mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42869 We realized that when we invoke a simple callback that divides the tensors by `world_size` after `allreduce`, the performance was almost 50% lower in terms of QPS compared to the case where a simple `allreduce` hook is used with no `then` callback. The main problem was as we call `work.wait()` before invoking `then` callback, we were synchronizing `work`'s stream with the default PyTorch stream inside [`runHook`](https://github.com/pytorch/pytorch/blob/master/torch/csrc/distributed/c10d/reducer.cpp#L609) and stalling the backward computation. In that PR, we ensure that FutureNCCL's `then` callback is not stalling the backward computation. Assuming single-process single-device, `FutureNCCL` gets a new stream from device's pool using `at::cuda::getStreamFromPool` to run `callback` and before invoking the `callback` inline it synchronizes `WorkNCCL`'s stream by callback's stream not the default stream. ghstack-source-id: 110208431 Test Plan: Run performance benchmark tests to validate performance issue is resolved. Also, `python test/distributed/test_c10d.py` to avoid any odd issues. Reviewed By: pritamdamania87 Differential Revision: D23055807 fbshipit-source-id: 60e50993f1ed97497514eac5cb1018579ed2a4c5
1124 lines
43 KiB
C++
1124 lines
43 KiB
C++
#include <torch/csrc/utils/pybind.h>
|
|
|
|
#include <torch/csrc/jit/api/module.h>
|
|
#include <torch/csrc/jit/backends/backend_init.h>
|
|
#include <torch/csrc/jit/codegen/fuser/interface.h>
|
|
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
|
|
#include <torch/csrc/jit/frontend/ir_emitter.h>
|
|
#include <torch/csrc/jit/frontend/tracer.h>
|
|
#include <torch/csrc/jit/ir/irparser.h>
|
|
#include <torch/csrc/jit/passes/canonicalize.h>
|
|
#include <torch/csrc/jit/passes/canonicalize_graph_fuser_ops.h>
|
|
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
|
|
#include <torch/csrc/jit/passes/constant_pooling.h>
|
|
#include <torch/csrc/jit/passes/constant_propagation.h>
|
|
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
|
|
#include <torch/csrc/jit/passes/create_functional_graphs.h>
|
|
#include <torch/csrc/jit/passes/cuda_graph_fuser.h>
|
|
#include <torch/csrc/jit/passes/dead_code_elimination.h>
|
|
#include <torch/csrc/jit/passes/decompose_ops.h>
|
|
#include <torch/csrc/jit/passes/erase_number_types.h>
|
|
#include <torch/csrc/jit/passes/fold_conv_bn.h>
|
|
#include <torch/csrc/jit/passes/freeze_module.h>
|
|
#include <torch/csrc/jit/passes/fuse_linear.h>
|
|
#include <torch/csrc/jit/passes/fuse_relu.h>
|
|
#include <torch/csrc/jit/passes/graph_fuser.h>
|
|
#include <torch/csrc/jit/passes/inline_fork_wait.h>
|
|
#include <torch/csrc/jit/passes/inliner.h>
|
|
#include <torch/csrc/jit/passes/loop_unrolling.h>
|
|
#include <torch/csrc/jit/passes/lower_graph.h>
|
|
#include <torch/csrc/jit/passes/lower_tuples.h>
|
|
#include <torch/csrc/jit/passes/normalize_ops.h>
|
|
#include <torch/csrc/jit/passes/onnx.h>
|
|
#include <torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.h>
|
|
#include <torch/csrc/jit/passes/onnx/constant_fold.h>
|
|
#include <torch/csrc/jit/passes/onnx/eliminate_unused_items.h>
|
|
#include <torch/csrc/jit/passes/onnx/eval_peephole.h>
|
|
#include <torch/csrc/jit/passes/onnx/fixup_onnx_controlflow.h>
|
|
#include <torch/csrc/jit/passes/onnx/function_substitution.h>
|
|
#include <torch/csrc/jit/passes/onnx/peephole.h>
|
|
#include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h>
|
|
#include <torch/csrc/jit/passes/onnx/prepare_inplace_ops_for_onnx.h>
|
|
#include <torch/csrc/jit/passes/onnx/preprocess_for_onnx.h>
|
|
#include <torch/csrc/jit/passes/onnx/scalar_type_analysis.h>
|
|
#include <torch/csrc/jit/passes/onnx/unpack_quantized_weights.h>
|
|
#include <torch/csrc/jit/passes/peephole.h>
|
|
#include <torch/csrc/jit/passes/quantization/dedup_module_uses.h>
|
|
#include <torch/csrc/jit/passes/quantization/finalize.h>
|
|
#include <torch/csrc/jit/passes/quantization/fusion_passes.h>
|
|
#include <torch/csrc/jit/passes/quantization/insert_observers.h>
|
|
#include <torch/csrc/jit/passes/quantization/insert_quant_dequant.h>
|
|
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
|
|
#include <torch/csrc/jit/passes/reconstruct_scopes.h>
|
|
#include <torch/csrc/jit/passes/remove_dropout.h>
|
|
#include <torch/csrc/jit/passes/remove_expands.h>
|
|
#include <torch/csrc/jit/passes/remove_inplace_ops.h>
|
|
#include <torch/csrc/jit/passes/remove_mutation.h>
|
|
#include <torch/csrc/jit/passes/shape_analysis.h>
|
|
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
|
|
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
|
|
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
|
|
#include <torch/csrc/jit/passes/utils/check_alias_annotation.h>
|
|
#include <torch/csrc/jit/passes/vulkan_rewrite.h>
|
|
#include <torch/csrc/jit/passes/xnnpack_rewrite.h>
|
|
#include <torch/csrc/jit/python/pybind_utils.h>
|
|
#include <torch/csrc/jit/python/python_arg_flatten.h>
|
|
#include <torch/csrc/jit/python/python_custom_class.h>
|
|
#include <torch/csrc/jit/python/python_ir.h>
|
|
#include <torch/csrc/jit/python/python_tracer.h>
|
|
#include <torch/csrc/jit/python/python_tree_views.h>
|
|
#include <torch/csrc/jit/python/script_init.h>
|
|
#include <torch/csrc/jit/runtime/argument_spec.h>
|
|
#include <torch/csrc/jit/runtime/autodiff.h>
|
|
#include <torch/csrc/jit/runtime/graph_executor.h>
|
|
#include <torch/csrc/jit/runtime/jit_exception.h>
|
|
#include <torch/csrc/jit/runtime/operator.h>
|
|
#include <torch/csrc/jit/runtime/print_handler.h>
|
|
#include <torch/csrc/jit/runtime/static/init.h>
|
|
#include <torch/csrc/jit/serialization/export.h>
|
|
#include <torch/csrc/jit/serialization/import.h>
|
|
#include <torch/csrc/jit/tensorexpr/execution_counter.h>
|
|
#include <torch/csrc/jit/tensorexpr/kernel.h>
|
|
|
|
#include <c10/macros/Export.h>
|
|
#include <caffe2/serialize/inline_container.h>
|
|
|
|
#include <ATen/core/function_schema.h>
|
|
|
|
#include <pybind11/functional.h>
|
|
#include <pybind11/iostream.h>
|
|
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using ::c10::Argument;
|
|
using ::c10::FunctionSchema;
|
|
using caffe2::serialize::PyTorchStreamReader;
|
|
using caffe2::serialize::PyTorchStreamWriter;
|
|
|
|
namespace {
|
|
|
|
using autograd::variable_list;
|
|
|
|
bool loadPythonClasses() {
|
|
// Leaving this code here, because it will likely be useful at some point
|
|
// PyObject *jit_module = PyImport_ImportModule("torch.jit");
|
|
// THPUtils_assert(jit_module, "class loader couldn't access "
|
|
//"torch.jit module");
|
|
// PyObject *jit_dict = PyModule_GetDict(jit_module);
|
|
|
|
return true;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
#if !defined(__HIP_PLATFORM_HCC__)
|
|
TORCH_API void runJITCPPTests(bool runCuda);
|
|
TORCH_API void runTENSOREXPRCPPTests(bool runCuda);
|
|
#endif
|
|
|
|
void initJITBindings(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
|
|
py::register_exception<JITException>(m, "JITException");
|
|
|
|
py::class_<python::IODescriptor> iodescriptor(
|
|
m, "IODescriptor"); // NOLINT(bugprone-unused-raii)
|
|
|
|
m.def("_jit_init", loadPythonClasses)
|
|
.def(
|
|
"_jit_debug_fuser_num_cached_kernel_specs",
|
|
torch::jit::fuser::debugNumCachedKernelSpecs)
|
|
.def("_jit_pass_onnx_remove_print", RemovePrintOps)
|
|
.def("_jit_pass_onnx_preprocess_caffe2", PreprocessCaffe2Ops)
|
|
.def("_jit_pass_onnx", ToONNX)
|
|
.def("_jit_pass_lower_all_tuples", LowerAllTuples)
|
|
.def("_jit_pass_onnx_function_substitution", ONNXFunctionCallSubstitution)
|
|
.def(
|
|
"_jit_pass_onnx_peephole",
|
|
[](std::shared_ptr<Graph>& graph,
|
|
int opset_version,
|
|
bool fixed_batch_size) {
|
|
return PeepholeOptimizeONNX(graph, opset_version, fixed_batch_size);
|
|
})
|
|
.def("_jit_pass_onnx_preprocess", PreprocessForONNX)
|
|
.def(
|
|
"_jit_pass_onnx_eval_peephole",
|
|
[](std::shared_ptr<Graph>& graph,
|
|
std::map<std::string, IValue>& paramsDict) {
|
|
EvalPeepholeONNX(graph->block(), paramsDict);
|
|
return paramsDict;
|
|
},
|
|
pybind11::return_value_policy::move)
|
|
.def(
|
|
"_jit_pass_onnx_cast_all_constant_to_floating",
|
|
CastAllConstantToFloating)
|
|
.def(
|
|
"_jit_pass_onnx_constant_fold",
|
|
[](std::shared_ptr<Graph>& graph,
|
|
std::map<std::string, IValue>& paramsDict,
|
|
int opset_version) {
|
|
ConstantFoldONNX(
|
|
graph->block(),
|
|
paramsDict,
|
|
opset_version); // overload resolution
|
|
return paramsDict;
|
|
},
|
|
pybind11::return_value_policy::move)
|
|
.def(
|
|
"_jit_pass_onnx_eliminate_unused_items",
|
|
[](std::shared_ptr<Graph>& graph,
|
|
std::map<std::string, IValue>& paramsDict) {
|
|
EliminateUnusedItemsONNX(
|
|
graph->block(),
|
|
paramsDict); // overload resolution
|
|
return paramsDict;
|
|
},
|
|
pybind11::return_value_policy::move)
|
|
.def("_jit_pass_onnx_scalar_type_analysis", ScalarTypeAnalysisForONNX)
|
|
.def(
|
|
"_jit_pass_onnx_prepare_inplace_ops_for_onnx",
|
|
PrepareInplaceOpsForONNX)
|
|
.def("_jit_pass_fuse", FuseGraph)
|
|
.def(
|
|
"_jit_pass_dce",
|
|
[](std::shared_ptr<Graph>& g) {
|
|
return EliminateDeadCode(g->block()); // overload resolution
|
|
})
|
|
.def(
|
|
"_jit_pass_dce_allow_deleting_nodes_with_side_effects",
|
|
[](std::shared_ptr<Graph>& g) {
|
|
return EliminateDeadCode(
|
|
g->block(),
|
|
true,
|
|
DCESideEffectPolicy::
|
|
ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); // overload
|
|
// resolution
|
|
})
|
|
.def(
|
|
"_jit_pass_cse",
|
|
[](std::shared_ptr<Graph>& g) {
|
|
return EliminateCommonSubexpression(g); // overload resolution
|
|
})
|
|
.def(
|
|
"_jit_pass_fuse_quantized_add_relu",
|
|
[](std::shared_ptr<Graph>& g) {
|
|
return FuseQuantizedAddRelu(g); // overload resolution
|
|
})
|
|
.def(
|
|
"_jit_pass_insert_observers",
|
|
[](Module& module,
|
|
const std::string& method_name,
|
|
const py::dict& qconfig_dict,
|
|
bool inplace,
|
|
int quant_type_int) {
|
|
auto dict = py::cast<std::unordered_map<
|
|
std::string,
|
|
c10::optional<std::tuple<Module, Module>>>>(qconfig_dict);
|
|
auto quant_type = static_cast<QuantType>(quant_type_int);
|
|
return InsertObservers(
|
|
module, method_name, dict, inplace, quant_type);
|
|
},
|
|
py::arg("module"),
|
|
py::arg("method_name"),
|
|
py::arg("qconfig_dict"),
|
|
py::arg("inplace"),
|
|
py::arg("quant_type_int") = 1)
|
|
.def(
|
|
"_jit_pass_insert_quant_dequant",
|
|
[](Module& module,
|
|
const std::string& method_name,
|
|
bool inplace,
|
|
bool debug,
|
|
int quant_type_int) {
|
|
auto quant_type = static_cast<QuantType>(quant_type_int);
|
|
return InsertQuantDeQuant(
|
|
module, method_name, inplace, debug, quant_type);
|
|
},
|
|
py::arg("module"),
|
|
py::arg("method_name"),
|
|
py::arg("inplace"),
|
|
py::arg("debug"),
|
|
py::arg("quant_type_int") = 1)
|
|
.def(
|
|
"_jit_pass_insert_prepack_unpack",
|
|
[](std::shared_ptr<Graph>& g) { return InsertPrepackUnpack(g); })
|
|
.def(
|
|
"_jit_pass_insert_prepack_unpack",
|
|
[](Module& module) { return InsertPrepackUnpack(module); })
|
|
.def(
|
|
"_jit_pass_quant_fusion",
|
|
[](std::shared_ptr<Graph>& g) { return QuantFusion(g); })
|
|
.def("_jit_pass_fold_convbn", &FoldConvBatchNorm)
|
|
.def(
|
|
"_freeze_module",
|
|
[](Module& module, std::vector<std::string>& preservedAttrs) {
|
|
return freeze_module(module, preservedAttrs);
|
|
},
|
|
py::arg("module"),
|
|
py::arg("preservedAttrs") = std::vector<std::string>())
|
|
.def("_jit_pass_fuse_linear", &FuseLinear)
|
|
.def(
|
|
"_jit_pass_fuse_add_relu",
|
|
[](std::shared_ptr<Graph>& graph) { FuseAddRelu(graph); })
|
|
.def("_jit_pass_dedup_module_uses", &DedupModuleUses)
|
|
.def("_jit_pass_replicate_dequantize", &ReplicateDeQuant)
|
|
.def(
|
|
"_jit_pass_swap_functional_linear",
|
|
[](std::shared_ptr<Graph>& graph) { SwapFunctionalLinear(graph); })
|
|
.def(
|
|
"_jit_pass_swap_functional_linear",
|
|
[](Module& module) { SwapFunctionalLinear(module); })
|
|
.def(
|
|
"_jit_pass_quant_finalize",
|
|
[](Module& module, int quant_type_int) {
|
|
auto quant_type = static_cast<QuantType>(quant_type_int);
|
|
return Finalize(module, quant_type);
|
|
},
|
|
py::arg("module"),
|
|
py::arg("quant_type_int") = 1)
|
|
.def(
|
|
"_jit_pass_pattern_based_rewrite",
|
|
[](const Module& m) { return PatternBasedRewrite(m); })
|
|
.def(
|
|
"_jit_pass_custom_pattern_based_rewrite",
|
|
[](const std::string& pattern,
|
|
const std::string& fused_node_name,
|
|
const Module& m) {
|
|
SubgraphRewriter subgraph_rewriter;
|
|
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
|
|
subgraph_rewriter.runOnModule(m);
|
|
})
|
|
.def(
|
|
"_jit_pass_custom_pattern_based_rewrite_graph",
|
|
[](const std::string& pattern,
|
|
const std::string& fused_node_name,
|
|
std::shared_ptr<Graph> g) {
|
|
SubgraphRewriter subgraph_rewriter;
|
|
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
|
|
subgraph_rewriter.runOnGraph(g);
|
|
})
|
|
.def(
|
|
"_jit_pass_reconstruct_scopes",
|
|
[](script::Module& module,
|
|
std::shared_ptr<Graph>& g,
|
|
const std::string& prefix) {
|
|
ReconstructScopes(module, *g, prefix);
|
|
},
|
|
py::arg("module"),
|
|
py::arg("graph"),
|
|
py::arg("prefix") = "top")
|
|
.def(
|
|
"_jit_pass_remove_inplace_ops",
|
|
[](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); })
|
|
.def("_jit_pass_constant_pooling", ConstantPooling)
|
|
.def(
|
|
"_jit_pass_create_functional_graphs",
|
|
[](std::shared_ptr<Graph>& g) { return CreateFunctionalGraphs(g); })
|
|
.def(
|
|
"_jit_pass_remove_mutation",
|
|
[](std::shared_ptr<Graph>& g) {
|
|
RemoveListMutation(g);
|
|
return RemoveTensorMutation(g);
|
|
})
|
|
.def(
|
|
"_jit_pass_inline_functional_graphs",
|
|
[](std::shared_ptr<Graph>& g) { return InlineFunctionalGraphs(g); })
|
|
.def(
|
|
"_jit_pass_peephole",
|
|
[](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) {
|
|
return PeepholeOptimize(g, addmm_fusion_enabled);
|
|
},
|
|
py::arg("graph"),
|
|
py::arg("addmm_fusion_enabled") = false)
|
|
.def(
|
|
"_jit_pass_fuse_addmm",
|
|
[](std::shared_ptr<Graph>& g) { return FuseAddMM(g); })
|
|
.def(
|
|
"_jit_pass_canonicalize",
|
|
[](const std::shared_ptr<Graph>& g) { return Canonicalize(g); })
|
|
.def("_jit_pass_lint", LintGraph)
|
|
.def(
|
|
"_jit_pass_complete_shape_analysis",
|
|
[](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) {
|
|
ArgumentSpecCreator arg_spec_creator(*graph);
|
|
Stack stack;
|
|
stack.reserve(inputs.size()); // captures?
|
|
for (auto& obj : inputs) {
|
|
stack.push_back(toTypeInferredIValue(obj));
|
|
}
|
|
ArgumentSpec spec = arg_spec_creator.create(with_grad, stack);
|
|
arg_spec_creator.specializeTypes(*graph, spec);
|
|
// We only get partial specialization from the arg_spec_creator, but
|
|
// we want full shape specialization. The alternative would be to
|
|
// have a "complete type inference" function in ArguemntSpecCreator.
|
|
auto g_inputs = graph->inputs();
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
if (stack[i].isTensor()) {
|
|
g_inputs[i]->setType(stack[i].type());
|
|
}
|
|
}
|
|
PropagateInputShapes(graph);
|
|
})
|
|
.def("_jit_pass_remove_expands", RemoveExpands)
|
|
.def("_jit_pass_erase_number_types", EraseNumberTypes)
|
|
.def("_jit_pass_inline_fork_wait", InlineForkWait)
|
|
.def("_jit_pass_inline", Inline)
|
|
.def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX)
|
|
.def(
|
|
"_jit_pass_lower_graph",
|
|
[](std::shared_ptr<Graph>& graph, const Module& self) {
|
|
return LowerGraph(*graph, self._ivalue());
|
|
})
|
|
.def("_jit_pass_loop_unrolling", UnrollLoops)
|
|
.def(
|
|
"_jit_pass_constant_propagation_immutable_types",
|
|
[](std::shared_ptr<Graph>& g) {
|
|
return ConstantPropagationImmutableTypes(g);
|
|
})
|
|
.def(
|
|
"_jit_pass_constant_propagation",
|
|
[](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); })
|
|
.def("_jit_pass_erase_shape_information", EraseShapeInformation)
|
|
.def(
|
|
"_jit_pass_create_autodiff_subgraphs",
|
|
[](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); })
|
|
#if defined(BUILDING_TESTS) && !defined(__HIP_PLATFORM_HCC__)
|
|
.def(
|
|
"_jit_run_cpp_tests",
|
|
[](bool runCuda) {
|
|
// We have to release the GIL inside this method, because if we
|
|
// happen to initialize the autograd engine in these tests, the
|
|
// newly spawned worker threads will try to initialize their
|
|
// PyThreadState*, and they need the GIL for this.
|
|
pybind11::gil_scoped_release _no_gil;
|
|
return runJITCPPTests(runCuda);
|
|
},
|
|
py::arg("run_cuda"))
|
|
.def("_jit_has_cpp_tests", []() { return true; })
|
|
.def(
|
|
"_run_tensorexpr_cpp_tests",
|
|
[](bool runCuda) {
|
|
// We have to release the GIL inside this method, because if we
|
|
// happen to initialize the autograd engine in these tests, the
|
|
// newly spawned worker threads will try to initialize their
|
|
// PyThreadState*, and they need the GIL for this.
|
|
pybind11::gil_scoped_release _no_gil;
|
|
return runTENSOREXPRCPPTests(runCuda);
|
|
},
|
|
py::arg("run_cuda"))
|
|
.def("_has_tensorexpr_cpp_tests", []() { return true; })
|
|
#else
|
|
.def("_jit_run_cpp_tests", []() { throw std::exception(); })
|
|
.def("_jit_has_cpp_tests", []() { return false; })
|
|
.def("_run_tensorexpr_cpp_tests", []() { throw std::exception(); })
|
|
.def("_has_tensorexpr_cpp_tests", []() { return false; })
|
|
#endif
|
|
.def(
|
|
"_jit_flatten",
|
|
[](py::handle& obj) {
|
|
auto res = python::flatten(obj);
|
|
return std::make_pair(res.vars, res.desc);
|
|
})
|
|
.def(
|
|
"_jit_unflatten",
|
|
[](autograd::variable_list vars, python::IODescriptor& desc) {
|
|
return py::reinterpret_steal<py::object>(
|
|
python::unflatten(vars, desc));
|
|
})
|
|
.def("_jit_pass_onnx_block", BlockToONNX)
|
|
.def("_jit_pass_fixup_onnx_controlflow_node", FixupONNXControlflowNode)
|
|
.def("_jit_pass_canonicalize_graph_fuser_ops", CanonicalizeOps)
|
|
.def("_jit_pass_decompose_ops", DecomposeOps)
|
|
.def("_jit_pass_specialize_autogradzero", specializeAutogradZero)
|
|
.def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU)
|
|
.def("_jit_override_can_fuse_on_gpu", &overrideCanFuseOnGPU)
|
|
.def("_jit_can_fuse_on_cpu", &canFuseOnCPU)
|
|
.def("_jit_can_fuse_on_gpu", &canFuseOnGPU)
|
|
.def(
|
|
"_jit_differentiate",
|
|
[](Graph& g) {
|
|
// the python binding slightly differs in semantics
|
|
// it makes a copy of the input Graph, and works on that
|
|
// jit::differentiate mutates the input Graph
|
|
auto g_clone = g.copy();
|
|
return differentiate(g_clone);
|
|
})
|
|
.def(
|
|
"_jit_check_alias_annotation",
|
|
[](std::shared_ptr<Graph> g,
|
|
py::tuple args,
|
|
const std::string& unqualified_op_name) {
|
|
auto stack = toTraceableStack(args);
|
|
checkAliasAnnotation(g, std::move(stack), unqualified_op_name);
|
|
})
|
|
.def("_jit_set_nvfuser_enabled", &RegisterCudaFuseGraph::registerPass)
|
|
.def("_jit_nvfuser_enabled", &RegisterCudaFuseGraph::isRegistered)
|
|
.def(
|
|
"_jit_set_profiling_mode",
|
|
[](bool profiling_flag) {
|
|
bool oldState = getProfilingMode();
|
|
getProfilingMode() = profiling_flag;
|
|
return oldState;
|
|
})
|
|
.def(
|
|
"_jit_set_profiling_executor",
|
|
[](bool profiling_flag) {
|
|
bool oldState = getExecutorMode();
|
|
getExecutorMode() = profiling_flag;
|
|
return oldState;
|
|
})
|
|
.def(
|
|
"_jit_set_num_profiled_runs",
|
|
[](size_t num) {
|
|
size_t old_num = getNumProfiledRuns();
|
|
getNumProfiledRuns() = num;
|
|
return old_num;
|
|
})
|
|
.def(
|
|
"_jit_set_bailout_depth",
|
|
[](size_t depth) {
|
|
size_t old_depth = getBailoutDepth();
|
|
getBailoutDepth() = depth;
|
|
return old_depth;
|
|
})
|
|
.def(
|
|
"_jit_set_inline_everything_mode",
|
|
[](bool enabled) { getInlineEverythingMode() = enabled; })
|
|
.def(
|
|
"_jit_get_inline_everything_mode",
|
|
[]() { return getInlineEverythingMode(); })
|
|
.def(
|
|
"_jit_try_infer_type",
|
|
[](py::object obj) -> TypePtr {
|
|
auto match = tryToInferType(obj);
|
|
if (match.success()) {
|
|
return match.type();
|
|
}
|
|
return nullptr;
|
|
})
|
|
.def(
|
|
"_jit_get_trigger_value",
|
|
[](const std::string& trigger_name) {
|
|
using namespace torch::jit::tensorexpr;
|
|
ExecutionTrigger* trigger =
|
|
ExecutionTriggerList::GetInstance().FindByName(trigger_name);
|
|
return trigger->value();
|
|
})
|
|
.def(
|
|
"_jit_get_te_cuda_pointwise_loop_levels",
|
|
[]() -> int {
|
|
using namespace torch::jit::tensorexpr;
|
|
return getTECudaPointwiseLoopLevels();
|
|
})
|
|
.def(
|
|
"_jit_set_te_cuda_pointwise_loop_levels",
|
|
[](int level) {
|
|
using namespace torch::jit::tensorexpr;
|
|
return getTECudaPointwiseLoopLevels() = level;
|
|
})
|
|
.def(
|
|
"_jit_get_te_cuda_pointwise_block_count",
|
|
[]() -> int {
|
|
using namespace torch::jit::tensorexpr;
|
|
return getTECudaPointwiseBlockCount();
|
|
})
|
|
.def(
|
|
"_jit_set_te_cuda_pointwise_block_count",
|
|
[](int block_count) {
|
|
using namespace torch::jit::tensorexpr;
|
|
return getTECudaPointwiseBlockCount() = block_count;
|
|
})
|
|
.def(
|
|
"_jit_get_te_cuda_pointwise_block_size",
|
|
[]() -> int {
|
|
using namespace torch::jit::tensorexpr;
|
|
return getTECudaPointwiseBlockSize();
|
|
})
|
|
.def(
|
|
"_jit_set_te_cuda_pointwise_block_size",
|
|
[](int block_size) {
|
|
using namespace torch::jit::tensorexpr;
|
|
return getTECudaPointwiseBlockSize() = block_size;
|
|
})
|
|
.def("_jit_set_texpr_fuser_enabled", &setTensorExprFuserEnabled)
|
|
.def("_jit_texpr_fuser_enabled", &tensorExprFuserEnabled)
|
|
.def("_jit_texpr_fallback_allowed", &tensorexpr::fallbackAllowed)
|
|
.def("_jit_texpr_set_fallback_allowed", &tensorexpr::setFallbackAllowed)
|
|
.def(
|
|
"_jit_pass_fuse_tensorexprs",
|
|
[](std::shared_ptr<Graph>& g) { return FuseTensorExprs(g); })
|
|
.def(
|
|
"_jit_fuser_get_fused_kernel_code",
|
|
[](Graph& g, std::vector<at::Tensor> inps) {
|
|
return debugGetFusedKernelCode(g, inps);
|
|
})
|
|
.def(
|
|
"_jit_pass_remove_dropout",
|
|
[](script::Module& module) { return removeDropout(module); })
|
|
.def(
|
|
"_jit_pass_insert_prepacked_ops",
|
|
[](std::shared_ptr<Graph>& graph) {
|
|
return insertPrePackedOps(graph);
|
|
})
|
|
.def(
|
|
"_jit_pass_insert_prepacked_ops",
|
|
[](script::Module& module) { return insertPrePackedOps(module); })
|
|
.def(
|
|
"_jit_pass_fuse_clamp_w_prepacked_linear_conv",
|
|
[](script::Module& module) {
|
|
return fusePrePackedLinearConvWithClamp(module);
|
|
})
|
|
.def(
|
|
"_jit_pass_fold_prepacking_ops",
|
|
[](script::Module& module) { return FoldPrePackingOps(module); })
|
|
.def(
|
|
"_jit_pass_optimize_for_mobile",
|
|
[](script::Module& module,
|
|
std::set<MobileOptimizerType>& optimization_blocklist,
|
|
std::vector<std::string>& preserved_methods) {
|
|
return optimizeForMobile(
|
|
module, optimization_blocklist, preserved_methods);
|
|
})
|
|
.def(
|
|
"_jit_pass_vulkan_insert_prepacked_ops",
|
|
[](std::shared_ptr<Graph>& graph) {
|
|
return vulkanInsertPrePackedOps(graph);
|
|
})
|
|
.def(
|
|
"_jit_pass_vulkan_insert_prepacked_ops",
|
|
[](script::Module& module) {
|
|
return vulkanInsertPrePackedOps(module);
|
|
})
|
|
.def(
|
|
"_jit_pass_vulkan_fuse_clamp_w_prepacked_conv",
|
|
[](script::Module& module) {
|
|
return vulkanFusePrePackedConvWithClamp(module);
|
|
})
|
|
.def(
|
|
"_jit_pass_vulkan_fold_prepacking_ops",
|
|
[](script::Module& module) {
|
|
return vulkanFoldPrePackingOps(module);
|
|
})
|
|
.def(
|
|
"_jit_pass_vulkan_optimize_for_mobile",
|
|
[](script::Module& module) {
|
|
return vulkanOptimizeForMobile(module);
|
|
})
|
|
.def(
|
|
"_jit_pass_onnx_unpack_quantized_weights",
|
|
[](std::shared_ptr<Graph>& graph,
|
|
std::map<std::string, IValue>& paramsDict) {
|
|
UnpackQuantizedWeights(graph, paramsDict);
|
|
return paramsDict;
|
|
},
|
|
pybind11::return_value_policy::move)
|
|
.def(
|
|
"_jit_pass_onnx_quantization_insert_permutes",
|
|
[](std::shared_ptr<Graph>& graph,
|
|
std::map<std::string, IValue>& paramsDict) {
|
|
insertPermutes(graph, paramsDict);
|
|
return paramsDict;
|
|
},
|
|
pybind11::return_value_policy::move)
|
|
.def(
|
|
"_jit_pass_filter_non_tensor_arguments",
|
|
[](std::map<std::string, IValue> params) {
|
|
std::map<std::string, at::Tensor> retval;
|
|
for (auto& kv : params) {
|
|
if (kv.second.isTensor()) {
|
|
retval[kv.first] = std::move(kv.second).toTensor();
|
|
}
|
|
}
|
|
return retval;
|
|
})
|
|
.def("_jit_decay_packed_param_input_types", [](Graph& g) {
|
|
for (Value* i : g.inputs()) {
|
|
if (i->type() ==
|
|
getCustomClass(
|
|
"__torch__.torch.classes.quantized.Conv2dPackedParamsBase") ||
|
|
i->type() ==
|
|
getCustomClass(
|
|
"__torch__.torch.classes.quantized.Conv3dPackedParamsBase") ||
|
|
i->type() ==
|
|
getCustomClass(
|
|
"__torch__.torch.classes.quantized.LinearPackedParamsBase")) {
|
|
// Dummy CompleteTensorType to appease ONNX validator.
|
|
i->setType(TensorType::create(
|
|
at::kQInt8,
|
|
c10::kCPU,
|
|
std::vector<int64_t>{1},
|
|
std::vector<int64_t>{1},
|
|
c10::nullopt));
|
|
}
|
|
}
|
|
});
|
|
|
|
// NOLINTNEXTLINE(bugprone-unused-raii)
|
|
py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec")
|
|
.def("__repr__", [](CompleteArgumentSpec& self) {
|
|
std::ostringstream s;
|
|
s << self;
|
|
return s.str();
|
|
});
|
|
// NOLINTNEXTLINE(bugprone-unused-raii)
|
|
py::class_<ArgumentSpec>(m, "ArgumentSpec");
|
|
py::class_<Code>(m, "Code")
|
|
.def(
|
|
"grad_executor_states",
|
|
[](Code& c) {
|
|
std::vector<GraphExecutorState> states;
|
|
for (auto& e : c.grad_executors()) {
|
|
states.emplace_back(e->getDebugState());
|
|
}
|
|
return states;
|
|
})
|
|
.def("num_bailouts", [](Code& c) { return c.num_bailouts(); })
|
|
.def("request_bailout", [](Code& c, size_t index) {
|
|
c.request_bailout(index);
|
|
});
|
|
|
|
py::class_<ExecutionPlan>(m, "ExecutionPlan")
|
|
.def_property_readonly("graph", [](ExecutionPlan& s) { return s.graph; })
|
|
.def_property_readonly("code", [](ExecutionPlan& s) { return s.code; });
|
|
|
|
py::class_<Gradient>(m, "Gradient")
|
|
.def_property_readonly("f", [](Gradient& m) { return m.f; })
|
|
.def_property_readonly("df", [](Gradient& m) { return m.df; })
|
|
.def_property_readonly(
|
|
"f_real_outputs", [](Gradient& m) { return m.f_real_outputs; })
|
|
.def_property_readonly(
|
|
"df_input_vjps", [](Gradient& m) { return m.df_input_vjps; })
|
|
.def_property_readonly(
|
|
"df_input_captured_inputs",
|
|
[](Gradient& m) { return m.df_input_captured_inputs; })
|
|
.def_property_readonly(
|
|
"df_input_captured_outputs",
|
|
[](Gradient& m) { return m.df_input_captured_outputs; })
|
|
.def_property_readonly(
|
|
"df_output_vjps", [](Gradient& m) { return m.df_output_vjps; });
|
|
|
|
py::class_<GraphExecutorState>(m, "GraphExecutorState")
|
|
.def_property_readonly(
|
|
"graph", [](GraphExecutorState& s) { return s.graph; })
|
|
.def_property_readonly(
|
|
"execution_plans",
|
|
[](GraphExecutorState& s) { return s.execution_plans; })
|
|
.def_property_readonly(
|
|
"fallback", [](GraphExecutorState& s) { return s.fallback; });
|
|
|
|
py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter")
|
|
.def(py::init<std::string>())
|
|
.def(py::init([](const py::object& buffer) {
|
|
auto writer_func = [=](const void* data, size_t size) {
|
|
auto bytes = py::bytes(reinterpret_cast<const char*>(data), size);
|
|
buffer.attr("write")(std::move(bytes));
|
|
return size;
|
|
};
|
|
return std::make_unique<PyTorchStreamWriter>(std::move(writer_func));
|
|
}))
|
|
.def(py::init<const std::function<size_t(const void*, size_t)>&>())
|
|
.def(
|
|
"write_record",
|
|
[](PyTorchStreamWriter& self,
|
|
const std::string& name,
|
|
const char* data,
|
|
size_t size) { return self.writeRecord(name, data, size); })
|
|
.def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile)
|
|
.def(
|
|
"write_record",
|
|
[](PyTorchStreamWriter& self,
|
|
const std::string& name,
|
|
uintptr_t data,
|
|
size_t size) {
|
|
return self.writeRecord(
|
|
name, reinterpret_cast<const char*>(data), size);
|
|
});
|
|
|
|
py::enum_<MobileOptimizerType>(m, "MobileOptimizerType")
|
|
.value("CONV_BN_FUSION", MobileOptimizerType::CONV_BN_FUSION)
|
|
.value(
|
|
"INSERT_FOLD_PREPACK_OPS",
|
|
MobileOptimizerType::INSERT_FOLD_PREPACK_OPS)
|
|
.value("REMOVE_DROPOUT", MobileOptimizerType::REMOVE_DROPOUT)
|
|
.value("FUSE_ADD_RELU", MobileOptimizerType::FUSE_ADD_RELU)
|
|
.value(
|
|
"HOIST_CONV_PACKED_PARAMS",
|
|
MobileOptimizerType::HOIST_CONV_PACKED_PARAMS)
|
|
.export_values();
|
|
|
|
// This allows PyTorchStreamReader to read from a Python buffer. It requires
|
|
// that the buffer implement `seek()`, `tell()`, and `read()`.
|
|
class BufferAdapter : public caffe2::serialize::ReadAdapterInterface {
|
|
public:
|
|
BufferAdapter(const py::object& buffer) : buffer_(buffer) {
|
|
// Jump to the end of the buffer to get its size
|
|
auto current = buffer.attr("tell")();
|
|
start_offset_ = py::cast<size_t>(current);
|
|
buffer.attr("seek")(current, py::module::import("os").attr("SEEK_END"));
|
|
size_ = py::cast<size_t>(buffer.attr("tell")()) - start_offset_;
|
|
buffer.attr("seek")(current);
|
|
|
|
// If we can read directly into a buffer, do that instead of an extra copy
|
|
use_readinto_ = py::hasattr(buffer, "readinto");
|
|
}
|
|
|
|
size_t size() const override {
|
|
return size_;
|
|
}
|
|
|
|
THPObjectPtr getMemview(void* buf, size_t n) const {
|
|
THPObjectPtr memview(PyMemoryView_FromMemory(
|
|
reinterpret_cast<char*>(buf), n, PyBUF_WRITE));
|
|
if (!memview) {
|
|
throw python_error();
|
|
}
|
|
return memview;
|
|
}
|
|
|
|
size_t read(uint64_t pos, void* buf, size_t n, const char* what)
|
|
const override {
|
|
// Seek to desired position (NB: this has to be a Py_ssize_t or Python
|
|
// throws a weird error)
|
|
Py_ssize_t absolute_pos = start_offset_ + pos;
|
|
buffer_.attr("seek")(absolute_pos);
|
|
|
|
if (use_readinto_) {
|
|
auto memview = getMemview(buf, n);
|
|
auto res =
|
|
PyObject_CallMethod(buffer_.ptr(), "readinto", "O", memview.get());
|
|
if (res) {
|
|
int64_t i = static_cast<int64_t>(PyLong_AsLongLong(res));
|
|
if (i > 0) {
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Read bytes into `buf` from the buffer
|
|
std::string bytes = py::cast<std::string>(buffer_.attr("read")(n));
|
|
std::copy(
|
|
bytes.data(),
|
|
bytes.data() + bytes.size(),
|
|
reinterpret_cast<char*>(buf));
|
|
return bytes.size();
|
|
}
|
|
|
|
py::object buffer_;
|
|
size_t size_;
|
|
size_t start_offset_;
|
|
bool use_readinto_;
|
|
};
|
|
|
|
py::class_<PyTorchStreamReader>(m, "PyTorchFileReader")
|
|
.def(py::init<std::string>())
|
|
.def(py::init([](const py::object& buffer) {
|
|
auto adapter = std::make_unique<BufferAdapter>(std::move(buffer));
|
|
return std::make_unique<PyTorchStreamReader>(std::move(adapter));
|
|
}))
|
|
.def(
|
|
"get_record",
|
|
[](PyTorchStreamReader& self, const std::string& key) {
|
|
at::DataPtr data;
|
|
size_t size;
|
|
std::tie(data, size) = self.getRecord(key);
|
|
return py::bytes(reinterpret_cast<const char*>(data.get()), size);
|
|
})
|
|
.def(
|
|
"get_storage_from_record",
|
|
[](PyTorchStreamReader& self,
|
|
const std::string& key,
|
|
size_t numel,
|
|
py::object data_type_obj) {
|
|
at::DataPtr data(std::get<0>(self.getRecord(key)));
|
|
auto scalar_type =
|
|
reinterpret_cast<THPDtype*>(data_type_obj.ptr())->scalar_type;
|
|
|
|
c10::Storage storage(
|
|
c10::Storage::use_byte_size_t(),
|
|
numel * elementSize(scalar_type),
|
|
std::move(data),
|
|
/*allocator=*/nullptr,
|
|
/*resizable=*/false);
|
|
auto ptr =
|
|
c10::make_intrusive<at::TensorImpl, at::UndefinedTensorImpl>(
|
|
std::move(storage),
|
|
at::DispatchKeySet(),
|
|
at::CPU(scalar_type).typeMeta());
|
|
return at::Tensor(std::move(ptr));
|
|
})
|
|
.def("get_all_records", [](PyTorchStreamReader& self) {
|
|
return self.getAllRecords();
|
|
});
|
|
|
|
m.def(
|
|
"_jit_get_operation",
|
|
[](const std::string& op_name) {
|
|
try {
|
|
auto symbol = Symbol::fromQualString(op_name);
|
|
auto operations = getAllOperatorsFor(symbol);
|
|
TORCH_CHECK(!operations.empty(), "No such operator ", op_name);
|
|
std::ostringstream docstring;
|
|
docstring << "Automatically bound operator '" << op_name
|
|
<< "' with schema(s):\n";
|
|
|
|
for (const auto& op : operations) {
|
|
docstring << " " << op->schema() << "\n";
|
|
}
|
|
|
|
return py::cpp_function(
|
|
[operations](py::args args, py::kwargs kwargs) {
|
|
return invokeOperatorFromPython(
|
|
operations, std::move(args), std::move(kwargs));
|
|
},
|
|
py::name(symbol.toUnqualString()),
|
|
py::doc(docstring.str().c_str()));
|
|
} catch (const c10::Error& error) {
|
|
throw std::runtime_error(error.what_without_backtrace());
|
|
}
|
|
},
|
|
py::arg("qualified_name"));
|
|
|
|
m.def("parse_ir", [](const std::string& input) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(input, &*graph);
|
|
return graph;
|
|
});
|
|
m.def("parse_schema", parseSchema);
|
|
m.def("unify_type_list", [](const std::vector<TypePtr>& types) {
|
|
std::ostringstream s;
|
|
auto type = unifyTypeList(types, s);
|
|
if (!type) {
|
|
throw std::runtime_error(s.str());
|
|
}
|
|
return type.value();
|
|
});
|
|
|
|
py::class_<FunctionSchema>(m, "FunctionSchema")
|
|
.def_property_readonly(
|
|
"name", [](FunctionSchema& self) { return self.name(); })
|
|
.def_property_readonly(
|
|
"overload_name",
|
|
[](FunctionSchema& self) { return self.overload_name(); })
|
|
.def_property_readonly(
|
|
"arguments", [](FunctionSchema& self) { return self.arguments(); })
|
|
.def_property_readonly(
|
|
"returns", [](FunctionSchema& self) { return self.returns(); })
|
|
.def(
|
|
"is_backward_compatible_with",
|
|
[](const FunctionSchema& self, const FunctionSchema& old_schema) {
|
|
return self.isBackwardCompatibleWith(old_schema);
|
|
})
|
|
.def(
|
|
"__eq__",
|
|
[](const FunctionSchema& self, const FunctionSchema& other) {
|
|
return self == other;
|
|
})
|
|
.def("__str__", [](FunctionSchema& self) {
|
|
std::stringstream ss;
|
|
ss << self;
|
|
return ss.str();
|
|
});
|
|
py::class_<Argument>(m, "Argument")
|
|
.def_property_readonly("name", [](Argument& self) { return self.name(); })
|
|
.def_property_readonly("type", [](Argument& self) { return self.type(); })
|
|
.def_property_readonly(
|
|
"N",
|
|
[](Argument& self) -> py::object {
|
|
return (self.N()) ? py::cast(*self.N()) : py::none();
|
|
})
|
|
.def_property_readonly(
|
|
"default_value",
|
|
[](Argument& self) -> py::object {
|
|
if (!self.default_value()) {
|
|
return py::none();
|
|
}
|
|
IValue v = *self.default_value();
|
|
return toPyObject(std::move(v));
|
|
})
|
|
.def("has_default_value", [](Argument& self) -> py::bool_ {
|
|
return self.default_value().has_value();
|
|
});
|
|
m.def("_jit_get_all_schemas", []() {
|
|
const std::vector<std::shared_ptr<Operator>>& operations =
|
|
getAllOperators();
|
|
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
|
|
return op->schema();
|
|
});
|
|
});
|
|
m.def("_jit_get_custom_class_schemas", customClassSchemasForBCCheck);
|
|
m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) {
|
|
auto symbol = Symbol::fromQualString(qualified_name);
|
|
auto operations = getAllOperatorsFor(symbol);
|
|
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
|
|
return op->schema();
|
|
});
|
|
});
|
|
m.def("_is_tracing", []() { return jit::tracer::isTracing(); });
|
|
|
|
py::class_<PythonFutureWrapper, std::shared_ptr<PythonFutureWrapper>>(
|
|
m, "Future")
|
|
.def(py::init([]() {
|
|
return std::make_shared<PythonFutureWrapper>(
|
|
c10::make_intrusive<c10::ivalue::Future>(PyObjectType::get()));
|
|
}))
|
|
.def(
|
|
"done",
|
|
// Intentionally not releasing GIL
|
|
&PythonFutureWrapper::done)
|
|
.def(
|
|
"value",
|
|
&PythonFutureWrapper::value,
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(
|
|
"wait",
|
|
&PythonFutureWrapper::wait,
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(
|
|
"then",
|
|
&PythonFutureWrapper::then,
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(
|
|
"set_result",
|
|
// Intentionally not releasing GIL
|
|
&PythonFutureWrapper::markCompleted)
|
|
.def(
|
|
py::pickle(
|
|
/* __getstate__ */
|
|
[](const PythonFutureWrapper& /* unused */) {
|
|
TORCH_CHECK(false, "Can not pickle torch.futures.Future");
|
|
// Note that this return has no meaning since we always
|
|
// throw, it's only here to satisfy Pybind API's
|
|
// requirement.
|
|
return py::make_tuple();
|
|
},
|
|
/* __setstate__ */
|
|
[](const py::tuple& /* unused */) { // NOLINT
|
|
TORCH_CHECK(false, "Can not unpickle torch.futures.Future");
|
|
// Note that this return has no meaning since we always
|
|
// throw, it's only here to satisfy PyBind's API
|
|
// requirement.
|
|
return nullptr;
|
|
}),
|
|
py::call_guard<py::gil_scoped_release>());
|
|
|
|
m.def("fork", [](const py::args& args, const py::kwargs& kwargs) {
|
|
AT_ASSERT(args.size() >= 1);
|
|
|
|
py::function f = py::cast<py::function>(args[0]);
|
|
py::tuple args_tup(args.size() - 1);
|
|
|
|
for (size_t i = 1; i < args.size(); ++i) {
|
|
args_tup[i - 1] = args[i];
|
|
}
|
|
|
|
if (jit::tracer::isTracing()) {
|
|
auto graph = jit::tracer::getTracingState()->graph;
|
|
auto fork_node = graph->insertNode(graph->create(prim::TracedFork, 1));
|
|
auto body_block = fork_node->addBlock();
|
|
|
|
Value* node_output;
|
|
py::object py_func_output;
|
|
// Insert new trace ops into the fork op's sub-block
|
|
WithInsertPoint guard(body_block);
|
|
IValue output_ivalue;
|
|
{
|
|
tracer::WithNestedTracingFrame env_guard;
|
|
|
|
// Run the user-supplied function
|
|
py_func_output = f(*args_tup, **kwargs);
|
|
|
|
// Convert the output of the user-supplied function to IValue. The type
|
|
// information of this IValue is used both to record the correct type in
|
|
// the trace.
|
|
output_ivalue = toTypeInferredIValue(py_func_output);
|
|
Value* out_val = jit::tracer::getValueTrace(output_ivalue);
|
|
body_block->registerOutput(out_val);
|
|
node_output =
|
|
fork_node->output()->setType(FutureType::create(out_val->type()));
|
|
}
|
|
|
|
auto retval =
|
|
c10::make_intrusive<c10::ivalue::Future>(output_ivalue.type());
|
|
|
|
// Record the ivalue in the tracer
|
|
jit::tracer::setValueTrace(retval, node_output);
|
|
|
|
// stuff the ivalue output in the Future
|
|
retval->markCompleted(output_ivalue);
|
|
|
|
return std::make_shared<PythonFutureWrapper>(retval);
|
|
} else {
|
|
auto result = toTypeInferredIValue(f(*args_tup, **kwargs));
|
|
auto retval = c10::make_intrusive<c10::ivalue::Future>(result.type());
|
|
retval->markCompleted(std::move(result));
|
|
return std::make_shared<PythonFutureWrapper>(retval);
|
|
}
|
|
});
|
|
|
|
m.def("wait", [](const std::shared_ptr<PythonFutureWrapper>& fut) {
|
|
return fut->wait();
|
|
});
|
|
|
|
m.def(
|
|
"_collect_all",
|
|
[](const std::vector<std::shared_ptr<jit::PythonFutureWrapper>>& futures)
|
|
-> std::shared_ptr<jit::PythonFutureWrapper> {
|
|
auto typePtr =
|
|
futures.empty() ? AnyType::get() : futures[0]->fut->elementType();
|
|
c10::List<c10::intrusive_ptr<c10::ivalue::Future>> asList(
|
|
c10::FutureType::create(typePtr));
|
|
asList.reserve(futures.size());
|
|
for (const auto& f : futures) {
|
|
asList.push_back(f->fut);
|
|
}
|
|
return std::make_shared<jit::PythonFutureWrapper>(
|
|
c10::collectAll(asList),
|
|
/* unwrap_func */ [futures](const py::object& /*unused*/) {
|
|
// Throw errors when calling wait() on the returned Future if
|
|
// any of the original futures would throw.
|
|
// NB: PythonFutureWrapper takes an unwrap_func which serves as a
|
|
// callback to evalute the value in the Future. RPC uses this
|
|
// unwrap_func to check whether the returned py::object is a
|
|
// RemoteException object, and re-throw the exception if it is.
|
|
// By extracting the c10::ivalue::Future from PythonFutureWrapper
|
|
// the unwrap_func on the original PythonFutureWrapper objects are
|
|
// discarded, and hence it will return the RemoteException as an
|
|
// object instead of re-throwing it.
|
|
for (auto& fut : futures) {
|
|
fut->wait();
|
|
}
|
|
});
|
|
});
|
|
|
|
m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) {
|
|
toIValue(obj, type);
|
|
});
|
|
|
|
initPythonCustomClassBindings(module);
|
|
initPythonIRBindings(module);
|
|
tracer::initPythonTracerBindings(module);
|
|
initTreeViewBindings(module);
|
|
initJitScriptBindings(module);
|
|
initJitBackendBindings(module);
|
|
initStaticRuntimeBindings(module);
|
|
|
|
setPrintHandler([](const std::string& str) {
|
|
py::gil_scoped_acquire acquire;
|
|
try {
|
|
auto _stdout = py::module::import("sys").attr("stdout");
|
|
_stdout.attr("write")(str);
|
|
} catch (py::error_already_set& e) {
|
|
throw std::runtime_error(e.what());
|
|
}
|
|
});
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|