Files
pytorch/torch/nn/modules/channelshuffle.py
Mikayla Gawarecki 9e8f27cc79 [BE] Make torch.nn.modules.* satisfy the docs coverage test (#158491)
Options to address the "undocumented python objects":

1. Reference the functions in the .rst via the torch.nn.modules namespace. Note that this changes the generated doc filenames / locations for most of these functions!
2. [Not an option] Monkeypatch `__module__` for these objects (broke several tests in CI due to `inspect.findsource` failing after this change)
3. Update the .rst files to also document the torch.nn.modules forms of these functions, duplicating docs.

#### [this is the docs page added](https://docs-preview.pytorch.org/pytorch/pytorch/158491/nn.aliases.html)
This PR takes option 3 by adding an rst page nn.aliases that documents the aliases in nested namespaces, removing all the torch.nn.modules.* entries from the coverage skiplist except
- NLLLoss2d (deprecated)
- Container (deprecated)
- CrossMapLRN2d (what is this?)
- NonDynamicallyQuantizableLinear

This mostly required adding docstrings to `forward`, `extra_repr` and `reset_parameters`. Since forward arguments are already part of the module docstrings I just added a very basic docstring.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158491
Approved by: https://github.com/janeyx99
2025-07-25 22:03:55 +00:00

63 lines
1.6 KiB
Python

import torch.nn.functional as F
from torch import Tensor
from .module import Module
__all__ = ["ChannelShuffle"]
class ChannelShuffle(Module):
r"""Divides and rearranges the channels in a tensor.
This operation divides the channels in a tensor of shape :math:`(N, C, *)`
into g groups as :math:`(N, \frac{C}{g}, g, *)` and shuffles them,
while retaining the original tensor shape in the final output.
Args:
groups (int): number of groups to divide channels in.
Examples::
>>> channel_shuffle = nn.ChannelShuffle(2)
>>> input = torch.arange(1, 17, dtype=torch.float32).view(1, 4, 2, 2)
>>> input
tensor([[[[ 1., 2.],
[ 3., 4.]],
[[ 5., 6.],
[ 7., 8.]],
[[ 9., 10.],
[11., 12.]],
[[13., 14.],
[15., 16.]]]])
>>> output = channel_shuffle(input)
>>> output
tensor([[[[ 1., 2.],
[ 3., 4.]],
[[ 9., 10.],
[11., 12.]],
[[ 5., 6.],
[ 7., 8.]],
[[13., 14.],
[15., 16.]]]])
"""
__constants__ = ["groups"]
groups: int
def __init__(self, groups: int) -> None:
super().__init__()
self.groups = groups
def forward(self, input: Tensor) -> Tensor:
"""
Runs the forward pass.
"""
return F.channel_shuffle(input, self.groups)
def extra_repr(self) -> str:
"""
Return the extra representation of the module.
"""
return f"groups={self.groups}"