Files
pytorch/torch/ao/nn/sparse/quantized/dynamic/linear.py
Yuanyuan Chen 70925bdf82 [1/N] Use "is" in python type comparison (#165037)
It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165037
Approved by: https://github.com/mlazos
2025-10-10 12:36:50 +00:00

193 lines
6.3 KiB
Python

# mypy: allow-untyped-defs
from typing import Optional
import torch
import torch.ao.nn.intrinsic as nni
from torch.ao.nn.quantized.modules.utils import (
_hide_packed_params_repr,
_quantize_weight,
)
from torch.ao.nn.sparse.quantized import linear
from torch.ao.nn.sparse.quantized.utils import LinearBlockSparsePattern
__all__ = ["Linear"]
class Linear(torch.nn.Module):
r"""
A dynamically quantized sparse linear module with float tensor as inputs and outputs.
"""
_version = 1
_op_type = "sparse_dynamic"
_FLOAT_MODULE = torch.nn.Linear
def __init__(
self,
in_features,
out_features,
row_block_size,
col_block_size,
bias=True,
dtype=torch.qint8,
):
super().__init__()
if dtype != torch.qint8:
raise NotImplementedError(
"Only QINT8 is supported for Sparse Quantized Linear Dynamic"
)
self.in_features = in_features
self.out_features = out_features
if bias:
bias = torch.zeros(self.out_features, dtype=torch.float)
else:
bias = None
qweight = torch._empty_affine_quantized(
[out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8
)
self._packed_params = linear.LinearPackedParams(
row_block_size=row_block_size, col_block_size=col_block_size, dtype=dtype
)
self._packed_params.set_weight_bias(
qweight, bias, row_block_size, col_block_size
)
def _get_name(self):
return "SparseQuantizedDynamicLinear"
def extra_repr(self):
return f"in_features={self.in_features}, out_features={self.out_features}, qscheme={self.weight().qscheme()}"
def __repr__(self):
return _hide_packed_params_repr(self, linear.LinearPackedParams)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.ops.sparse.qlinear_dynamic(x, self._packed_params._packed_params)
def _save_to_state_dict(self, destination, prefix, keep_vars):
super()._save_to_state_dict(destination, prefix, keep_vars)
destination[prefix + "op_type"] = self._op_type
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
op_type = int(state_dict[prefix + "op_type"])
assert op_type == "sparse", (
f"Cannot load from op_type [{op_type}], expecting [{self._op_type}]"
)
state_dict.pop(prefix + "op_type")
version = local_metadata.get("version", None)
assert version <= self._version
# Is this code valid? In old quantization it seemed to be used to load
# older model
weight = state_dict.pop(prefix + "weight")
bias = state_dict.pop(prefix + "bias")
state_dict.update(
{
prefix + "_packed_params.weight": weight,
prefix + "_packed_params.bias": bias,
}
)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
False,
missing_keys,
unexpected_keys,
error_msgs,
)
def _weight_bias(self):
return self._packed_params._weight_bias()
def weight(self):
return self._weight_bias()[0]
def bias(self):
return self._weight_bias()[1]
def set_weight_bias(
self,
w: torch.Tensor,
b: Optional[torch.Tensor],
row_block_size: Optional[int],
col_block_size: Optional[int],
) -> None:
assert row_block_size is not None and col_block_size is not None
self.out_features = w.shape[0]
self.in_features = w.shape[1]
self._packed_params.set_weight_bias(w, b, row_block_size, col_block_size)
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
r"""Create a quantized sparse dynamic module from a float module.
We only care about the convert at this stage, no need for observers just yet.
"""
assert type(mod) == cls._FLOAT_MODULE, (
" nnq."
+ cls.__name__
+ ".from_float only works for "
+ cls._FLOAT_MODULE.__name__
)
# TODO: Need to add options to qconfig to avoid the calibration.
# TODO: Add calibration for the sparsity
assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined"
if type(mod) is nni.LinearReLU:
mod = mod[0]
# pyrefly: ignore # missing-attribute
if mod.qconfig is not None and mod.qconfig.weight is not None:
# pyrefly: ignore # not-callable
weight_observer = mod.qconfig.weight()
else:
# We have the circular import issues if we import the qconfig in the beginning of this file:
# https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the
# import until we need it.
from torch.ao.quantization.qconfig import default_dynamic_qconfig
weight_observer = default_dynamic_qconfig.weight()
# It is important to multiply by the mask BEFORE calling the `weight_observer`
# TODO (zaf): Mask might not be part of the qconfig (T83295194)
weight = mod.weight
if getattr(mod.qconfig, "mask", False):
weight = mod.qconfig.mask * mod.weight
weight_observer(weight)
dtype = weight_observer.dtype
assert dtype == torch.qint8, "Weight observer must have dtype torch.qint8"
_w_sc, w_zp = weight_observer.calculate_qparams()
if isinstance(w_zp, torch.Tensor):
assert not torch.any(w_zp.bool()), "All weight zero points must map to 0"
else:
assert w_zp == 0, "Weight zero point must map to 0"
qweight = _quantize_weight(weight.float(), weight_observer)
row_block_size, col_block_size = LinearBlockSparsePattern.block_size()
qlinear = cls(
mod.in_features,
mod.out_features,
row_block_size,
col_block_size,
dtype=dtype,
)
# pyrefly: ignore # bad-argument-type
qlinear.set_weight_bias(qweight, mod.bias, row_block_size, col_block_size)
return qlinear