mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-18 17:45:09 +08:00
This word appears often in class descriptions and is not consistently spelled. Update comments and some function names to use the correct spelling consistently. Facilitates searching the codebase. Pull Request resolved: https://github.com/pytorch/pytorch/pull/155944 Approved by: https://github.com/Skylion007
512 lines
21 KiB
Python
512 lines
21 KiB
Python
# Owner(s): ["oncall: jit"]
|
|
# ruff: noqa: F841
|
|
|
|
import os
|
|
import sys
|
|
import torch
|
|
from torch.utils._pytree import tree_map
|
|
import unittest
|
|
|
|
from torch.testing._internal.common_utils import run_tests, TEST_WITH_TORCHDYNAMO
|
|
from torch.fx.operator_schemas import normalize_function
|
|
from torch._subclasses.schema_check_mode import SchemaCheckMode
|
|
from torch.utils._python_dispatch import TorchDispatchMode
|
|
from torch.testing._internal.common_methods_invocations import op_db
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
from torch.testing._internal.common_device_type import ops, OpDTypes, instantiate_device_type_tests
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
|
|
def secretly_aliasing(x):
|
|
return x.view(-1)
|
|
|
|
def secretly_mutating(x):
|
|
x.mul_(2)
|
|
return x * 3
|
|
|
|
def output_is_input(x):
|
|
return x
|
|
|
|
custom_lib = torch.library.Library("bad_schemas", "DEF") # noqa: TOR901
|
|
custom_lib.define("secretly_aliasing(Tensor x) -> Tensor")
|
|
custom_lib.define("secretly_mutating(Tensor x) -> Tensor")
|
|
custom_lib.define("output_is_input(Tensor(a) x) -> Tensor(a)")
|
|
|
|
custom_lib_cpu = torch.library.Library("bad_schemas", "IMPL", "CPU") # noqa: TOR901
|
|
custom_lib_cpu.impl("secretly_aliasing", secretly_aliasing)
|
|
custom_lib_cpu.impl("secretly_mutating", secretly_mutating)
|
|
custom_lib_cpu.impl("output_is_input", output_is_input)
|
|
|
|
custom_lib_meta = torch.library.Library("bad_schemas", "IMPL", "Meta") # noqa: TOR901
|
|
custom_lib_meta.impl("secretly_aliasing", secretly_aliasing)
|
|
custom_lib_meta.impl("secretly_mutating", secretly_mutating)
|
|
custom_lib_meta.impl("output_is_input", output_is_input)
|
|
|
|
# This TorchDispatchTensor Subclass is used to simulate an incorrect schema
|
|
# which is then used to test that SchemaCheckMode behaves as expected
|
|
|
|
class IncorrectAliasTensor(torch.Tensor):
|
|
ALIAS_ARG_OUT = {"aten::add"}
|
|
ALIAS_OUT_OUT = {"aten::aminmax"}
|
|
MUTATE_ARGS_OUT = {"aten::sub"}
|
|
|
|
elem: torch.Tensor
|
|
|
|
__slots__ = ['elem']
|
|
|
|
@staticmethod
|
|
def __new__(cls, elem, *args, **kwargs):
|
|
# The wrapping tensor (IncorrectAliasTensor) shouldn't hold any
|
|
# memory for the class in question, but it should still
|
|
# advertise the same device as before
|
|
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
|
|
cls, elem.size(),
|
|
strides=elem.stride(), storage_offset=elem.storage_offset(),
|
|
# TODO: clone storage aliasing
|
|
dtype=elem.dtype, layout=elem.layout,
|
|
device=elem.device, requires_grad=kwargs.get("requires_grad", False)
|
|
)
|
|
# ...the real tensor is held as an element on the tensor.
|
|
r.elem = elem.detach() if r.requires_grad else elem
|
|
return r
|
|
|
|
def __repr__(self):
|
|
return super().__repr__(tensor_contents=f"{self.elem}")
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
def unwrap(e):
|
|
return e.elem if isinstance(e, cls) else e
|
|
|
|
def wrap(e):
|
|
return cls(e) if isinstance(e, torch.Tensor) else e
|
|
unwrapped_args = tree_map(unwrap, args)
|
|
out = func(*unwrapped_args, **tree_map(unwrap, kwargs))
|
|
if func._schema.name in IncorrectAliasTensor.ALIAS_ARG_OUT:
|
|
args[0].elem = out
|
|
if func._schema.name in IncorrectAliasTensor.MUTATE_ARGS_OUT:
|
|
args[0].elem = torch.rand(args[0].elem.shape)
|
|
if func._schema.name in IncorrectAliasTensor.ALIAS_OUT_OUT:
|
|
incorrect_out = list(out)
|
|
incorrect_out[0] = incorrect_out[1]
|
|
return tree_map(wrap, tuple(incorrect_out))
|
|
|
|
return tree_map(wrap, out)
|
|
|
|
# Tests various schema checking functionalities.
|
|
class TestSchemaCheck(JitTestCase):
|
|
def setUp(self):
|
|
if TEST_WITH_TORCHDYNAMO:
|
|
self.skipTest("SchemaCheckMode is ignored by dynamo")
|
|
super().setUp()
|
|
|
|
# Tests that SchemaCheckMode records operator order with grad
|
|
def test_schema_check_mode_operator_order(self):
|
|
with SchemaCheckMode() as schema_check:
|
|
x = torch.rand((3, 3), requires_grad=True)
|
|
x.relu().sin()
|
|
self.assertEqual(["aten::rand", "aten::relu", "aten::detach", "aten::sin"], schema_check.ops)
|
|
|
|
# Tests that SchemaCheckMode records operator order without grad
|
|
def test_schema_check_mode_operator_order_without_grad(self):
|
|
with SchemaCheckMode() as schema_check:
|
|
x = torch.rand((3, 3), requires_grad=False)
|
|
x.relu().sin()
|
|
self.assertEqual(["aten::rand", "aten::relu", "aten::sin"], schema_check.ops)
|
|
|
|
# Tests that SchemaCheckMode records mutations and aliases with none expected
|
|
def test_schema_check_mode_mutated_aliasing_none(self):
|
|
# NB: previously requires_grad=True, but this induces a detach for
|
|
# saved variable
|
|
x = torch.rand((3, 3))
|
|
with SchemaCheckMode() as schema_check:
|
|
actual = x.relu().sin()
|
|
self.assertEqual([], schema_check.mutated)
|
|
self.assertEqual([], schema_check.aliasing)
|
|
|
|
# Tests that SchemaCheckMode records mutations and aliases with mutation expected
|
|
def test_schema_check_mode_mutated_aliasing_mutation(self):
|
|
actual = torch.rand((3, 3), requires_grad=False)
|
|
with SchemaCheckMode() as schema_check:
|
|
actual.sinh_()
|
|
self.assertEqual([('aten::sinh_', 'input')], schema_check.mutated)
|
|
self.assertEqual([('aten::sinh_', 'input', 'output_0')], schema_check.aliasing)
|
|
|
|
# Tests that SchemaCheckMode records mutations and aliases with resize_
|
|
def test_schema_check_mode_mutated_aliasing_resize_(self):
|
|
actual = torch.rand((3, 3), requires_grad=False)
|
|
with SchemaCheckMode() as schema_check:
|
|
actual.resize_(9)
|
|
self.assertEqual([('aten::resize_', 'input')], schema_check.mutated)
|
|
self.assertEqual([('aten::resize_', 'input', 'output_0')], schema_check.aliasing)
|
|
|
|
# Tests that SchemaCheckMode records mutations and aliases with aliasing inputs
|
|
def test_schema_check_mode_mutated_aliasing_aliasing_inputs(self):
|
|
actual = torch.rand((3, 3))
|
|
y = actual
|
|
with SchemaCheckMode() as schema_check:
|
|
actual.add_(y)
|
|
self.assertEqual(
|
|
[
|
|
('aten::add_', 'input'),
|
|
('aten::add_', 'other')
|
|
],
|
|
schema_check.mutated
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
('aten::add_', 'input', 'output_0'),
|
|
('aten::add_', 'other', 'output_0')
|
|
],
|
|
schema_check.aliasing
|
|
)
|
|
|
|
# Tests that SchemaCheckMode records mutations and alias with as_strided
|
|
def test_schema_check_mode_mutated_aliasing_as_strided(self):
|
|
x = torch.rand((3, 6, 4))
|
|
with SchemaCheckMode() as schema_check:
|
|
x.as_strided_([3, 6, 4], [9, 1, 1])
|
|
self.assertEqual(
|
|
[
|
|
('aten::as_strided_', 'input')
|
|
],
|
|
schema_check.mutated
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
('aten::as_strided_', 'input', 'output_0')
|
|
],
|
|
schema_check.aliasing
|
|
)
|
|
|
|
# Tests that SchemaCheckMode records mutations and aliases with multiple outputs
|
|
def test_schema_check_mode_mutated_aliasing_multiple_outputs(self):
|
|
x = torch.arange(9.)
|
|
m_actual = torch.arange(9.)
|
|
e_actual = torch.zeros([9], dtype=torch.int32)
|
|
with SchemaCheckMode() as schema_check:
|
|
torch.frexp(x, out=(m_actual, e_actual))
|
|
self.assertEqual(
|
|
[
|
|
('aten::frexp', 'mantissa'),
|
|
('aten::frexp', 'exponent')
|
|
],
|
|
schema_check.mutated
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
('aten::frexp', 'mantissa', 'output_0'),
|
|
('aten::frexp', 'exponent', 'output_1')
|
|
],
|
|
schema_check.aliasing
|
|
)
|
|
|
|
# Tests that SchemaCheckMode records mutations and aliases with aliasing outputs
|
|
def test_schema_check_mode_mutated_aliasing_aliasing_outputs(self):
|
|
x = torch.rand((3, 3))
|
|
actual = torch.zeros(3)
|
|
with SchemaCheckMode() as schema_check:
|
|
torch.aminmax(x, dim=0, out=[actual, actual])
|
|
self.assertEqual(
|
|
[
|
|
('aten::aminmax', 'min'),
|
|
('aten::aminmax', 'max')
|
|
],
|
|
schema_check.mutated
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
('aten::aminmax', 'min', 'output_0'),
|
|
('aten::aminmax', 'min', 'output_1'),
|
|
('aten::aminmax', 'max', 'output_0'),
|
|
('aten::aminmax', 'max', 'output_1')
|
|
],
|
|
schema_check.aliasing
|
|
)
|
|
|
|
# Tests that SchemaCheckMode wraps torch.Tensor
|
|
def test_schema_check_mode_functionality(self):
|
|
x = torch.rand((3, 3), requires_grad=True)
|
|
expected = x.relu().sin()
|
|
with SchemaCheckMode():
|
|
actual = x.relu().sin()
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that SchemaCheckMode wraps torch.Tensor when an argument's default is overridden
|
|
def test_schema_check_mode_functionality_default_replaced(self):
|
|
x = torch.rand((3, 3), requires_grad=True)
|
|
expected = x.add(x, alpha=2)
|
|
with SchemaCheckMode():
|
|
actual = x.add(x, alpha=2)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that SchemaCheckMode wraps torch.Tensor when there is a Tensor[] argument
|
|
def test_schema_check_mode_functionality_list_input(self):
|
|
a = torch.rand((3, 3))
|
|
b = torch.rand((3, 3))
|
|
c = torch.rand((3, 3))
|
|
expected = torch.linalg.multi_dot([a, b, c])
|
|
with SchemaCheckMode():
|
|
actual = torch.linalg.multi_dot([a, b, c])
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that SchemaCheckMode wraps torch.Tensor with an op that has the (a -> *) notation
|
|
def test_schema_check_mode_functionality_wildcard_after(self):
|
|
x = torch.rand((3, 3))
|
|
expected = x.chunk(6)
|
|
with SchemaCheckMode():
|
|
actual = x.chunk(6)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that SchemaCheckMode wraps torch.Tensor when there is a kwarg tensor input
|
|
@unittest.skipIf(not torch._C.has_spectral, "ATen not built with FFT.")
|
|
def test_schema_check_mode_functionality_kwarg_tensor(self):
|
|
x = torch.rand((3, 5))
|
|
w = torch.rand(4)
|
|
expected = torch.stft(x, 4, win_length=4, window=w, return_complex=True)
|
|
with SchemaCheckMode():
|
|
actual = torch.stft(x, 4, win_length=4, window=w, return_complex=True)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that SchemaCheckMode wraps torch.Tensor with a mutable op
|
|
def test_schema_check_mode_functionality_mutable_inputs(self):
|
|
expected = torch.rand((3, 3), requires_grad=False)
|
|
actual = torch.clone(expected)
|
|
expected.sinh_()
|
|
with SchemaCheckMode():
|
|
actual.sinh_()
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that SchemaCheckMode wraps Torch.tensor when inputs alias
|
|
def test_schema_check_mode_functionality_aliasing_inputs(self):
|
|
expected = torch.rand((3, 3))
|
|
x = expected
|
|
actual = torch.clone(expected)
|
|
y = actual
|
|
expected.add_(x)
|
|
with SchemaCheckMode():
|
|
actual.add_(y)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that SchemaCheckMode wraps Torch.tensor with multiple tensor outputs
|
|
def test_schema_check_mode_functionality_with_multiple_outputs(self):
|
|
x = torch.arange(9.)
|
|
m_expected, e_expected = torch.frexp(x)
|
|
m_actual = torch.arange(9.)
|
|
e_actual = torch.zeros([9], dtype=torch.int32)
|
|
with SchemaCheckMode():
|
|
torch.frexp(x, out=(m_actual, e_actual))
|
|
self.assertEqual(m_expected, m_actual)
|
|
self.assertEqual(e_expected, e_actual)
|
|
|
|
# Tests that SchemaCheckMode wraps Torch.tensor with aliasing outputs due to aliasing inputs
|
|
def test_schema_check_mode_functionality_with_multiple_outputs_aliasing(self):
|
|
x = torch.rand((3, 3))
|
|
actual = torch.zeros(3)
|
|
with SchemaCheckMode():
|
|
torch.aminmax(x, dim=0, out=[actual, actual])
|
|
self.assertEqual(torch.amax(x, dim=0), actual)
|
|
|
|
# Tests that SchemaCheckMode wraps Torch.tensor in ops with real Device input
|
|
def test_schema_check_mode_functionality_device_input(self):
|
|
with SchemaCheckMode():
|
|
x = torch.rand((3, 3), device="cpu", dtype=torch.double)
|
|
y = x + x
|
|
self.assertEqual(x + x, y)
|
|
|
|
# Tests that SchemaCheckMode wraps Torch.tensor in special training op edge case
|
|
def test_schema_check_mode_functionality_training_op(self):
|
|
x = torch.rand((3, 3), requires_grad=True)
|
|
batch = torch.nn.BatchNorm1d(3, track_running_stats=True)
|
|
expected = batch(x)
|
|
with SchemaCheckMode():
|
|
actual = batch(x)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that SchemaCheckMode wraps Torch.tensor with nested training op edge case
|
|
def test_schema_check_mode_functionality_nested_training_op(self):
|
|
actual = torch.rand((3, 3))
|
|
batch = torch.nn.BatchNorm1d(3, track_running_stats=True)
|
|
expected = torch.clone(actual)
|
|
expected.sinh_()
|
|
expected.tanh_()
|
|
expected.relu_()
|
|
expected = batch(expected)
|
|
|
|
with SchemaCheckMode():
|
|
actual.sinh_()
|
|
actual.tanh_()
|
|
actual.relu_()
|
|
actual = batch(actual)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that SchemaCheckMode wraps Torch.tensor with empty list input
|
|
def test_schema_check_mode_empty_list_input(self):
|
|
expected = torch.atleast_1d([])
|
|
with SchemaCheckMode():
|
|
actual = torch.atleast_1d([])
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Tests that an exception is raised for a mismatching mutation
|
|
def test_mutation_check_fail(self):
|
|
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined as mutable but was mutated"):
|
|
x = torch.rand((3, 3))
|
|
y = torch.rand((3, 3))
|
|
with SchemaCheckMode():
|
|
IncorrectAliasTensor(x).sub(IncorrectAliasTensor(y))
|
|
|
|
# # Tests that an exception is raised for a mismatching mutation over multiple ops
|
|
def test_mutation_check_fail_multiple_operators(self):
|
|
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined as mutable but was mutated"):
|
|
x = torch.rand((3, 3))
|
|
y = torch.rand((3, 3))
|
|
with SchemaCheckMode():
|
|
IncorrectAliasTensor(x).sin().cos().sub(IncorrectAliasTensor(y))
|
|
|
|
# Tests that an exception is raised for a mismatching alias
|
|
def test_alias_check_fail_simple(self):
|
|
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined to alias output but was aliasing"):
|
|
x = torch.rand((3, 3), requires_grad=True)
|
|
y = torch.rand((3, 3))
|
|
with SchemaCheckMode():
|
|
IncorrectAliasTensor(x).add(IncorrectAliasTensor(y), alpha=2)
|
|
|
|
# Tests that an exception is raised for a mismatching alias over multiple ops
|
|
def test_alias_check_fail_multiple_operators(self):
|
|
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined to alias output but was aliasing"):
|
|
x = torch.rand((3, 3), requires_grad=True)
|
|
y = torch.zeros((3, 3), requires_grad=True)
|
|
with SchemaCheckMode():
|
|
IncorrectAliasTensor(x).sin().relu().add(IncorrectAliasTensor(y), alpha=2)
|
|
|
|
# Tests that an exception is raised for a centered mismatching alias over multiple ops
|
|
def test_alias_check_fail_multiple_operators_centered(self):
|
|
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined to alias output but was aliasing"):
|
|
x = torch.rand((3, 3), requires_grad=True)
|
|
y = torch.zeros((3, 3), requires_grad=True)
|
|
with SchemaCheckMode():
|
|
IncorrectAliasTensor(x).sin().add(IncorrectAliasTensor(y), alpha=2).relu()
|
|
|
|
# Tests that an exception is raised for a centered mismatching alias over multiple ops
|
|
def test_alias_check_fail_outputs_unexpectedly_aliasing(self):
|
|
with self.assertRaisesRegex(RuntimeError, "Outputs 0 and 1 alias unexpectedly"):
|
|
x = torch.rand((3, 3))
|
|
with SchemaCheckMode() as s:
|
|
IncorrectAliasTensor(x).aminmax(dim=0)
|
|
|
|
# When this file was written, python op registration didn't exist.
|
|
# It's probably worth re-writing the entire file to use it,
|
|
# but instead I just added extra tests.
|
|
def test_alias_check_fail_custom_ops_secretly_aliasing(self):
|
|
def f(x):
|
|
return torch.ops.bad_schemas.secretly_aliasing(x)
|
|
|
|
x = torch.rand((3, 3))
|
|
with self.assertRaisesRegex(RuntimeError, "not defined to alias output but was aliasing"):
|
|
with SchemaCheckMode() as s:
|
|
out = f(x)
|
|
|
|
def test_alias_check_fail_custom_ops_secretly_mutating(self):
|
|
def f(x):
|
|
return torch.ops.bad_schemas.secretly_mutating(x)
|
|
|
|
x = torch.rand((3, 3))
|
|
with self.assertRaisesRegex(RuntimeError, "not defined as mutable but was mutated"):
|
|
with SchemaCheckMode() as s:
|
|
out = f(x)
|
|
|
|
def test_alias_check_fail_custom_ops_output_is_input(self):
|
|
def f(x):
|
|
return torch.ops.bad_schemas.output_is_input(x)
|
|
|
|
x = torch.rand((3, 3))
|
|
with self.assertRaisesRegex(RuntimeError, "are not allowed to directly return inputs"):
|
|
with SchemaCheckMode() as s:
|
|
out = f(x)
|
|
|
|
# Tests that is_alias_of returns as expected
|
|
def test_is_alias_of_basic(self):
|
|
x = torch.rand((3, 3), requires_grad=True)
|
|
y = torch.rand((3, 3), requires_grad=True)
|
|
y = x.add(x, alpha=2)
|
|
self.assertTrue(torch._C._is_alias_of(x, x))
|
|
self.assertFalse(torch._C._is_alias_of(x, y))
|
|
|
|
# Tests that is_alias_of returns as expected with empty containers
|
|
def test_is_alias_of_empty_container(self):
|
|
x = []
|
|
y = torch.rand((3, 3), requires_grad=True)
|
|
self.assertFalse(torch._C._is_alias_of(x, x))
|
|
self.assertFalse(torch._C._is_alias_of(x, y))
|
|
|
|
# Tests that overlaps returns as expected
|
|
def test_overlaps_basic(self):
|
|
x = torch.rand((3, 3), requires_grad=True)
|
|
y = torch.rand((3, 3), requires_grad=True)
|
|
z = [x, y]
|
|
self.assertTrue(torch._C._overlaps(x, x))
|
|
self.assertFalse(torch._C._overlaps(x, y))
|
|
self.assertTrue(torch._C._overlaps(z, x))
|
|
self.assertTrue(torch._C._overlaps(z, y))
|
|
|
|
# Tests that overlaps returns correctly with empty containers
|
|
def test_overlaps_empty_container(self):
|
|
x = []
|
|
y = [torch.rand((3, 3), requires_grad=True)]
|
|
# Empty containers return false
|
|
self.assertFalse(torch._C._overlaps(y, x))
|
|
self.assertTrue(torch._C._overlaps(y, y))
|
|
|
|
# Tests that SchemaInfo Bindings work as expected
|
|
def test_schema_info_bind_basic(self):
|
|
class SchemaInfoBindTestMode(TorchDispatchMode):
|
|
def __init__(self, test_self):
|
|
self.test_self = test_self
|
|
|
|
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
|
named_arg_list = normalize_function(
|
|
func,
|
|
args,
|
|
kwargs,
|
|
normalize_to_only_use_kwargs=True
|
|
).kwargs
|
|
schema_info_value_test = torch._C._SchemaInfo(func._schema)
|
|
schema_info_values_test = torch._C._SchemaInfo(func._schema)
|
|
self.test_self.assertFalse(schema_info_value_test.may_alias(
|
|
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
|
|
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
|
|
self.test_self.assertFalse(schema_info_values_test.may_alias(
|
|
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
|
|
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
|
|
for i in named_arg_list:
|
|
schema_info_value_test.add_argument_value(i, named_arg_list[i])
|
|
schema_info_values_test.add_argument_values(named_arg_list)
|
|
self.test_self.assertTrue(schema_info_value_test.may_alias(
|
|
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
|
|
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
|
|
self.test_self.assertTrue(schema_info_values_test.may_alias(
|
|
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
|
|
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
|
|
|
|
return func(*args, **kwargs)
|
|
x = torch.rand((3, 3))
|
|
with SchemaInfoBindTestMode(self) as schemaInfoCheck:
|
|
x.add(x)
|
|
|
|
|
|
class TestSchemaCheckModeOpInfo(JitTestCase):
|
|
@ops(op_db, dtypes=OpDTypes.supported)
|
|
def test_schema_correctness(self, device, dtype, op):
|
|
# Currently torch.equal isn't supported with torch.complex32
|
|
# There's also errors with complex64 and complex128
|
|
if (dtype == torch.complex32):
|
|
return
|
|
for sample in op.sample_inputs(device, dtype, requires_grad=False):
|
|
with SchemaCheckMode():
|
|
op(sample.input, *sample.args, **sample.kwargs)
|
|
|
|
instantiate_device_type_tests(TestSchemaCheckModeOpInfo, globals(), only_for=("cpu", "cuda"))
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|