mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165037 Approved by: https://github.com/mlazos
193 lines
6.3 KiB
Python
193 lines
6.3 KiB
Python
# mypy: allow-untyped-defs
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.ao.nn.intrinsic as nni
|
|
from torch.ao.nn.quantized.modules.utils import (
|
|
_hide_packed_params_repr,
|
|
_quantize_weight,
|
|
)
|
|
from torch.ao.nn.sparse.quantized import linear
|
|
from torch.ao.nn.sparse.quantized.utils import LinearBlockSparsePattern
|
|
|
|
|
|
__all__ = ["Linear"]
|
|
|
|
|
|
class Linear(torch.nn.Module):
|
|
r"""
|
|
A dynamically quantized sparse linear module with float tensor as inputs and outputs.
|
|
"""
|
|
|
|
_version = 1
|
|
_op_type = "sparse_dynamic"
|
|
_FLOAT_MODULE = torch.nn.Linear
|
|
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
out_features,
|
|
row_block_size,
|
|
col_block_size,
|
|
bias=True,
|
|
dtype=torch.qint8,
|
|
):
|
|
super().__init__()
|
|
|
|
if dtype != torch.qint8:
|
|
raise NotImplementedError(
|
|
"Only QINT8 is supported for Sparse Quantized Linear Dynamic"
|
|
)
|
|
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
|
|
if bias:
|
|
bias = torch.zeros(self.out_features, dtype=torch.float)
|
|
else:
|
|
bias = None
|
|
|
|
qweight = torch._empty_affine_quantized(
|
|
[out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8
|
|
)
|
|
self._packed_params = linear.LinearPackedParams(
|
|
row_block_size=row_block_size, col_block_size=col_block_size, dtype=dtype
|
|
)
|
|
self._packed_params.set_weight_bias(
|
|
qweight, bias, row_block_size, col_block_size
|
|
)
|
|
|
|
def _get_name(self):
|
|
return "SparseQuantizedDynamicLinear"
|
|
|
|
def extra_repr(self):
|
|
return f"in_features={self.in_features}, out_features={self.out_features}, qscheme={self.weight().qscheme()}"
|
|
|
|
def __repr__(self):
|
|
return _hide_packed_params_repr(self, linear.LinearPackedParams)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return torch.ops.sparse.qlinear_dynamic(x, self._packed_params._packed_params)
|
|
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
|
super()._save_to_state_dict(destination, prefix, keep_vars)
|
|
destination[prefix + "op_type"] = self._op_type
|
|
|
|
def _load_from_state_dict(
|
|
self,
|
|
state_dict,
|
|
prefix,
|
|
local_metadata,
|
|
strict,
|
|
missing_keys,
|
|
unexpected_keys,
|
|
error_msgs,
|
|
):
|
|
op_type = int(state_dict[prefix + "op_type"])
|
|
assert op_type == "sparse", (
|
|
f"Cannot load from op_type [{op_type}], expecting [{self._op_type}]"
|
|
)
|
|
state_dict.pop(prefix + "op_type")
|
|
|
|
version = local_metadata.get("version", None)
|
|
assert version <= self._version
|
|
|
|
# Is this code valid? In old quantization it seemed to be used to load
|
|
# older model
|
|
weight = state_dict.pop(prefix + "weight")
|
|
bias = state_dict.pop(prefix + "bias")
|
|
state_dict.update(
|
|
{
|
|
prefix + "_packed_params.weight": weight,
|
|
prefix + "_packed_params.bias": bias,
|
|
}
|
|
)
|
|
|
|
super()._load_from_state_dict(
|
|
state_dict,
|
|
prefix,
|
|
local_metadata,
|
|
False,
|
|
missing_keys,
|
|
unexpected_keys,
|
|
error_msgs,
|
|
)
|
|
|
|
def _weight_bias(self):
|
|
return self._packed_params._weight_bias()
|
|
|
|
def weight(self):
|
|
return self._weight_bias()[0]
|
|
|
|
def bias(self):
|
|
return self._weight_bias()[1]
|
|
|
|
def set_weight_bias(
|
|
self,
|
|
w: torch.Tensor,
|
|
b: Optional[torch.Tensor],
|
|
row_block_size: Optional[int],
|
|
col_block_size: Optional[int],
|
|
) -> None:
|
|
assert row_block_size is not None and col_block_size is not None
|
|
self.out_features = w.shape[0]
|
|
self.in_features = w.shape[1]
|
|
self._packed_params.set_weight_bias(w, b, row_block_size, col_block_size)
|
|
|
|
@classmethod
|
|
def from_float(cls, mod, use_precomputed_fake_quant=False):
|
|
r"""Create a quantized sparse dynamic module from a float module.
|
|
|
|
We only care about the convert at this stage, no need for observers just yet.
|
|
"""
|
|
assert type(mod) == cls._FLOAT_MODULE, (
|
|
" nnq."
|
|
+ cls.__name__
|
|
+ ".from_float only works for "
|
|
+ cls._FLOAT_MODULE.__name__
|
|
)
|
|
# TODO: Need to add options to qconfig to avoid the calibration.
|
|
# TODO: Add calibration for the sparsity
|
|
assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined"
|
|
if type(mod) is nni.LinearReLU:
|
|
mod = mod[0]
|
|
# pyrefly: ignore # missing-attribute
|
|
if mod.qconfig is not None and mod.qconfig.weight is not None:
|
|
# pyrefly: ignore # not-callable
|
|
weight_observer = mod.qconfig.weight()
|
|
else:
|
|
# We have the circular import issues if we import the qconfig in the beginning of this file:
|
|
# https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the
|
|
# import until we need it.
|
|
from torch.ao.quantization.qconfig import default_dynamic_qconfig
|
|
|
|
weight_observer = default_dynamic_qconfig.weight()
|
|
|
|
# It is important to multiply by the mask BEFORE calling the `weight_observer`
|
|
# TODO (zaf): Mask might not be part of the qconfig (T83295194)
|
|
weight = mod.weight
|
|
if getattr(mod.qconfig, "mask", False):
|
|
weight = mod.qconfig.mask * mod.weight
|
|
|
|
weight_observer(weight)
|
|
dtype = weight_observer.dtype
|
|
assert dtype == torch.qint8, "Weight observer must have dtype torch.qint8"
|
|
_w_sc, w_zp = weight_observer.calculate_qparams()
|
|
if isinstance(w_zp, torch.Tensor):
|
|
assert not torch.any(w_zp.bool()), "All weight zero points must map to 0"
|
|
else:
|
|
assert w_zp == 0, "Weight zero point must map to 0"
|
|
qweight = _quantize_weight(weight.float(), weight_observer)
|
|
|
|
row_block_size, col_block_size = LinearBlockSparsePattern.block_size()
|
|
qlinear = cls(
|
|
mod.in_features,
|
|
mod.out_features,
|
|
row_block_size,
|
|
col_block_size,
|
|
dtype=dtype,
|
|
)
|
|
# pyrefly: ignore # bad-argument-type
|
|
qlinear.set_weight_bias(qweight, mod.bias, row_block_size, col_block_size)
|
|
return qlinear
|