mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165037 Approved by: https://github.com/mlazos
131 lines
4.4 KiB
Python
131 lines
4.4 KiB
Python
# mypy: allow-untyped-defs
|
|
import torch
|
|
import torch.ao.nn.intrinsic as nni
|
|
|
|
|
|
__all__ = ["BatchNorm2d", "BatchNorm3d"]
|
|
|
|
|
|
class _BatchNorm(torch.nn.modules.batchnorm._BatchNorm):
|
|
def __init__(
|
|
self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None
|
|
) -> None:
|
|
factory_kwargs = {"device": device, "dtype": dtype}
|
|
super().__init__(num_features, eps, momentum, True, True, **factory_kwargs)
|
|
# pyrefly: ignore # bad-argument-type
|
|
self.register_buffer("scale", torch.tensor(1.0, **factory_kwargs))
|
|
# pyrefly: ignore # bad-argument-type
|
|
self.register_buffer("zero_point", torch.tensor(0, **factory_kwargs))
|
|
|
|
@staticmethod
|
|
def from_float(cls, mod, use_precomputed_fake_quant=False):
|
|
activation_post_process = mod.activation_post_process
|
|
if type(mod) is cls._NNI_BN_RELU_MODULE:
|
|
mod = mod[0]
|
|
scale, zero_point = activation_post_process.calculate_qparams()
|
|
new_mod = cls(mod.num_features, mod.eps)
|
|
new_mod.weight = mod.weight
|
|
new_mod.bias = mod.bias
|
|
new_mod.running_mean = mod.running_mean
|
|
new_mod.running_var = mod.running_var
|
|
new_mod.scale = scale
|
|
new_mod.zero_point = zero_point
|
|
return new_mod
|
|
|
|
@classmethod
|
|
def from_reference(cls, bn, output_scale, output_zero_point):
|
|
qbn = cls(
|
|
bn.num_features,
|
|
bn.eps,
|
|
bn.momentum,
|
|
device=bn.weight.device,
|
|
dtype=bn.weight.dtype,
|
|
)
|
|
qbn.weight = bn.weight
|
|
qbn.bias = bn.bias
|
|
qbn.running_mean = bn.running_mean
|
|
qbn.running_var = bn.running_var
|
|
qbn.scale = output_scale
|
|
qbn.zero_point = output_zero_point
|
|
return qbn
|
|
|
|
|
|
class BatchNorm2d(_BatchNorm):
|
|
r"""This is the quantized version of :class:`~torch.nn.BatchNorm2d`."""
|
|
|
|
_NNI_BN_RELU_MODULE = nni.BNReLU2d
|
|
|
|
def __init__(
|
|
self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None
|
|
) -> None:
|
|
factory_kwargs = {"device": device, "dtype": dtype}
|
|
super().__init__(num_features, eps, momentum, **factory_kwargs)
|
|
|
|
def _get_name(self):
|
|
return "QuantizedBatchNorm2d"
|
|
|
|
def _check_input_dim(self, input):
|
|
# Temporarily using len(shape) instead of ndim due to JIT issue
|
|
# https://github.com/pytorch/pytorch/issues/23890
|
|
if len(input.shape) != 4:
|
|
raise ValueError("Input shape must be `(N, C, H, W)`!")
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
# disabling this since this is not symbolically traceable
|
|
# self._check_input_dim(input)
|
|
return torch.ops.quantized.batch_norm2d(
|
|
input,
|
|
self.weight,
|
|
self.bias,
|
|
self.running_mean,
|
|
self.running_var,
|
|
self.eps,
|
|
self.scale,
|
|
self.zero_point,
|
|
)
|
|
|
|
@classmethod
|
|
def from_float(cls, mod, use_precomputed_fake_quant=False): # type: ignore[override]
|
|
return _BatchNorm.from_float(
|
|
cls, mod, use_precomputed_fake_quant=use_precomputed_fake_quant
|
|
)
|
|
|
|
|
|
class BatchNorm3d(_BatchNorm):
|
|
r"""This is the quantized version of :class:`~torch.nn.BatchNorm3d`."""
|
|
|
|
_NNI_BN_RELU_MODULE = nni.BNReLU3d
|
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None):
|
|
factory_kwargs = {"device": device, "dtype": dtype}
|
|
super().__init__(num_features, eps, momentum, **factory_kwargs)
|
|
|
|
def _get_name(self):
|
|
return "QuantizedBatchNorm3d"
|
|
|
|
def _check_input_dim(self, input):
|
|
# Temporarily using len(shape) instead of ndim due to JIT issue
|
|
# https://github.com/pytorch/pytorch/issues/23890
|
|
if len(input.shape) != 5:
|
|
raise ValueError("Input shape must be `(N, C, H, W)`!")
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
# disabling this since this is not symbolically traceable
|
|
# self._check_input_dim(input)
|
|
return torch.ops.quantized.batch_norm3d(
|
|
input,
|
|
self.weight,
|
|
self.bias,
|
|
self.running_mean,
|
|
self.running_var,
|
|
self.eps,
|
|
self.scale,
|
|
self.zero_point,
|
|
)
|
|
|
|
@classmethod
|
|
def from_float(cls, mod, use_precomputed_fake_quant=False): # type: ignore[override]
|
|
return _BatchNorm.from_float(
|
|
cls, mod, use_precomputed_fake_quant=use_precomputed_fake_quant
|
|
)
|