Files
pytorch/torch/ao/ns/fx/weight_utils.py
Yuanyuan Chen 70925bdf82 [1/N] Use "is" in python type comparison (#165037)
It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165037
Approved by: https://github.com/mlazos
2025-10-10 12:36:50 +00:00

286 lines
11 KiB
Python

from collections.abc import Callable
from typing import Optional
import torch
import torch.ao.nn.intrinsic as nni
import torch.ao.nn.intrinsic.qat as nniqat
import torch.ao.nn.intrinsic.quantized as nniq
import torch.ao.nn.qat as nnqat
import torch.ao.nn.quantized as nnq
import torch.ao.nn.quantized.dynamic as nnqd
import torch.nn as nn
import torch.nn.functional as F
from torch.fx import GraphModule
from torch.fx.graph import Node
from .ns_types import NSSingleResultType, NSSingleResultValuesType
from .utils import get_target_type_str, getattr_from_fqn, return_first_non_observer_node
toq = torch.ops.quantized
def mod_weight_detach(mod: nn.Module) -> torch.Tensor:
return mod.weight.detach() # type: ignore[operator]
def mod_0_weight_detach(mod: nn.Module) -> torch.Tensor:
return mod[0].weight.detach() # type: ignore[index]
def mod_weight_bias_0(mod: nn.Module) -> torch.Tensor:
return mod._weight_bias()[0] # type: ignore[operator]
def get_lstm_weight(mod: nn.Module) -> list[torch.Tensor]:
res = []
for idx, param_name in enumerate(mod._flat_weights_names): # type: ignore[arg-type]
if "weight_ih_l" in param_name or "weight_hh_l" in param_name:
param_value = mod._flat_weights[idx].detach() # type: ignore[index,union-attr]
res.append(param_value)
return res
def get_qlstm_weight(mod: nn.Module) -> list[torch.Tensor]:
res = []
for weight_value in mod._all_weight_values: # type: ignore[union-attr]
res.append(weight_value.param.__getstate__()[0][4][0].__getstate__()[0][0])
res.append(weight_value.param.__getstate__()[0][4][1].__getstate__()[0][0])
return res
def get_conv_mod_weight(mod: nn.Module) -> torch.Tensor:
if isinstance(mod, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
return mod.weight.detach()
elif isinstance(mod, (nni.ConvReLU1d, nni.ConvReLU2d, nni.ConvReLU3d)):
return mod[0].weight.detach() # type: ignore[operator]
else:
return mod._weight_bias()[0] # type: ignore[operator]
def get_linear_mod_weight(mod: nn.Module) -> torch.Tensor:
if isinstance(mod, nn.Linear):
return mod.weight.detach()
elif isinstance(mod, nni.LinearReLU):
return mod[0].weight.detach() # type: ignore[operator]
else:
return mod._weight_bias()[0] # type: ignore[operator]
def get_lstm_mod_weights(mod: nn.Module) -> list[torch.Tensor]:
# TODO(future PR): make more generic, handle everything
if isinstance(mod, nn.LSTM):
res = []
for idx, param_name in enumerate(mod._flat_weights_names):
if "weight_ih_l" in param_name or "weight_hh_l" in param_name:
param_value = mod._flat_weights[idx].detach() # type: ignore[index,union-attr]
res.append(param_value)
return res
else:
assert isinstance(mod, nnqd.LSTM), f"type {type(mod)} not handled yet"
res = []
for weight_value in mod._all_weight_values:
res.append(
weight_value.param.__getstate__()[0][4][0].__getstate__()[0][0] # type: ignore[index]
)
res.append(
weight_value.param.__getstate__()[0][4][1].__getstate__()[0][0] # type: ignore[index]
)
return res
def get_conv_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
# traverse backwards from the weight arg, accounting for any observers
weight_arg_node = node.args[1]
assert isinstance(weight_arg_node, Node)
weight_node = return_first_non_observer_node(weight_arg_node, gm)
assert isinstance(weight_node, Node)
assert weight_node.op == "get_attr"
weight = getattr_from_fqn(gm, weight_node.target) # type: ignore[arg-type]
return weight.detach()
def get_qconv_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
# qconv state is arg 1
qconv_state_node = node.args[1]
assert isinstance(qconv_state_node, Node)
assert qconv_state_node.op == "get_attr"
qconv_state_obj = getattr_from_fqn(gm, qconv_state_node.target) # type: ignore[arg-type]
return qconv_state_obj.weight()
def get_linear_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
# traverse backwards from the weight arg, accounting for any observers
# supported patterns:
# weight -> obs -> linear
# weight -> to(torch.float16) -> dequantize -> linear
linear_second_arg = node.args[1]
assert isinstance(linear_second_arg, Node)
if linear_second_arg.op == "call_module":
# weight -> obs -> linear
weight_arg_node = node.args[1]
assert isinstance(weight_arg_node, Node)
weight_node = weight_arg_node.args[0]
assert isinstance(weight_node, Node)
assert weight_node.op == "get_attr"
weight = getattr_from_fqn(gm, weight_node.target) # type: ignore[arg-type]
return weight.detach()
elif linear_second_arg.op == "call_method":
# weight -> to(torch.float16) -> dequantize -> linear
assert linear_second_arg.op == "call_method"
dequant_node = node.args[1]
assert isinstance(dequant_node, Node)
to_fp16_node = dequant_node.args[0]
assert isinstance(to_fp16_node, Node)
# extract the dtype, so we can cast to it before returning
target_dtype = to_fp16_node.args[1]
weight_node = to_fp16_node.args[0]
assert isinstance(weight_node, Node)
assert weight_node.op == "get_attr"
weight = getattr_from_fqn(gm, weight_node.target) # type: ignore[arg-type]
# return the weight with fp16 cast
return weight.detach().to(target_dtype)
else:
assert linear_second_arg.op == "get_attr"
weight = getattr_from_fqn(gm, linear_second_arg.target) # type: ignore[arg-type]
return weight.detach()
def get_qlinear_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
# packed weight is arg 1
packed_weight_node = node.args[1]
assert isinstance(packed_weight_node, Node)
assert packed_weight_node.op == "get_attr"
packed_weight = getattr_from_fqn(gm, packed_weight_node.target) # type: ignore[arg-type]
# TODO(future PR): why does packed_weight.unpack() not work?
(weight, _bias), _name = packed_weight.__getstate__()
return weight
def get_op_to_type_to_weight_extraction_fn() -> dict[str, dict[Callable, Callable]]:
op_to_type_to_weight_extraction_fn: dict[str, dict[Callable, Callable]] = {
"call_module": {
# Conv1d
nn.Conv1d: mod_weight_detach,
nni.ConvReLU1d: mod_0_weight_detach,
nnq.Conv1d: mod_weight_bias_0,
nnqat.Conv1d: mod_weight_detach,
nniqat.ConvBn1d: mod_weight_detach,
nniqat.ConvBnReLU1d: mod_weight_detach,
nniqat.ConvReLU1d: mod_weight_detach,
nniq.ConvReLU1d: mod_weight_bias_0,
# Conv2d
nn.Conv2d: mod_weight_detach,
nni.ConvReLU2d: mod_0_weight_detach,
nnq.Conv2d: mod_weight_bias_0,
nnqat.Conv2d: mod_weight_detach,
nniqat.ConvBn2d: mod_weight_detach,
nniqat.ConvBnReLU2d: mod_weight_detach,
nniqat.ConvReLU2d: mod_weight_detach,
nniq.ConvReLU2d: mod_weight_bias_0,
# Conv3d
nn.Conv3d: mod_weight_detach,
nni.ConvReLU3d: mod_0_weight_detach,
nnq.Conv3d: mod_weight_bias_0,
nnqat.Conv3d: mod_weight_detach,
nniqat.ConvBn3d: mod_weight_detach,
nniqat.ConvBnReLU3d: mod_weight_detach,
nniqat.ConvReLU3d: mod_weight_detach,
nniq.ConvReLU3d: mod_weight_bias_0,
# Linear
nn.Linear: mod_weight_detach,
nnq.Linear: mod_weight_bias_0,
nni.LinearReLU: mod_0_weight_detach,
nniq.LinearReLU: mod_weight_bias_0,
nnqat.Linear: mod_weight_detach,
nnqd.Linear: mod_weight_bias_0,
nniqat.LinearReLU: mod_weight_detach,
nniqat.LinearBn1d: mod_weight_detach,
nn.modules.linear.NonDynamicallyQuantizableLinear: mod_weight_detach,
# LSTM
nn.LSTM: get_lstm_weight,
nnqd.LSTM: get_qlstm_weight,
},
"call_function": {
# Conv
F.conv1d: get_conv_fun_weight,
F.conv2d: get_conv_fun_weight,
F.conv3d: get_conv_fun_weight,
toq.conv1d: get_qconv_fun_weight,
toq.conv2d: get_qconv_fun_weight,
toq.conv3d: get_qconv_fun_weight,
toq.conv1d_relu: get_qconv_fun_weight,
toq.conv2d_relu: get_qconv_fun_weight,
toq.conv3d_relu: get_qconv_fun_weight,
# Linear
F.linear: get_linear_fun_weight,
toq.linear: get_qlinear_fun_weight,
toq.linear_relu: get_qlinear_fun_weight,
},
}
return op_to_type_to_weight_extraction_fn
def extract_weight_from_node(
node: Node,
gm: GraphModule,
op_to_type_to_weight_extraction_fn: Optional[
dict[str, dict[Callable, Callable]]
] = None,
) -> Optional[NSSingleResultType]:
res_type = NSSingleResultValuesType.WEIGHT.value
# Not all graphmodules have _node_name_to_scope, so only fill it
# out if it exists.
fqn = None
if hasattr(gm, "_node_name_to_scope"):
fqn = gm._node_name_to_scope[node.name][0] # type: ignore[index]
if op_to_type_to_weight_extraction_fn is None:
op_to_type_to_weight_extraction_fn = get_op_to_type_to_weight_extraction_fn()
ref_node_type = get_target_type_str(node, gm)
# for extracting weights, these are always the same
prev_node_type = ref_node_type
if node.op == "call_function":
function_mapping = op_to_type_to_weight_extraction_fn["call_function"]
for target_fn_type, weight_extraction_fn in function_mapping.items():
if node.target == target_fn_type:
weight = weight_extraction_fn(node, gm)
return {
"type": res_type,
"values": [weight],
"prev_node_name": node.name,
"prev_node_target_type": prev_node_type,
"ref_node_name": node.name,
"ref_node_target_type": ref_node_type,
"index_within_arg": 0,
"index_of_arg": 0,
"fqn": fqn,
}
elif node.op == "call_module":
# for call_module, we need to look up the modules to do the type check
assert isinstance(node.target, str)
mod = getattr_from_fqn(gm, node.target)
module_mapping = op_to_type_to_weight_extraction_fn["call_module"]
for target_mod_type, weight_extraction_fn in module_mapping.items():
if type(mod) is target_mod_type:
weight = weight_extraction_fn(mod)
return {
"type": res_type,
"values": [weight],
"prev_node_name": node.name,
"prev_node_target_type": prev_node_type,
"ref_node_name": node.name,
"ref_node_target_type": ref_node_type,
"index_within_arg": 0,
"index_of_arg": 0,
"fqn": fqn,
}
return None