def dump_inductor_provenance_info() -> dict[str, Any]:
try:
global _pre_grad_graph_id
global _inductor_post_to_pre_grad_nodes
global _inductor_triton_kernel_to_post_grad_node_info
node_mapping: dict[str, Any] = {}
if _pre_grad_graph_id:
node_mapping_kernel = create_node_mapping_kernel_to_post_grad(
_inductor_triton_kernel_to_post_grad_node_info
)
node_mapping = {
**_inductor_post_to_pre_grad_nodes,
**node_mapping_kernel,
}
if config.trace.enabled:
with V.debug.fopen(
"inductor_provenance_tracking_node_mappings.json", "w"
) as fd:
json.dump(node_mapping, fd)
# we need to update the node mapping version when node mapping format changes
# so the tlparse tool knows which node mapping version it is looking at
node_mapping["version"] = 2.0
return node_mapping
except Exception as e:
# Since this is just debugging, it should never interfere with regular
# program execution, so we use this try-except to guard against any error
signpost_event(
"inductor",
"provenance_tracking_error",
{
"function": "dump_inductor_provenance_info",
"error_msg": str(e),
"stack_trace": traceback.format_exc(),
},
)
return {}
def create_kernel_information_json() -> dict[str, dict[str, list[str]]]:
"""Create kernel information JSON"""
try:
global _inductor_post_to_pre_grad_nodes
global _inductor_kernel_stack_trace
global _inductor_triton_kernel_to_post_grad_node_info
post_to_pre = _inductor_post_to_pre_grad_nodes.get("postToPre", {})
all_kernels = OrderedSet(_inductor_kernel_stack_trace.keys()) | OrderedSet(
_inductor_triton_kernel_to_post_grad_node_info.keys()
)
result = {}
for kernel_name in all_kernels:
post_grad_nodes = _inductor_triton_kernel_to_post_grad_node_info.get(
kernel_name, []
)
pre_grad_nodes: OrderedSet[str] = OrderedSet()
for post_node in post_grad_nodes:
pre_grad_nodes.update(post_to_pre.get(post_node, []))
result[kernel_name] = {
"stack_traces": _inductor_kernel_stack_trace.get(kernel_name, []),
"post_grad_nodes": post_grad_nodes,
"pre_grad_nodes": list(pre_grad_nodes),
}
return result
except Exception as e:
signpost_event(
"inductor",
"provenance_tracking_error",
{
"function": "create_kernel_information_json",
"error_msg": str(e),
"stack_trace": traceback.format_exc(),
},
)
return {}
def set_kernel_post_grad_provenance_tracing(
node_schedule: Union[Sequence[BaseSchedulerNode], ExternKernel],
kernel_name: str,
is_extern: bool = False,
) -> Optional[int]:
"""
Set the mapping between `kernel_name` and the post_grad nodes in `node_schedule`.
Returns a unique int debug handler for each call to this function.
"""
try:
from .codegen.simd_kernel_features import DisableReduction, EnableReduction
global _inductor_triton_kernel_to_post_grad_node_info
global _inductor_kernel_stack_trace
global _inductor_kernel_provenance_debug_handle
_inductor_kernel_provenance_debug_handle += 1
stack_traces: list[str] = []
kernel_name = f"{kernel_name}:{_inductor_kernel_provenance_debug_handle}"
if is_extern:
assert isinstance(node_schedule, ExternKernel)
curr_node_info = _inductor_triton_kernel_to_post_grad_node_info.setdefault(
kernel_name, []
)
# 'origins' on IR nodes gives what FX IR nodes contributed to any given fused kernel.
# "origin_node" is more precise and says that the contents of this node corresponds
# EXACTLY to the output of a particular FX node, but it's not always available
if node_schedule.origin_node:
origin_node_name = node_schedule.origin_node.name
if origin_node_name not in curr_node_info:
curr_node_info.append(origin_node_name)
else:
curr_node_info.extend(
origin.name
for origin in node_schedule.origins
if origin.name not in curr_node_info
)
stack_traces = list(node_schedule.get_stack_traces())
else:
assert isinstance(node_schedule, list)
stack_traces_set: OrderedSet[str] = OrderedSet()
for snode in node_schedule:
if snode not in (EnableReduction, DisableReduction):
if snode.node is not None:
curr_node_info = (
_inductor_triton_kernel_to_post_grad_node_info.setdefault(
kernel_name, []
)
)
stack_traces_set.update(snode.node.get_stack_traces())
curr_node_info.extend(
origin.name
for origin in snode.node.origins
if origin.name not in curr_node_info
)
stack_traces = list(stack_traces_set)
_inductor_kernel_stack_trace.setdefault(kernel_name, []).extend(stack_traces)
return _inductor_kernel_provenance_debug_handle
except Exception as e:
# Since this is just debugging, it should never interfere with regular
# program execution, so we use this try-except to guard against any error
signpost_event(
"inductor",
"provenance_tracking_error",
{
"function": "set_kernel_post_grad_provenance_tracing",
"error_msg": str(e),
"stack_trace": traceback.format_exc(),
},
)
return None
def save_args_for_compile_fx_inner(*args: Any, **kwargs: Any) -> None:
"""
This function is used to save arguments for a compile_fx_inner function call
to the file system. Later on one can replay the compile_fx_inner call
with the saved arguments using load_args_and_run_compile_fx_inner.
"""
folder = "/tmp/inductor_saved_args"
if not os.path.exists(folder):
os.mkdir(folder)
def handle_tensor(x: Any) -> Any:
"""
Pickle FakeTensor will result in error:
AttributeError: Can't pickle local object 'WeakValueDictionary.__init__.<locals>.remove'
Convert all Tensor to metadata. This may also makes pickle faster.
"""
if isinstance(x, torch.Tensor):
return TensorMetadataHolder(_extract_tensor_metadata(x), x.device)
else:
return x
args_to_save, kwargs_to_save = tree_map(handle_tensor, (args, kwargs))
fn_name = "compile_fx_inner"
path = f"{folder}/{fn_name}_{next(save_args_cnt)}.pkl"
with open(path, "wb") as f:
pickle.dump((args_to_save, kwargs_to_save), f)
if log.isEnabledFor(logging.DEBUG):
message = f"""
Arguments for a compile_fx_inner call is saved to {path}. To replay the call,
run the following:
from torch._inductor.debug import load_args_and_run_compile_fx_inner
load_args_and_run_compile_fx_inner({path!r})
"""
# call print rather than log.debug. log.debug will print message
# prefix for each line which makes the code snippet harder to be
# copied.
# Not a big deal since the code is already been guarded by checking
# the log level.
print(message)
def load_args_and_run_compile_fx_inner(path: str) -> Any:
from torch._inductor.compile_fx import compile_fx_inner
with open(path, "rb") as f:
args, kwargs = pickle.load(f)
def handle_tensor(x: Any) -> Any:
if isinstance(x, TensorMetadataHolder):
return torch._dynamo.testing.rand_strided(
x.tensor_metadata.shape,
x.tensor_metadata.stride,
x.tensor_metadata.dtype,
x.device,
)
else:
return x
fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
with fake_mode, config.patch("save_args", False):
args, kwargs = tree_map(handle_tensor, (args, kwargs))
return compile_fx_inner(*args, **kwargs)
def aot_inductor_minifier_wrapper(
func: Callable[..., str],
exported_program: torch.export.ExportedProgram,
*,
inductor_configs: dict[str, Any],
package_path: Optional[FileLike] = None,
) -> str:
from torch._dynamo.debug_utils import AccuracyError
from torch._dynamo.repro.aoti import dump_to_minify
from torch._inductor import config
from torch._inductor.compile_fx import _aoti_flatten_inputs
use_minifier = config.aot_inductor.dump_aoti_minifier
gm = exported_program.module(check_guards=False)
assert isinstance(gm, torch.fx.GraphModule)
args, kwargs = exported_program.example_inputs
try:
if use_minifier and config.aot_inductor.repro_level == 3:
# Always dump the original module in case we have segfaults
dump_to_minify(
exported_program,
"aot_inductor",
options=inductor_configs,
)
if use_minifier and config.aot_inductor.repro_level == 4:
# Check for accuracy
# We will first flatten the inputs before compiling and checking for accuracy.
# This is ok because we will flatten the inputs in the minifier anyway.
gm_copy = copy.deepcopy(gm)
example_inputs_copy = copy.deepcopy(exported_program.example_inputs)
config_copy = copy.deepcopy(inductor_configs)
flat_example_inputs, config_copy = _aoti_flatten_inputs(
gm_copy,
example_inputs_copy[0],
example_inputs_copy[1],
options=config_copy,
)
tuple_inputs = tuple(flat_example_inputs)
flattened_ep = torch.export.export(gm_copy, tuple_inputs, strict=False)
func(
flattened_ep.module(check_guards=False),
tuple_inputs,
inductor_configs=config_copy,
package_path=package_path,
load_and_run=True,
check_accuracy="accuracy",
)
return func(
gm,
args,
kwargs,
inductor_configs=inductor_configs,
package_path=package_path,
load_and_run=use_minifier,
)
except AccuracyError as e:
dump_to_minify(
exported_program,
"aot_inductor_accuracy",
command="minify",
options=inductor_configs,
)
log.warning("Accuracy failed")
raise e
except Exception as e:
if use_minifier:
command = "minify"
if config.aot_inductor.repro_level == 1:
command = "run"
dump_to_minify(
exported_program,
"aot_inductor",
command=command,
options=inductor_configs,
)
raise e