mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-10-31 12:15:03 +08:00 
			
		
		
		
	Summary: This updates assertEqual and assertEqual-like functions to either require both or neither of atol and rtol be specified. This should improve clarity around handling precision in the test suite, and it allows us to remove the legacy positional atol argument from assertEqual. In addition, the "message" kwarg is replace with a kwarg-only "msg" argument whose name is consistent with unittest's assertEqual argument. In the future we could make "msg" an optional third positional argument to be more consistent with unittest's assertEqual, but requiring it be specified should be clear, and we can easily update the signature to make "msg" an optional positional argument in the future, too. Pull Request resolved: https://github.com/pytorch/pytorch/pull/38872 Differential Revision: D21717199 Pulled By: mruberry fbshipit-source-id: 9feb856f94eee911b44f6c7140a1d07c1b026d3a
		
			
				
	
	
		
			584 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			584 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import print_function
 | |
| import sys
 | |
| import os
 | |
| import re
 | |
| import shutil
 | |
| import random
 | |
| import tempfile
 | |
| import unittest
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| import torch.utils.data
 | |
| import torch.cuda
 | |
| from torch.utils.checkpoint import checkpoint, checkpoint_sequential
 | |
| import torch.hub as hub
 | |
| from torch.autograd._functions.utils import check_onnx_broadcast
 | |
| from torch.onnx.symbolic_opset9 import _prepare_onnx_paddings
 | |
| from torch.testing._internal.common_utils import skipIfRocm, load_tests, retry, IS_SANDCASTLE
 | |
| from urllib.error import HTTPError
 | |
| 
 | |
| # load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
 | |
| # sharding on sandcastle. This line silences flake warnings
 | |
| load_tests = load_tests
 | |
| 
 | |
| HAS_CUDA = torch.cuda.is_available()
 | |
| 
 | |
| from torch.testing._internal.common_utils import TestCase, run_tests
 | |
| 
 | |
| 
 | |
| class RandomDatasetMock(object):
 | |
| 
 | |
|     def __getitem__(self, index):
 | |
|         return torch.tensor([torch.rand(1).item(), random.uniform(0, 1)])
 | |
| 
 | |
|     def __len__(self):
 | |
|         return 1000
 | |
| 
 | |
| 
 | |
| class TestCheckpoint(TestCase):
 | |
| 
 | |
|     # This runs checkpoint_sequential on each of the nets in
 | |
|     # module_lists_to_compare, and compares them against the uncheckpointed model.
 | |
|     # To compare, it checks outputs as well as input gradients and parameter gradients
 | |
|     def _check_checkpoint_sequential(
 | |
|         self,
 | |
|         model,
 | |
|         module_lists_to_compare,
 | |
|         num_chunks,
 | |
|         input,
 | |
|     ):
 | |
| 
 | |
|         # not checkpointed
 | |
|         out = model(input)
 | |
|         out_not_checkpointed = out.detach().clone()
 | |
|         model.zero_grad()
 | |
|         out.sum().backward()
 | |
|         grad_not_checkpointed = {
 | |
|             name: param.grad.detach().clone()
 | |
|             for name, param in model.named_parameters()
 | |
|         }
 | |
|         input_grad_not_checkpointed = input.grad.detach().clone()
 | |
|         for model_to_compare in module_lists_to_compare:
 | |
|             # checkpointed model by passing list of modules
 | |
|             detached = input.detach()
 | |
|             detached.requires_grad = True
 | |
| 
 | |
|             # pass list of modules to checkpoint
 | |
|             out = checkpoint_sequential(model_to_compare, num_chunks, detached)
 | |
|             out_checkpointed = out.detach().clone()
 | |
|             model.zero_grad()
 | |
|             out.sum().backward()
 | |
|             grad_checkpointed = {
 | |
|                 name: param.grad.detach().clone()
 | |
|                 for name, param in model.named_parameters()
 | |
|             }
 | |
|             input_grad_checkpointed = detached.grad.detach().clone()
 | |
|             # compare outputs as well as the gradients of input and parameters
 | |
|             self.assertEqual(out_checkpointed, out_not_checkpointed)
 | |
|             self.assertEqual(input_grad_not_checkpointed, input_grad_checkpointed)
 | |
|             for name in grad_checkpointed:
 | |
|                 self.assertEqual(grad_checkpointed[name], grad_not_checkpointed[name])
 | |
| 
 | |
|     # Test whether checkpoint is being triggered or not. For this, we check
 | |
|     # the number of times forward pass happens
 | |
|     def test_checkpoint_trigger(self):
 | |
| 
 | |
|         class Net(nn.Module):
 | |
| 
 | |
|             def __init__(self):
 | |
|                 super(Net, self).__init__()
 | |
|                 self.counter = 0
 | |
| 
 | |
|             def forward(self, input_var):
 | |
|                 self.counter += 1
 | |
|                 return input_var
 | |
| 
 | |
|         # checkpointed
 | |
|         modules = [Net() for _ in range(10)]
 | |
|         for m in modules:
 | |
|             self.assertEqual(m.counter, 0)
 | |
|         input_var = torch.randn(3, 4, requires_grad=True)
 | |
|         out = checkpoint_sequential(modules, 2, input_var)
 | |
|         for m in modules:
 | |
|             self.assertEqual(m.counter, 1)
 | |
|         out.sum().backward()
 | |
|         for m in modules[:(len(modules) // 2)]:
 | |
|             self.assertEqual(m.counter, 2)
 | |
|         for m in modules[(len(modules) // 2):]:
 | |
|             self.assertEqual(m.counter, 1)
 | |
| 
 | |
|     def test_checkpoint_valid(self):
 | |
|         model = nn.Sequential(
 | |
|             nn.Linear(100, 50),
 | |
|             nn.ReLU(),
 | |
|             nn.Linear(50, 20),
 | |
|             nn.ReLU(),
 | |
|             nn.Linear(20, 5),
 | |
|             nn.ReLU()
 | |
|         )
 | |
| 
 | |
|         input_var = torch.randn(1, 100, requires_grad=True)
 | |
| 
 | |
|         # checkpointed
 | |
|         chunks = 2
 | |
|         modules = list(model.children())
 | |
|         out = checkpoint_sequential(modules, chunks, input_var)
 | |
|         # python_error in case of py2_7_9.
 | |
|         with self.assertRaisesRegex(RuntimeError, "(Checkpointing is not compatible)|(python_error)"):
 | |
|             torch.autograd.grad(
 | |
|                 outputs=[out], grad_outputs=[torch.ones(1, 5)], inputs=[input_var], create_graph=True
 | |
|             )
 | |
| 
 | |
|     def test_checkpoint(self):
 | |
|         model = nn.Sequential(
 | |
|             nn.Linear(100, 50),
 | |
|             nn.ReLU(),
 | |
|             nn.Linear(50, 20),
 | |
|             nn.ReLU(),
 | |
|             nn.Linear(20, 5),
 | |
|             nn.ReLU()
 | |
|         )
 | |
| 
 | |
|         # Compare uncheckpointed model with its checkpointed counterparts
 | |
|         # In addition to running checkpoint_sequential on the nn.Sequential
 | |
|         # instance, we also run the function on the list of functions within
 | |
|         # the module.
 | |
|         self._check_checkpoint_sequential(
 | |
|             model,
 | |
|             [list(model.children()), model],
 | |
|             2,
 | |
|             torch.randn(1, 100, requires_grad=True)
 | |
|         )
 | |
| 
 | |
|     def test_checkpoint_module_list(self):
 | |
|         class ModuleListNet(nn.Module):
 | |
|             def __init__(self):
 | |
|                 super(ModuleListNet, self).__init__()
 | |
|                 module_list = [
 | |
|                     nn.Linear(100, 50),
 | |
|                     nn.ReLU(),
 | |
|                     nn.Linear(50, 20),
 | |
|                     nn.ReLU(),
 | |
|                     nn.Linear(20, 5),
 | |
|                     nn.ReLU(),
 | |
|                 ]
 | |
|                 self.module_list = nn.ModuleList(module_list)
 | |
| 
 | |
|             def forward(self, input):
 | |
|                 for layer in self.module_list:
 | |
|                     input = layer(input)
 | |
|                 return input
 | |
| 
 | |
|         model = ModuleListNet()
 | |
| 
 | |
|         # Compare uncheckpointed model with its checkpointed counterparts.
 | |
|         self._check_checkpoint_sequential(
 | |
|             model,
 | |
|             [list(model.module_list.children()), model.module_list],
 | |
|             2,
 | |
|             torch.randn(1, 100, requires_grad=True),
 | |
|         )
 | |
| 
 | |
|     def test_checkpoint_sequential_deprecated_multiple_args(self):
 | |
|         class Two(nn.Module):
 | |
|             def forward(self, a, b):
 | |
|                 return a, b
 | |
| 
 | |
|         model = nn.Sequential(Two())
 | |
|         a = torch.randn(1, 100, requires_grad=True)
 | |
|         b = torch.randn(1, 100, requires_grad=True)
 | |
| 
 | |
|         with self.assertRaises(TypeError):
 | |
|             checkpoint_sequential(model, 1, a, b)
 | |
| 
 | |
|     def test_checkpoint_sequential_deprecated_no_args(self):
 | |
|         class Noop(nn.Module):
 | |
|             def forward(self):
 | |
|                 pass
 | |
| 
 | |
|         model = nn.Sequential(Noop())
 | |
| 
 | |
|         with self.assertRaises(TypeError):
 | |
|             checkpoint_sequential(model, 1)
 | |
| 
 | |
|     def test_checkpoint_rng_cpu(self):
 | |
|         for _ in range(5):
 | |
|             inp = torch.randn(20000, device='cpu').requires_grad_()
 | |
|             phase1 = torch.nn.Dropout()
 | |
|             phase2 = torch.nn.Dropout()
 | |
| 
 | |
|             def run_fn(input):
 | |
|                 return phase2(input)
 | |
| 
 | |
|             state = torch.get_rng_state()
 | |
| 
 | |
|             out = phase1(inp)
 | |
|             out = checkpoint(run_fn, out)
 | |
|             out.sum().backward()
 | |
|             grad_with_checkpointing = inp.grad
 | |
| 
 | |
|             torch.set_rng_state(state)
 | |
| 
 | |
|             inp.grad = None
 | |
| 
 | |
|             out = phase1(inp)
 | |
|             out = run_fn(out)
 | |
|             out.sum().backward()
 | |
|             grad_no_checkpointing = inp.grad
 | |
| 
 | |
|             self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
 | |
| 
 | |
|     @unittest.skipIf(not HAS_CUDA, 'No CUDA')
 | |
|     def test_checkpoint_rng_cuda(self):
 | |
|         for _ in range(5):
 | |
|             inp = torch.randn(20000, device='cuda').requires_grad_()
 | |
|             phase1 = torch.nn.Dropout()
 | |
|             phase2 = torch.nn.Dropout()
 | |
| 
 | |
|             def run_fn(input):
 | |
|                 return phase2(input)
 | |
| 
 | |
|             state = torch.cuda.get_rng_state()
 | |
| 
 | |
|             out = phase1(inp)
 | |
|             out = checkpoint(run_fn, out)
 | |
|             out.sum().backward()
 | |
|             grad_with_checkpointing = inp.grad
 | |
| 
 | |
|             torch.cuda.set_rng_state(state)
 | |
| 
 | |
|             inp.grad = None
 | |
| 
 | |
|             out = phase1(inp)
 | |
|             out = run_fn(out)
 | |
|             out.sum().backward()
 | |
|             grad_no_checkpointing = inp.grad
 | |
| 
 | |
|             self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
 | |
| 
 | |
|     def test_checkpoint_non_tensor(self):
 | |
| 
 | |
|         def run_fn(tensor1, tensor2):
 | |
|             if tensor2 is None:
 | |
|                 return tensor1
 | |
|             return tensor1 + tensor2
 | |
| 
 | |
|         input_var = torch.randn(1, 100, requires_grad=True)
 | |
|         out = checkpoint(run_fn, input_var, None)
 | |
|         out.sum().backward()
 | |
| 
 | |
| 
 | |
| class TestDataLoader(TestCase):
 | |
|     def setUp(self):
 | |
|         self.dataset = torch.randn(5, 3, 3, 2)
 | |
|         self.batch_size = 3
 | |
| 
 | |
|     def test_random_seed(self):
 | |
|         def run():
 | |
|             dataloader = torch.utils.data.DataLoader(RandomDatasetMock(),
 | |
|                                                      batch_size=2,
 | |
|                                                      num_workers=4,
 | |
|                                                      shuffle=True)
 | |
|             return next(iter(dataloader))
 | |
| 
 | |
|         torch.manual_seed(2018)
 | |
|         x1 = run()
 | |
|         torch.manual_seed(2018)
 | |
|         x2 = run()
 | |
|         self.assertEqual(x1, x2)
 | |
| 
 | |
|     def test_single_keep(self):
 | |
|         dataloader = torch.utils.data.DataLoader(self.dataset,
 | |
|                                                  batch_size=self.batch_size,
 | |
|                                                  num_workers=0,
 | |
|                                                  drop_last=False)
 | |
|         dataiter = iter(dataloader)
 | |
|         self.assertEqual(len(list(dataiter)), 2)
 | |
| 
 | |
|     def test_single_drop(self):
 | |
|         dataloader = torch.utils.data.DataLoader(self.dataset,
 | |
|                                                  batch_size=self.batch_size,
 | |
|                                                  num_workers=0,
 | |
|                                                  drop_last=True)
 | |
|         dataiter = iter(dataloader)
 | |
|         self.assertEqual(len(list(dataiter)), 1)
 | |
| 
 | |
|     @unittest.skip("FIXME: Intermittent CUDA out-of-memory error on Windows and time-out under ASAN")
 | |
|     def test_multi_keep(self):
 | |
|         dataloader = torch.utils.data.DataLoader(self.dataset,
 | |
|                                                  batch_size=self.batch_size,
 | |
|                                                  num_workers=2,
 | |
|                                                  drop_last=False)
 | |
|         dataiter = iter(dataloader)
 | |
|         self.assertEqual(len(list(dataiter)), 2)
 | |
| 
 | |
|     def test_multi_drop(self):
 | |
|         dataloader = torch.utils.data.DataLoader(self.dataset,
 | |
|                                                  batch_size=self.batch_size,
 | |
|                                                  num_workers=2,
 | |
|                                                  drop_last=True)
 | |
|         dataiter = iter(dataloader)
 | |
|         self.assertEqual(len(list(dataiter)), 1)
 | |
| 
 | |
| 
 | |
| test_dir = os.path.abspath(os.path.dirname(str(__file__)))
 | |
| 
 | |
| 
 | |
| class TestFFI(TestCase):
 | |
|     def test_deprecated(self):
 | |
|         with self.assertRaisesRegex(ImportError, "torch.utils.ffi is deprecated. Please use cpp extensions instead."):
 | |
|             from torch.utils.ffi import create_extension  # noqa: F401
 | |
| 
 | |
| 
 | |
| @unittest.skipIf('SKIP_TEST_BOTTLENECK' in os.environ.keys(), 'SKIP_TEST_BOTTLENECK is set')
 | |
| class TestBottleneck(TestCase):
 | |
|     def _run(self, command):
 | |
|         """Returns (return-code, stdout, stderr)"""
 | |
|         import subprocess
 | |
| 
 | |
|         p = subprocess.Popen(command, stdout=subprocess.PIPE,  # noqa
 | |
|                              stderr=subprocess.PIPE, shell=True)
 | |
|         output, err = p.communicate()
 | |
|         rc = p.returncode
 | |
|         output = output.decode("ascii")
 | |
|         err = err.decode("ascii")
 | |
|         return (rc, output, err)
 | |
| 
 | |
|     def _run_bottleneck(self, test_file, scriptargs=''):
 | |
|         curdir = os.path.dirname(os.path.abspath(__file__))
 | |
|         filepath = '{}/{}'.format(curdir, test_file)
 | |
|         if scriptargs != '':
 | |
|             scriptargs = ' {}'.format(scriptargs)
 | |
|         rc, out, err = self._run(
 | |
|             '{} -m torch.utils.bottleneck {}{}'.format(sys.executable, filepath, scriptargs))
 | |
|         return rc, out, err
 | |
| 
 | |
|     def _check_run_args(self):
 | |
|         # Check that this fails due to missing args
 | |
|         rc, out, err = self._run_bottleneck('bottleneck_test/test_args.py')
 | |
|         self.assertEqual(rc, 2, atol=0, rtol=0, msg=self._fail_msg('Missing args should error', out + err))
 | |
| 
 | |
|         # This should succeed
 | |
|         rc, out, err = self._run_bottleneck('bottleneck_test/test_args.py', '--foo foo --bar bar')
 | |
|         self.assertEqual(rc, 0, atol=0, rtol=0, msg=self._fail_msg('Should pass args to script', out + err))
 | |
| 
 | |
|     def _fail_msg(self, msg, output):
 | |
|         return '{}, output was:\n{}'.format(msg, output)
 | |
| 
 | |
|     def _check_environment_summary(self, output):
 | |
|         results = re.search('Environment Summary', output)
 | |
|         self.assertIsNotNone(results, self._fail_msg('Should have Environment Summary', output))
 | |
| 
 | |
|         # Up to five lines away from the heading, there should be the version number
 | |
|         results = re.search(r'Environment Summary.*(\n.*){,5}\nPyTorch \d+\.\d+', output)
 | |
|         self.assertIsNotNone(results, self._fail_msg('Should have PyTorch version', output))
 | |
| 
 | |
|     def _check_cprof_summary(self, output):
 | |
|         results = re.search('cProfile output', output)
 | |
|         self.assertIsNotNone(results, self._fail_msg('Should have cProfile output', output))
 | |
| 
 | |
|         # This assumes that after the cProfile output section we have
 | |
|         # the autograd profiler output
 | |
|         results = re.search(r'cProfile output.*(\n.*){6,50}\n.*autograd profiler output', output)
 | |
|         self.assertIsNotNone(results, self._fail_msg(
 | |
|             'Distance between cProfile and autograd prof out not in [6, 50] lines', output))
 | |
| 
 | |
|     def _check_autograd_summary(self, output):
 | |
|         results = re.search('autograd profiler output', output)
 | |
|         self.assertIsNotNone(results, self._fail_msg('Should have autograd profiler output', output))
 | |
| 
 | |
|         # This assumes that after the autograd profiler output is the end of the
 | |
|         # output.
 | |
|         results = re.search(r'autograd profiler output.*(\n.*){6,100}', output)
 | |
|         self.assertIsNotNone(results, self._fail_msg(
 | |
|             'Distance between autograd prof output and end of output not in [6, 100] lines', output))
 | |
| 
 | |
|     def _check_cuda(self, output):
 | |
|         if HAS_CUDA:
 | |
|             results = re.search('CUDA mode', output)
 | |
|             self.assertIsNotNone(results, self._fail_msg('Should tell users CUDA', output))
 | |
|         else:
 | |
|             results = re.search('CUDA mode', output)
 | |
|             self.assertIsNone(results, self._fail_msg('Should not tell users about CUDA', output))
 | |
| 
 | |
|     @unittest.skipIf(HAS_CUDA, 'CPU-only test')
 | |
|     def test_bottleneck_cpu_only(self):
 | |
|         rc, out, err = self._run_bottleneck('bottleneck_test/test.py')
 | |
|         self.assertEqual(rc, 0, msg='Run failed with\n{}'.format(err))
 | |
| 
 | |
|         self._check_run_args()
 | |
|         self._check_environment_summary(out)
 | |
|         self._check_autograd_summary(out)
 | |
|         self._check_cprof_summary(out)
 | |
|         self._check_cuda(out)
 | |
| 
 | |
|     @unittest.skipIf(not HAS_CUDA, 'No CUDA')
 | |
|     @skipIfRocm
 | |
|     def test_bottleneck_cuda(self):
 | |
|         rc, out, err = self._run_bottleneck('bottleneck_test/test_cuda.py')
 | |
|         self.assertEqual(rc, 0, msg='Run failed with\n{}'.format(err))
 | |
| 
 | |
|         self._check_run_args()
 | |
|         self._check_environment_summary(out)
 | |
|         self._check_autograd_summary(out)
 | |
|         self._check_cprof_summary(out)
 | |
|         self._check_cuda(out)
 | |
| 
 | |
| 
 | |
| from torch.utils.collect_env import get_pretty_env_info
 | |
| 
 | |
| 
 | |
| class TestCollectEnv(TestCase):
 | |
|     def test_smoke(self):
 | |
|         info_output = get_pretty_env_info()
 | |
|         self.assertTrue(info_output.count('\n') >= 17)
 | |
| 
 | |
| 
 | |
| class TestONNXUtils(TestCase):
 | |
|     def test_prepare_onnx_paddings(self):
 | |
|         sizes = [2, 3, 4]
 | |
|         pad = [1, 2, 3, 4]
 | |
|         paddings = _prepare_onnx_paddings(len(sizes), pad)
 | |
|         self.assertEqual(paddings, [0, 3, 1, 0, 4, 2])
 | |
| 
 | |
|     def test_check_onnx_broadcast(self):
 | |
| 
 | |
|         def try_check_onnx_broadcast(dims1, dims2, expect_broadcast, expect_fail):
 | |
|             broadcast = True
 | |
|             fail = False
 | |
|             try:
 | |
|                 broadcast = check_onnx_broadcast(dims1, dims2)
 | |
|             except ValueError:
 | |
|                 fail = True
 | |
|             self.assertEqual(broadcast, expect_broadcast)
 | |
|             self.assertEqual(fail, expect_fail)
 | |
| 
 | |
|         # Case 1, check the case when len(dims1) < len(dims2) and numel(dims2) > 1
 | |
|         dims1 = [3, 4]
 | |
|         dims2 = [2, 3, 4]
 | |
|         try_check_onnx_broadcast(dims1, dims2, True, True)
 | |
| 
 | |
|         # Case 2, check the case when len(dims1) < len(dims2) and numel(dims2) == 1
 | |
|         dims1 = [3, 4]
 | |
|         dims2 = [1, 1, 1]
 | |
|         try_check_onnx_broadcast(dims1, dims2, True, False)
 | |
| 
 | |
|         # Case 3, check the case when len(dims1) > len(dims2) and numel(dims2) == 1
 | |
|         dims1 = [1, 1]
 | |
|         dims2 = [1]
 | |
|         try_check_onnx_broadcast(dims1, dims2, True, False)
 | |
| 
 | |
|         # Case 4, check the case when len(dims1) > len(dims2) and dims1[x:] == dims2
 | |
|         dims1 = [2, 3, 4]
 | |
|         dims2 = [3, 4]
 | |
|         try_check_onnx_broadcast(dims1, dims2, True, False)
 | |
| 
 | |
|         # Case 5, check the case when len(dims1) > len(dims2), but dims1[x:] != dims2
 | |
|         dims1 = [2, 3, 4]
 | |
|         dims2 = [1, 4]
 | |
|         try_check_onnx_broadcast(dims1, dims2, True, True)
 | |
| 
 | |
|         # Case 6, check the equal case, no broadcast
 | |
|         dims1 = [3, 4]
 | |
|         dims2 = [3, 4]
 | |
|         try_check_onnx_broadcast(dims1, dims2, False, False)
 | |
| 
 | |
|         # Case 7, check the case when len(dims1) == len(dims2), but dims1 != dims2
 | |
|         dims1 = [3, 4]
 | |
|         dims2 = [1, 4]
 | |
|         try_check_onnx_broadcast(dims1, dims2, True, True)
 | |
| 
 | |
|         # Case 8, check the case when len(dims1) == len(dims2) and numel(s2) == 1
 | |
|         dims1 = [3, 4]
 | |
|         dims2 = [1, 1]
 | |
|         try_check_onnx_broadcast(dims1, dims2, True, False)
 | |
| 
 | |
| 
 | |
| def sum_of_state_dict(state_dict):
 | |
|     s = 0
 | |
|     for _, v in state_dict.items():
 | |
|         s += v.sum()
 | |
|     return s
 | |
| 
 | |
| SUM_OF_HUB_EXAMPLE = 431080
 | |
| TORCHHUB_EXAMPLE_RELEASE_URL = 'https://github.com/ailzhang/torchhub_example/releases/download/0.1/mnist_init_ones'
 | |
| 
 | |
| @unittest.skipIf(IS_SANDCASTLE, 'Sandcastle cannot ping external')
 | |
| class TestHub(TestCase):
 | |
|     @retry(HTTPError, tries=3, skip_after_retries=True)
 | |
|     def test_load_from_github(self):
 | |
|         hub_model = hub.load(
 | |
|             'ailzhang/torchhub_example',
 | |
|             'mnist',
 | |
|             pretrained=True,
 | |
|             verbose=False)
 | |
|         self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
 | |
|                          SUM_OF_HUB_EXAMPLE)
 | |
| 
 | |
|     @retry(HTTPError, tries=3, skip_after_retries=True)
 | |
|     def test_load_from_branch(self):
 | |
|         hub_model = hub.load(
 | |
|             'ailzhang/torchhub_example:ci/test_slash',
 | |
|             'mnist',
 | |
|             pretrained=True,
 | |
|             verbose=False)
 | |
|         self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
 | |
|                          SUM_OF_HUB_EXAMPLE)
 | |
| 
 | |
|     @retry(HTTPError, tries=3, skip_after_retries=True)
 | |
|     def test_set_dir(self):
 | |
|         temp_dir = tempfile.gettempdir()
 | |
|         hub.set_dir(temp_dir)
 | |
|         hub_model = hub.load(
 | |
|             'ailzhang/torchhub_example',
 | |
|             'mnist',
 | |
|             pretrained=True,
 | |
|             verbose=False)
 | |
|         self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
 | |
|                          SUM_OF_HUB_EXAMPLE)
 | |
|         assert os.path.exists(temp_dir + '/ailzhang_torchhub_example_master')
 | |
|         shutil.rmtree(temp_dir + '/ailzhang_torchhub_example_master')
 | |
| 
 | |
|     @retry(HTTPError, tries=3, skip_after_retries=True)
 | |
|     def test_list_entrypoints(self):
 | |
|         entry_lists = hub.list('ailzhang/torchhub_example', force_reload=True)
 | |
|         self.assertObjectIn('mnist', entry_lists)
 | |
| 
 | |
|     @retry(HTTPError, tries=3, skip_after_retries=True)
 | |
|     def test_download_url_to_file(self):
 | |
|         temp_file = os.path.join(tempfile.gettempdir(), 'temp')
 | |
|         hub.download_url_to_file(TORCHHUB_EXAMPLE_RELEASE_URL, temp_file, progress=False)
 | |
|         loaded_state = torch.load(temp_file)
 | |
|         self.assertEqual(sum_of_state_dict(loaded_state),
 | |
|                          SUM_OF_HUB_EXAMPLE)
 | |
| 
 | |
|     @retry(HTTPError, tries=3, skip_after_retries=True)
 | |
|     def test_load_state_dict_from_url(self):
 | |
|         loaded_state = hub.load_state_dict_from_url(TORCHHUB_EXAMPLE_RELEASE_URL)
 | |
|         self.assertEqual(sum_of_state_dict(loaded_state),
 | |
|                          SUM_OF_HUB_EXAMPLE)
 | |
| 
 | |
|     @retry(HTTPError, tries=3, skip_after_retries=True)
 | |
|     def test_load_zip_checkpoint(self):
 | |
|         hub_model = hub.load(
 | |
|             'ailzhang/torchhub_example',
 | |
|             'mnist_zip',
 | |
|             pretrained=True,
 | |
|             verbose=False)
 | |
|         self.assertEqual(sum_of_state_dict(hub_model.state_dict()),
 | |
|                          SUM_OF_HUB_EXAMPLE)
 | |
| 
 | |
|     def test_hub_dir(self):
 | |
|         with tempfile.TemporaryDirectory('hub_dir') as dirname:
 | |
|             torch.hub.set_dir(dirname)
 | |
|             self.assertEqual(torch.hub._get_torch_home(), dirname)
 | |
| 
 | |
| 
 | |
| class TestHipify(TestCase):
 | |
|     def test_import_hipify(self):
 | |
|         from torch.utils.hipify import hipify_python # noqa
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     run_tests()
 |