mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Summary: This updates assertEqual and assertEqual-like functions to either require both or neither of atol and rtol be specified. This should improve clarity around handling precision in the test suite, and it allows us to remove the legacy positional atol argument from assertEqual. In addition, the "message" kwarg is replace with a kwarg-only "msg" argument whose name is consistent with unittest's assertEqual argument. In the future we could make "msg" an optional third positional argument to be more consistent with unittest's assertEqual, but requiring it be specified should be clear, and we can easily update the signature to make "msg" an optional positional argument in the future, too. Pull Request resolved: https://github.com/pytorch/pytorch/pull/38872 Differential Revision: D21717199 Pulled By: mruberry fbshipit-source-id: 9feb856f94eee911b44f6c7140a1d07c1b026d3a
670 lines
27 KiB
Python
670 lines
27 KiB
Python
import torch
|
|
import unittest
|
|
import io
|
|
import tempfile
|
|
import os
|
|
import sys
|
|
import zipfile
|
|
import warnings
|
|
import gzip
|
|
import copy
|
|
import pickle
|
|
import shutil
|
|
|
|
from torch._utils_internal import get_file_path_2
|
|
from torch._utils import _rebuild_tensor
|
|
from torch.serialization import check_module_version_greater_or_equal
|
|
|
|
from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, \
|
|
TEST_DILL, run_tests, download_file, BytesIOContext
|
|
|
|
# These tests were all copied from `test/test_torch.py` at some point, so see
|
|
# the actual blame, see this revision
|
|
# https://github.com/pytorch/pytorch/blame/9a2691f2fc948b9792686085b493c61793c2de30/test/test_torch.py
|
|
|
|
if TEST_DILL:
|
|
import dill
|
|
HAS_DILL_AT_LEAST_0_3_1 = check_module_version_greater_or_equal(dill, (0, 3, 1))
|
|
else:
|
|
HAS_DILL_AT_LEAST_0_3_1 = False
|
|
|
|
can_retrieve_source = True
|
|
with warnings.catch_warnings(record=True) as warns:
|
|
with tempfile.NamedTemporaryFile() as checkpoint:
|
|
x = torch.save(torch.nn.Module(), checkpoint)
|
|
for warn in warns:
|
|
if "Couldn't retrieve source code" in warn.message.args[0]:
|
|
can_retrieve_source = False
|
|
break
|
|
|
|
|
|
class FilelikeMock(object):
|
|
def __init__(self, data, has_fileno=True, has_readinto=False):
|
|
if has_readinto:
|
|
self.readinto = self.readinto_opt
|
|
if has_fileno:
|
|
# Python 2's StringIO.StringIO has no fileno attribute.
|
|
# This is used to test that.
|
|
self.fileno = self.fileno_opt
|
|
|
|
self.calls = set()
|
|
self.bytesio = io.BytesIO(data)
|
|
|
|
def trace(fn, name):
|
|
def result(*args, **kwargs):
|
|
self.calls.add(name)
|
|
return fn(*args, **kwargs)
|
|
return result
|
|
|
|
for attr in ['read', 'readline', 'seek', 'tell', 'write', 'flush']:
|
|
traced_fn = trace(getattr(self.bytesio, attr), attr)
|
|
setattr(self, attr, traced_fn)
|
|
|
|
def fileno_opt(self):
|
|
raise io.UnsupportedOperation('Not a real file')
|
|
|
|
def readinto_opt(self, view):
|
|
self.calls.add('readinto')
|
|
return self.bytesio.readinto(view)
|
|
|
|
def was_called(self, name):
|
|
return name in self.calls
|
|
|
|
|
|
class SerializationMixin(object):
|
|
def _test_serialization_data(self):
|
|
a = [torch.randn(5, 5).float() for i in range(2)]
|
|
b = [a[i % 2] for i in range(4)] # 0-3
|
|
b += [a[0].storage()] # 4
|
|
b += [a[0].reshape(-1)[1:4].storage()] # 5
|
|
b += [torch.arange(1, 11).int()] # 6
|
|
t1 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,))
|
|
t2 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,))
|
|
b += [(t1.storage(), t1.storage(), t2.storage())] # 7
|
|
b += [a[0].reshape(-1)[0:2].storage()] # 8
|
|
return b
|
|
|
|
def _test_serialization_assert(self, b, c):
|
|
self.assertEqual(b, c, atol=0, rtol=0)
|
|
self.assertTrue(isinstance(c[0], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[1], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[2], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[3], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[4], torch.FloatStorage))
|
|
c[0].fill_(10)
|
|
self.assertEqual(c[0], c[2], atol=0, rtol=0)
|
|
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0)
|
|
c[1].fill_(20)
|
|
self.assertEqual(c[1], c[3], atol=0, rtol=0)
|
|
# I have to do it in this roundabout fashion, because there's no
|
|
# way to slice storages
|
|
for i in range(4):
|
|
self.assertEqual(c[4][i + 1], c[5][i])
|
|
|
|
# check that serializing the same storage view object unpickles
|
|
# it as one object not two (and vice versa)
|
|
views = c[7]
|
|
self.assertEqual(views[0]._cdata, views[1]._cdata)
|
|
self.assertEqual(views[0], views[2])
|
|
self.assertNotEqual(views[0]._cdata, views[2]._cdata)
|
|
|
|
rootview = c[8]
|
|
self.assertEqual(rootview.data_ptr(), c[0].data_ptr())
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows")
|
|
def test_serialization_zipfile_utils(self):
|
|
data = {
|
|
'a': b'12039810948234589',
|
|
'b': b'1239081209484958',
|
|
'c/d': b'94589480984058'
|
|
}
|
|
|
|
def test(name_or_buffer):
|
|
with torch.serialization._open_zipfile_writer(name_or_buffer) as zip_file:
|
|
for key in data:
|
|
zip_file.write_record(key, data[key], len(data[key]))
|
|
|
|
if hasattr(name_or_buffer, 'seek'):
|
|
name_or_buffer.seek(0)
|
|
|
|
with torch.serialization._open_zipfile_reader(name_or_buffer) as zip_file:
|
|
for key in data:
|
|
actual = zip_file.get_record(key)
|
|
expected = data[key]
|
|
self.assertEqual(expected, actual)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
test(f)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
test(f.name)
|
|
|
|
test(io.BytesIO())
|
|
|
|
def test_serialization(self):
|
|
# Test serialization with a real file
|
|
b = self._test_serialization_data()
|
|
for use_name in (False, True):
|
|
# Passing filename to torch.save(...) will cause the file to be opened twice,
|
|
# which is not supported on Windows
|
|
if sys.platform == "win32" and use_name:
|
|
continue
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
handle = f if not use_name else f.name
|
|
torch.save(b, handle)
|
|
f.seek(0)
|
|
c = torch.load(handle)
|
|
self._test_serialization_assert(b, c)
|
|
# test non-ascii encoding of bytes arrays/strings
|
|
# The following bytes are produced by serializing
|
|
# [b'\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85\xc5\xbc', torch.zeros(1, dtype=torch.float), 2]
|
|
# in Python 2.7.12 and PyTorch 0.4.1, where the first element contains
|
|
# bytes of some utf-8 characters (i.e., `utf8_str.encode('utf-8')`).
|
|
serialized = (
|
|
b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9\x03.'
|
|
b'\x80\x02}q\x01(U\x10protocol_versionq\x02M\xe9\x03U\n'
|
|
b'type_sizesq\x03}q\x04(U\x03intq\x05K\x04U\x05shortq\x06K\x02U'
|
|
b'\x04longq\x07K\x04uU\rlittle_endianq\x08\x88u.\x80\x02]q'
|
|
b'\x01(U\x0e\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85'
|
|
b'\xc5\xbcq\x02ctorch._utils\n_rebuild_tensor_v2\nq\x03((U'
|
|
b'\x07storageq\x04ctorch\nFloatStorage\nq\x05U\x0845640624q'
|
|
b'\x06U\x03cpuq\x07\x8a\x01\x01NtQK\x00K\x01\x85K\x01\x85'
|
|
b'\x89NtRq\x08K\x02e.\x80\x02]q\x01U\x0845640624q\x02a.\x01\x00'
|
|
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
|
|
)
|
|
buf = io.BytesIO(serialized)
|
|
utf8_bytes = b'\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85\xc5\xbc'
|
|
utf8_str = utf8_bytes.decode('utf-8')
|
|
loaded_utf8 = torch.load(buf, encoding='utf-8')
|
|
self.assertEqual(loaded_utf8, [utf8_str, torch.zeros(1, dtype=torch.float), 2])
|
|
buf.seek(0)
|
|
loaded_bytes = torch.load(buf, encoding='bytes')
|
|
self.assertEqual(loaded_bytes, [utf8_bytes, torch.zeros(1, dtype=torch.float), 2])
|
|
|
|
def test_serialization_filelike(self):
|
|
# Test serialization (load and save) with a filelike object
|
|
b = self._test_serialization_data()
|
|
with BytesIOContext() as f:
|
|
torch.save(b, f)
|
|
f.seek(0)
|
|
c = torch.load(f)
|
|
self._test_serialization_assert(b, c)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows")
|
|
def test_serialization_fake_zip(self):
|
|
data = [
|
|
ord('P'),
|
|
ord('K'),
|
|
5,
|
|
6
|
|
]
|
|
for i in range(0, 100):
|
|
data.append(0)
|
|
t = torch.tensor(data, dtype=torch.uint8)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(t, f.name)
|
|
|
|
# If this check is False for all Python versions (i.e. the fix
|
|
# has been backported), this test and torch.serialization._is_zipfile
|
|
# can be deleted
|
|
self.assertTrue(zipfile.is_zipfile(f))
|
|
self.assertFalse(torch.serialization._is_zipfile(f))
|
|
self.assertEqual(torch.load(f.name), t)
|
|
|
|
def test_serialization_gzip(self):
|
|
# Test serialization with gzip file
|
|
b = self._test_serialization_data()
|
|
f1 = tempfile.NamedTemporaryFile(delete=False)
|
|
f2 = tempfile.NamedTemporaryFile(delete=False)
|
|
torch.save(b, f1)
|
|
with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out:
|
|
shutil.copyfileobj(f_in, f_out)
|
|
|
|
with gzip.open(f2.name, 'rb') as f:
|
|
c = torch.load(f)
|
|
self._test_serialization_assert(b, c)
|
|
|
|
@unittest.skipIf(
|
|
not TEST_DILL or HAS_DILL_AT_LEAST_0_3_1,
|
|
'"dill" not found or is correct version'
|
|
)
|
|
def test_serialization_dill_version_not_supported(self):
|
|
x = torch.randn(5, 5)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
with self.assertRaisesRegex(ValueError, 'supports dill >='):
|
|
torch.save(x, f, pickle_module=dill)
|
|
f.seek(0)
|
|
with self.assertRaisesRegex(ValueError, 'supports dill >='):
|
|
x2 = torch.load(f, pickle_module=dill, encoding='utf-8')
|
|
|
|
@unittest.skipIf(
|
|
not TEST_DILL or not HAS_DILL_AT_LEAST_0_3_1,
|
|
'"dill" not found or not correct version'
|
|
)
|
|
def test_serialization_dill(self):
|
|
x = torch.randn(5, 5)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(x, f, pickle_module=dill)
|
|
f.seek(0)
|
|
x2 = torch.load(f, pickle_module=dill, encoding='utf-8')
|
|
self.assertIsInstance(x2, type(x))
|
|
self.assertEqual(x, x2)
|
|
f.seek(0)
|
|
x3 = torch.load(f, pickle_module=dill)
|
|
self.assertIsInstance(x3, type(x))
|
|
self.assertEqual(x, x3)
|
|
|
|
def test_serialization_offset_gzip(self):
|
|
a = torch.randn(5, 5)
|
|
i = 41
|
|
f1 = tempfile.NamedTemporaryFile(delete=False)
|
|
f2 = tempfile.NamedTemporaryFile(delete=False)
|
|
with open(f1.name, 'wb') as f:
|
|
pickle.dump(i, f)
|
|
torch.save(a, f)
|
|
with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out:
|
|
shutil.copyfileobj(f_in, f_out)
|
|
|
|
with gzip.open(f2.name, 'rb') as f:
|
|
j = pickle.load(f)
|
|
b = torch.load(f)
|
|
self.assertTrue(torch.equal(a, b))
|
|
self.assertEqual(i, j)
|
|
|
|
def test_serialize_device(self):
|
|
device_str = ['cpu', 'cpu:0', 'cuda', 'cuda:0']
|
|
device_obj = [torch.device(d) for d in device_str]
|
|
for device in device_obj:
|
|
device_copied = copy.deepcopy(device)
|
|
self.assertEqual(device, device_copied)
|
|
|
|
def test_serialization_backwards_compat(self):
|
|
a = [torch.arange(1 + i, 26 + i).view(5, 5).float() for i in range(2)]
|
|
b = [a[i % 2] for i in range(4)]
|
|
b += [a[0].storage()]
|
|
b += [a[0].reshape(-1)[1:4].clone().storage()]
|
|
path = download_file('https://download.pytorch.org/test_data/legacy_serialized.pt')
|
|
c = torch.load(path)
|
|
self.assertEqual(b, c, atol=0, rtol=0)
|
|
self.assertTrue(isinstance(c[0], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[1], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[2], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[3], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[4], torch.FloatStorage))
|
|
c[0].fill_(10)
|
|
self.assertEqual(c[0], c[2], atol=0, rtol=0)
|
|
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0)
|
|
c[1].fill_(20)
|
|
self.assertEqual(c[1], c[3], atol=0, rtol=0)
|
|
|
|
# test some old tensor serialization mechanism
|
|
class OldTensorBase(object):
|
|
def __init__(self, new_tensor):
|
|
self.new_tensor = new_tensor
|
|
|
|
def __getstate__(self):
|
|
return (self.new_tensor.storage(),
|
|
self.new_tensor.storage_offset(),
|
|
tuple(self.new_tensor.size()),
|
|
self.new_tensor.stride())
|
|
|
|
class OldTensorV1(OldTensorBase):
|
|
def __reduce__(self):
|
|
return (torch.Tensor, (), self.__getstate__())
|
|
|
|
class OldTensorV2(OldTensorBase):
|
|
def __reduce__(self):
|
|
return (_rebuild_tensor, self.__getstate__())
|
|
|
|
x = torch.randn(30).as_strided([2, 3], [9, 3], 2)
|
|
for old_cls in [OldTensorV1, OldTensorV2]:
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
old_x = old_cls(x)
|
|
torch.save(old_x, f)
|
|
f.seek(0)
|
|
load_x = torch.load(f)
|
|
self.assertEqual(x.storage(), load_x.storage())
|
|
self.assertEqual(x.storage_offset(), load_x.storage_offset())
|
|
self.assertEqual(x.size(), load_x.size())
|
|
self.assertEqual(x.stride(), load_x.stride())
|
|
|
|
|
|
def test_serialization_save_warnings(self):
|
|
with warnings.catch_warnings(record=True) as warns:
|
|
with tempfile.NamedTemporaryFile() as checkpoint:
|
|
x = torch.save(torch.nn.Linear(2, 3), checkpoint)
|
|
self.assertEquals(len(warns), 0)
|
|
|
|
def test_serialization_map_location(self):
|
|
test_file_path = download_file('https://download.pytorch.org/test_data/gpu_tensors.pt')
|
|
|
|
def map_location(storage, loc):
|
|
return storage
|
|
|
|
def load_bytes():
|
|
with open(test_file_path, 'rb') as f:
|
|
return io.BytesIO(f.read())
|
|
|
|
fileobject_lambdas = [lambda: test_file_path, load_bytes]
|
|
cpu_map_locations = [
|
|
map_location,
|
|
{'cuda:0': 'cpu'},
|
|
'cpu',
|
|
torch.device('cpu'),
|
|
]
|
|
gpu_0_map_locations = [
|
|
{'cuda:0': 'cuda:0'},
|
|
'cuda',
|
|
'cuda:0',
|
|
torch.device('cuda'),
|
|
torch.device('cuda', 0)
|
|
]
|
|
gpu_last_map_locations = [
|
|
'cuda:{}'.format(torch.cuda.device_count() - 1),
|
|
]
|
|
|
|
def check_map_locations(map_locations, tensor_class, intended_device):
|
|
for fileobject_lambda in fileobject_lambdas:
|
|
for map_location in map_locations:
|
|
tensor = torch.load(fileobject_lambda(), map_location=map_location)
|
|
|
|
self.assertEqual(tensor.device, intended_device)
|
|
self.assertIsInstance(tensor, tensor_class)
|
|
self.assertEqual(tensor, tensor_class([[1.0, 2.0], [3.0, 4.0]]))
|
|
|
|
check_map_locations(cpu_map_locations, torch.FloatTensor, torch.device('cpu'))
|
|
if torch.cuda.is_available():
|
|
check_map_locations(gpu_0_map_locations, torch.cuda.FloatTensor, torch.device('cuda', 0))
|
|
check_map_locations(
|
|
gpu_last_map_locations,
|
|
torch.cuda.FloatTensor,
|
|
torch.device('cuda', torch.cuda.device_count() - 1)
|
|
)
|
|
|
|
@unittest.skipIf(torch.cuda.is_available(), "Testing torch.load on CPU-only machine")
|
|
def test_load_nonexistent_device(self):
|
|
# Setup: create a serialized file object with a 'cuda:0' restore location
|
|
# The following was generated by saving a torch.randn(2, device='cuda') tensor.
|
|
serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9'
|
|
b'\x03.\x80\x02}q\x00(X\x10\x00\x00\x00protocol_versionq'
|
|
b'\x01M\xe9\x03X\r\x00\x00\x00little_endianq\x02\x88X\n'
|
|
b'\x00\x00\x00type_sizesq\x03}q\x04(X\x05\x00\x00\x00shortq'
|
|
b'\x05K\x02X\x03\x00\x00\x00intq\x06K\x04X\x04\x00\x00\x00'
|
|
b'longq\x07K\x04uu.\x80\x02ctorch._utils\n_rebuild_tensor_v2'
|
|
b'\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\nFloatStorage'
|
|
b'\nq\x02X\x0e\x00\x00\x0094919395964320q\x03X\x06\x00\x00'
|
|
b'\x00cuda:0q\x04K\x02Ntq\x05QK\x00K\x02\x85q\x06K\x01\x85q'
|
|
b'\x07\x89Ntq\x08Rq\t.\x80\x02]q\x00X\x0e\x00\x00\x00'
|
|
b'94919395964320q\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\xbb'
|
|
b'\x1f\x82\xbe\xea\x81\xd1>')
|
|
|
|
buf = io.BytesIO(serialized)
|
|
|
|
error_msg = r'Attempting to deserialize object on a CUDA device'
|
|
with self.assertRaisesRegex(RuntimeError, error_msg):
|
|
_ = torch.load(buf)
|
|
|
|
@unittest.skipIf((3, 8, 0) <= sys.version_info < (3, 8, 2), "See https://bugs.python.org/issue39681")
|
|
def test_serialization_filelike_api_requirements(self):
|
|
filemock = FilelikeMock(b'', has_readinto=False)
|
|
tensor = torch.randn(3, 5)
|
|
torch.save(tensor, filemock)
|
|
expected_superset = {'write', 'flush'}
|
|
self.assertTrue(expected_superset.issuperset(filemock.calls))
|
|
|
|
# Reset between save and load
|
|
filemock.seek(0)
|
|
filemock.calls.clear()
|
|
|
|
_ = torch.load(filemock)
|
|
expected_superset = {'read', 'readline', 'seek', 'tell'}
|
|
self.assertTrue(expected_superset.issuperset(filemock.calls))
|
|
|
|
def _test_serialization_filelike(self, tensor, mock, desc):
|
|
f = mock(b'')
|
|
torch.save(tensor, f)
|
|
f.seek(0)
|
|
data = mock(f.read())
|
|
|
|
msg = 'filelike serialization with {}'
|
|
|
|
b = torch.load(data)
|
|
self.assertTrue(torch.equal(tensor, b), msg.format(desc))
|
|
|
|
@unittest.skipIf((3, 8, 0) <= sys.version_info < (3, 8, 2), "See https://bugs.python.org/issue39681")
|
|
def test_serialization_filelike_missing_attrs(self):
|
|
# Test edge cases where filelike objects are missing attributes.
|
|
# The Python io docs suggests that these attributes should really exist
|
|
# and throw io.UnsupportedOperation, but that isn't always the case.
|
|
mocks = [
|
|
('no readinto', lambda x: FilelikeMock(x)),
|
|
('has readinto', lambda x: FilelikeMock(x, has_readinto=True)),
|
|
('no fileno', lambda x: FilelikeMock(x, has_fileno=False)),
|
|
]
|
|
|
|
to_serialize = torch.randn(3, 10)
|
|
for desc, mock in mocks:
|
|
self._test_serialization_filelike(to_serialize, mock, desc)
|
|
|
|
@unittest.skipIf((3, 8, 0) <= sys.version_info < (3, 8, 2), "See https://bugs.python.org/issue39681")
|
|
def test_serialization_filelike_stress(self):
|
|
a = torch.randn(11 * (2 ** 9) + 1, 5 * (2 ** 9))
|
|
|
|
# This one should call python read multiple times
|
|
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=False),
|
|
'read() stress test')
|
|
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=True),
|
|
'readinto() stress test')
|
|
|
|
def test_serialization_filelike_uses_readinto(self):
|
|
# For maximum effiency, when reading a file-like object,
|
|
# ensure the C API calls readinto instead of read.
|
|
a = torch.randn(5, 4)
|
|
|
|
f = io.BytesIO()
|
|
torch.save(a, f)
|
|
f.seek(0)
|
|
data = FilelikeMock(f.read(), has_readinto=True)
|
|
|
|
b = torch.load(data)
|
|
self.assertTrue(data.was_called('readinto'))
|
|
|
|
def test_serialization_storage_slice(self):
|
|
# Generated using:
|
|
#
|
|
# t = torch.zeros(2);
|
|
# s1 = t.storage()[:1]
|
|
# s2 = t.storage()[1:]
|
|
# torch.save((s1, s2), 'foo.ser')
|
|
#
|
|
# with PyTorch 0.3.1
|
|
serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9\x03'
|
|
b'.\x80\x02}q\x00(X\n\x00\x00\x00type_sizesq\x01}q\x02(X\x03'
|
|
b'\x00\x00\x00intq\x03K\x04X\x05\x00\x00\x00shortq\x04K\x02X'
|
|
b'\x04\x00\x00\x00longq\x05K\x04uX\x10\x00\x00\x00protocol_versionq'
|
|
b'\x06M\xe9\x03X\r\x00\x00\x00little_endianq\x07\x88u.\x80\x02'
|
|
b'(X\x07\x00\x00\x00storageq\x00ctorch\nFloatStorage\nq\x01X\x0e'
|
|
b'\x00\x00\x0094279043900432q\x02X\x03\x00\x00\x00cpuq\x03K\x02'
|
|
b'X\x0e\x00\x00\x0094279029750368q\x04K\x00K\x01\x87q\x05tq\x06'
|
|
b'Q(h\x00h\x01X\x0e\x00\x00\x0094279043900432q\x07h\x03K\x02X'
|
|
b'\x0e\x00\x00\x0094279029750432q\x08K\x01K\x01\x87q\ttq\nQ'
|
|
b'\x86q\x0b.\x80\x02]q\x00X\x0e\x00\x00\x0094279043900432q'
|
|
b'\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
|
|
b'\x00\x00\x00\x00')
|
|
|
|
buf = io.BytesIO(serialized)
|
|
(s1, s2) = torch.load(buf)
|
|
self.assertEqual(s1[0], 0)
|
|
self.assertEqual(s2[0], 0)
|
|
self.assertEqual(s1.data_ptr() + 4, s2.data_ptr())
|
|
|
|
def test_load_unicode_error_msg(self):
|
|
# This Pickle contains a Python 2 module with Unicode data and the
|
|
# loading should fail if the user explicitly specifies ascii encoding!
|
|
path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt')
|
|
self.assertRaises(UnicodeDecodeError, lambda: torch.load(path, encoding='ascii'))
|
|
|
|
def test_load_python2_unicode_module(self):
|
|
# This Pickle contains some Unicode data!
|
|
path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt')
|
|
with warnings.catch_warnings(record=True) as w:
|
|
self.assertIsNotNone(torch.load(path))
|
|
|
|
def test_load_error_msg(self):
|
|
expected_err_msg = (".*You can only torch.load from a file that is seekable. " +
|
|
"Please pre-load the data into a buffer like io.BytesIO and " +
|
|
"try to load from it instead.")
|
|
|
|
resource = FilelikeMock(data=b"data")
|
|
delattr(resource, "tell")
|
|
delattr(resource, "seek")
|
|
with self.assertRaisesRegex(AttributeError, expected_err_msg):
|
|
torch.load(resource)
|
|
|
|
|
|
class serialization_method(object):
|
|
def __init__(self, use_zip):
|
|
self.use_zip = use_zip
|
|
self.torch_save = torch.save
|
|
|
|
def __enter__(self, *args, **kwargs):
|
|
def wrapper(*args, **kwargs):
|
|
if '_use_new_zipfile_serialization' in kwargs:
|
|
raise RuntimeError("Cannot set method manually")
|
|
kwargs['_use_new_zipfile_serialization'] = self.use_zip
|
|
return self.torch_save(*args, **kwargs)
|
|
|
|
torch.save = wrapper
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
torch.save = self.torch_save
|
|
|
|
|
|
class TestOldSerialization(TestCase, SerializationMixin):
|
|
# unique_key is necessary because on Python 2.7, if a warning passed to
|
|
# the warning module is the same, it is not raised again.
|
|
def _test_serialization_container(self, unique_key, filecontext_lambda):
|
|
|
|
tmpmodule_name = 'tmpmodule{}'.format(unique_key)
|
|
|
|
def import_module(name, filename):
|
|
import importlib.util
|
|
spec = importlib.util.spec_from_file_location(name, filename)
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
sys.modules[module.__name__] = module
|
|
return module
|
|
|
|
with filecontext_lambda() as checkpoint:
|
|
fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing',
|
|
'_internal', 'data', 'network1.py')
|
|
module = import_module(tmpmodule_name, fname)
|
|
torch.save(module.Net(), checkpoint)
|
|
|
|
# First check that the checkpoint can be loaded without warnings
|
|
checkpoint.seek(0)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
loaded = torch.load(checkpoint)
|
|
self.assertTrue(isinstance(loaded, module.Net))
|
|
if can_retrieve_source:
|
|
self.assertEquals(len(w), 0)
|
|
|
|
# Replace the module with different source
|
|
fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing',
|
|
'_internal', 'data', 'network2.py')
|
|
module = import_module(tmpmodule_name, fname)
|
|
checkpoint.seek(0)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
loaded = torch.load(checkpoint)
|
|
self.assertTrue(isinstance(loaded, module.Net))
|
|
if can_retrieve_source:
|
|
self.assertEquals(len(w), 1)
|
|
self.assertTrue(w[0].category, 'SourceChangeWarning')
|
|
|
|
def test_serialization_container(self):
|
|
self._test_serialization_container('file', tempfile.NamedTemporaryFile)
|
|
|
|
def test_serialization_container_filelike(self):
|
|
self._test_serialization_container('filelike', BytesIOContext)
|
|
|
|
def test_serialization_offset(self):
|
|
a = torch.randn(5, 5)
|
|
b = torch.randn(1024, 1024, 512, dtype=torch.float32)
|
|
m = torch.nn.Conv2d(1, 1, (1, 3))
|
|
i, j = 41, 43
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
pickle.dump(i, f)
|
|
torch.save(a, f)
|
|
pickle.dump(j, f)
|
|
torch.save(b, f)
|
|
torch.save(m, f)
|
|
self.assertTrue(f.tell() > 2 * 1024 * 1024 * 1024)
|
|
f.seek(0)
|
|
i_loaded = pickle.load(f)
|
|
a_loaded = torch.load(f)
|
|
j_loaded = pickle.load(f)
|
|
b_loaded = torch.load(f)
|
|
m_loaded = torch.load(f)
|
|
self.assertTrue(torch.equal(a, a_loaded))
|
|
self.assertTrue(torch.equal(b, b_loaded))
|
|
self.assertTrue(m.kernel_size == m_loaded.kernel_size)
|
|
self.assertEqual(i, i_loaded)
|
|
self.assertEqual(j, j_loaded)
|
|
|
|
def test_serialization_offset_filelike(self):
|
|
a = torch.randn(5, 5)
|
|
b = torch.randn(1024, 1024, 512, dtype=torch.float32)
|
|
i, j = 41, 43
|
|
with BytesIOContext() as f:
|
|
pickle.dump(i, f)
|
|
torch.save(a, f)
|
|
pickle.dump(j, f)
|
|
torch.save(b, f)
|
|
self.assertTrue(f.tell() > 2 * 1024 * 1024 * 1024)
|
|
f.seek(0)
|
|
i_loaded = pickle.load(f)
|
|
a_loaded = torch.load(f)
|
|
j_loaded = pickle.load(f)
|
|
b_loaded = torch.load(f)
|
|
self.assertTrue(torch.equal(a, a_loaded))
|
|
self.assertTrue(torch.equal(b, b_loaded))
|
|
self.assertEqual(i, i_loaded)
|
|
self.assertEqual(j, j_loaded)
|
|
|
|
def run(self, *args, **kwargs):
|
|
with serialization_method(use_zip=False):
|
|
return super(TestOldSerialization, self).run(*args, **kwargs)
|
|
|
|
|
|
class TestSerialization(TestCase, SerializationMixin):
|
|
@unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows")
|
|
def test_serialization_zipfile(self):
|
|
data = self._test_serialization_data()
|
|
|
|
def test(name_or_buffer):
|
|
torch.save(data, name_or_buffer)
|
|
|
|
if hasattr(name_or_buffer, 'seek'):
|
|
name_or_buffer.seek(0)
|
|
|
|
result = torch.load(name_or_buffer)
|
|
self.assertEqual(result, data)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
test(f)
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
test(f.name)
|
|
|
|
test(io.BytesIO())
|
|
|
|
def run(self, *args, **kwargs):
|
|
with serialization_method(use_zip=True):
|
|
return super(TestSerialization, self).run(*args, **kwargs)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|