Files
pytorch/aten/src/ATen/SparseCsrTensorImpl.cpp
Yuanyuan Chen f231be25c6 Mark unused parameters in C++ code (#164912)
This PR adds unused parameter name comments in C++ declarations to improve code readability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164912
Approved by: https://github.com/Skylion007
2025-10-09 06:23:25 +00:00

259 lines
12 KiB
C++

#include <ATen/ATen.h>
#include <ATen/InitialTensorOptions.h>
#include <ATen/SparseCsrTensorImpl.h>
#include <ATen/SparseCsrTensorUtils.h>
#include <ATen/SparseTensorImpl.h>
#include <ATen/core/LegacyTypeDispatch.h>
#include <ATen/native/Resize.h>
namespace at {
SparseCsrTensorImpl::SparseCsrTensorImpl(
at::DispatchKeySet key_set,
at::Device device,
at::Layout layout,
const caffe2::TypeMeta data_type)
: SparseCsrTensorImpl(
key_set,
data_type,
at::empty(
{0},
at::initialTensorOptions()
.device(device)
.dtype(ScalarType::Int)) // crow_indices
,
at::empty(
{0},
at::initialTensorOptions()
.device(device)
.dtype(ScalarType::Int)) // col_indices
,
at::empty(
{0},
at::initialTensorOptions()
.device(device)
.dtype(data_type)) // values
,
layout
) {}
SparseCsrTensorImpl::SparseCsrTensorImpl(
at::DispatchKeySet key_set,
const caffe2::TypeMeta data_type,
at::Tensor crow_indices,
at::Tensor col_indices,
at::Tensor values,
at::Layout layout)
: TensorImpl(key_set, data_type, values.device()),
crow_indices_(std::move(crow_indices)),
col_indices_(std::move(col_indices)),
values_(std::move(values)),
layout_(layout) {
// https://pytorch.org/blog/pytorch-feature-classification-changes/#beta
TORCH_WARN_ONCE("Sparse ", at::sparse_csr::layoutToString(layout_, /*upper=*/true), " tensor support is in beta state. "
"If you miss a functionality in the sparse tensor support, please submit a feature request "
"to https://github.com/pytorch/pytorch/issues.");
TORCH_INTERNAL_ASSERT(((key_set.has(DispatchKey::SparseCsrCPU) && device().type() == kCPU)
|| (key_set.has(DispatchKey::SparseCsrCUDA) && device().type() == kCUDA)
|| (key_set.has(DispatchKey::SparseCsrXPU) && device().type() == kXPU)
|| (key_set.has(DispatchKey::SparseCsrMeta) && device().type() == kMeta)
|| (key_set.has(DispatchKey::SparseCsrCPU) && device().type() == kMeta) // fake tensor
|| (key_set.has(DispatchKey::SparseCsrCUDA) && device().type() == kMeta) // fake tensor
|| (key_set.has(DispatchKey::SparseCsrXPU) && device().type() == kMeta) // fake tensor
|| (key_set.has(DispatchKey::SparseCsrPrivateUse1) && device().type() == kPrivateUse1)),
"Inconsistent key_set (=", key_set, ") and device (=", device(), ")");
set_storage_access_should_throw();
is_non_overlapping_and_dense_ = false;
set_custom_sizes_strides(SizesStridesPolicy::CustomStrides);
// TODO: If this check ever shows up as a bottleneck, which is unlikely given that
// comparing devices only involves comparing the type and index (two integers), we
// can move this to a DEBUG only assert. Until then this confirms and maintains a
// crucial invariance.
TORCH_CHECK(values_.device() == crow_indices_.device(), "Values and ",
at::sparse_csr::compressedIndicesName(layout_), " need to be on the same device.");
TORCH_CHECK(values_.device() == col_indices_.device(), "Values and ",
at::sparse_csr::plainIndicesName(layout_), " need to be on the same device.");
TORCH_INTERNAL_ASSERT(values_.device() == device(),
"Values and compressed sparse tensor instance need to have the same device.");
}
const char* SparseCsrTensorImpl::tensorimpl_type_name() const {
return "SparseCsrTensorImpl";
}
void SparseCsrTensorImpl::resize_(int64_t nnz, IntArrayRef size) {
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"resize_ called on tensor with symbolic shape")
auto rows = size[size.size() - 2];
auto cols = size[size.size() - 1];
auto old_crow_indices_size = crow_indices_.size(-1);
auto new_crow_indices_size = DimVector(size.slice(0, size.size() - 2));
new_crow_indices_size.push_back(rows + 1);
crow_indices_.resize_(new_crow_indices_size);
if (rows + 1 >= old_crow_indices_size) {
crow_indices_.narrow(-1, old_crow_indices_size, rows + 1 - old_crow_indices_size).fill_(nnz);
} else {
crow_indices_.narrow(-1, rows, 1).fill_(std::min<int64_t>(nnz, rows*cols));
}
auto col_indices_values_size = DimVector(size.slice(0, size.size() - 2));
col_indices_values_size.push_back(std::min<int64_t>(nnz, rows*cols));
col_indices_.resize_(col_indices_values_size);
values_.resize_(col_indices_values_size);
sizes_and_strides_.set_sizes(size);
refresh_numel();
}
void SparseCsrTensorImpl::resize_and_clear_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) {
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"resize_and_clear_ called on tensor with symbolic shape");
TORCH_CHECK(sparse_dim == 2, "resize_and_clear_ sparse dimensionality must be 2, got ", sparse_dim);
TORCH_CHECK(static_cast<int64_t>(size.size()) >= sparse_dim + dense_dim, "resize_and_clear_ size length must be at least sparse dimensionality (=",
sparse_dim, ") plus dense dimensionality (=", dense_dim, "), got ", size.size());
auto batch_dim = size.size() - sparse_dim - dense_dim;
auto batchsize = size.slice(0, batch_dim);
auto densesize = size.slice(batch_dim + sparse_dim, dense_dim);
auto col_indices_size = DimVector(batchsize);
col_indices_size.push_back(0); // nse
auto n_compressed_indices = AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(layout_, "resize_and_clear_",
[&] () -> int64_t { return size[batch_dim]; },
[&] () -> int64_t { return size[batch_dim + 1]; }
);
auto values_size = DimVector(batchsize);
values_size.push_back(0); // nse
// WARNING: in the case of block tensors, the block size is defined
// by the existing values shape.
int64_t block_factor = 1;
AT_DISPATCH_PLAIN_SPARSE_COMPRESSED_LAYOUTS(layout_,
"resize_and_clear_",
[] () {},
[&] () {
auto blocksize = this->values_.sizes().slice(this->batch_dim() + 1, 2);
values_size.append(blocksize.begin(), blocksize.end());
block_factor = blocksize[(the_layout == kSparseBsr ? 0 : 1)];
});
TORCH_CHECK(n_compressed_indices % block_factor == 0,
"The size of the compressed dimension (=", n_compressed_indices,
") must be divisible with the corresponding block size (=", block_factor,")");
n_compressed_indices /= block_factor;
values_size.append(densesize.begin(), densesize.end());
auto crow_indices_size = DimVector(batchsize);
crow_indices_size.push_back(n_compressed_indices + 1);
crow_indices_.resize_(crow_indices_size);
crow_indices_.zero_();
col_indices_.resize_(col_indices_size);
values_.resize_(values_size);
sizes_and_strides_.set_sizes(size);
refresh_numel();
}
void SparseCsrTensorImpl::resize_as_sparse_compressed_tensor_(
const Tensor& src) {
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"resize_as_sparse_compressed_tensor_ called on tensor with symbolic shape");
// We cannot resize as other layout and preserve the invariants for self
// layout
TORCH_CHECK(
src.layout() == layout_,
"resize_as_sparse_compressed_tensor_: self and src must have the same layout, but got: self (",
layout_,
") and source (",
src.layout(),
")");
auto [compressed_indices, plain_indices] =
sparse_csr::getCompressedPlainIndices(src);
// reuse self indices storage
if (crow_indices_.sizes() != compressed_indices.sizes()) {
crow_indices_.resize_as_(compressed_indices);
}
if (col_indices_.sizes() != plain_indices.sizes()) {
col_indices_.resize_as_(plain_indices);
}
// Update indices data to ensure result is valid under invariants check
if ((sizes() != src.sizes()) || (dense_dim() != src.dense_dim())) {
crow_indices_.copy_(compressed_indices);
col_indices_.copy_(plain_indices);
}
// Reuse values storage
if (values_.sizes() != src.values().sizes()) {
values_.resize_as_(src.values());
}
sizes_and_strides_.set_sizes(src.sizes());
refresh_numel();
}
void SparseCsrTensorImpl::set_member_tensors(
const Tensor& crow_indices,
const Tensor& col_indices,
const Tensor& values,
c10::SymIntArrayRef size) {
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"set_member_tensors called on tensor with symbolic shape");
// CSR Type Invariants
TORCH_CHECK(
values.scalar_type() == typeMetaToScalarType(dtype()),
"dtype of values (",
values.scalar_type(),
") must match dtype of sparse tensor (",
typeMetaToScalarType(dtype()),
")");
crow_indices_ = crow_indices;
col_indices_ = col_indices;
values_ = values;
sizes_and_strides_.set_sizes(C10_AS_INTARRAYREF_SLOW(size));
refresh_numel();
// TODO: If this check ever shows up as a bottleneck, which is unlikely given that
// comparing devices only involves comparing the type and index (two integers), we
// can move this to a DEBUG only assert. Until then this confirms and maintains a
// crucial invariance.
TORCH_CHECK(values_.device() == crow_indices_.device(), "Values and ",
at::sparse_csr::compressedIndicesName(layout_), " need to be on the same device.");
TORCH_CHECK(values_.device() == col_indices_.device(), "Values and ",
at::sparse_csr::plainIndicesName(layout_), " need to be on the same device.");
TORCH_CHECK(values_.device() == device(),
"Values and compressed tensor instance need to be on the same device.");
}
void SparseCsrTensorImpl::set_member_tensors(
const Tensor& crow_indices,
const Tensor& col_indices,
const Tensor& values,
IntArrayRef size) {
set_member_tensors(crow_indices, col_indices, values, c10::fromIntArrayRefSlow(size));
}
IntArrayRef SparseCsrTensorImpl::strides_custom() const {
TORCH_CHECK(false, "Sparse ", at::sparse_csr::layoutToString(layout_, /*upper=*/true), " tensors do not have strides");
}
SymIntArrayRef SparseCsrTensorImpl::sym_strides_custom() const {
TORCH_CHECK(false, "Sparse ", at::sparse_csr::layoutToString(layout_, /*upper=*/true), " tensors do not have strides");
}
void SparseCsrTensorImpl::set_size(int64_t dim, int64_t new_size) {
TORCH_CHECK(false, "Sparse ", at::sparse_csr::layoutToString(layout_, /*upper=*/true), " tensors do not have set_size.");
}
void SparseCsrTensorImpl::set_stride(int64_t dim, int64_t new_stride) {
TORCH_CHECK(false, "Sparse ", at::sparse_csr::layoutToString(layout_, /*upper=*/true), " tensors do not have set_stride.");
}
void SparseCsrTensorImpl::set_storage_offset(int64_t storage_offset) {
TORCH_CHECK(false, "Sparse ", at::sparse_csr::layoutToString(layout_, /*upper=*/true), " tensors do not have set_storage_offset.");
}
c10::SymBool SparseCsrTensorImpl::sym_is_contiguous_custom(MemoryFormat /*memory_format*/) const {
TORCH_CHECK(false, "Sparse ", at::sparse_csr::layoutToString(layout_, /*upper=*/true), " tensors do not have is_contiguous");
}
} // namespace at