Files
pytorch/test/test_schema_check.py
Sean McGovern 297805fd8f Typo fixes for "overridden" in comments and function names (#155944)
This word appears often in class descriptions and is not consistently spelled. Update comments and some function names to use the correct spelling consistently. Facilitates searching the codebase.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155944
Approved by: https://github.com/Skylion007
2025-06-14 03:37:38 +00:00

512 lines
21 KiB
Python

# Owner(s): ["oncall: jit"]
# ruff: noqa: F841
import os
import sys
import torch
from torch.utils._pytree import tree_map
import unittest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_TORCHDYNAMO
from torch.fx.operator_schemas import normalize_function
from torch._subclasses.schema_check_mode import SchemaCheckMode
from torch.utils._python_dispatch import TorchDispatchMode
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.jit_utils import JitTestCase
from torch.testing._internal.common_device_type import ops, OpDTypes, instantiate_device_type_tests
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
def secretly_aliasing(x):
return x.view(-1)
def secretly_mutating(x):
x.mul_(2)
return x * 3
def output_is_input(x):
return x
custom_lib = torch.library.Library("bad_schemas", "DEF") # noqa: TOR901
custom_lib.define("secretly_aliasing(Tensor x) -> Tensor")
custom_lib.define("secretly_mutating(Tensor x) -> Tensor")
custom_lib.define("output_is_input(Tensor(a) x) -> Tensor(a)")
custom_lib_cpu = torch.library.Library("bad_schemas", "IMPL", "CPU") # noqa: TOR901
custom_lib_cpu.impl("secretly_aliasing", secretly_aliasing)
custom_lib_cpu.impl("secretly_mutating", secretly_mutating)
custom_lib_cpu.impl("output_is_input", output_is_input)
custom_lib_meta = torch.library.Library("bad_schemas", "IMPL", "Meta") # noqa: TOR901
custom_lib_meta.impl("secretly_aliasing", secretly_aliasing)
custom_lib_meta.impl("secretly_mutating", secretly_mutating)
custom_lib_meta.impl("output_is_input", output_is_input)
# This TorchDispatchTensor Subclass is used to simulate an incorrect schema
# which is then used to test that SchemaCheckMode behaves as expected
class IncorrectAliasTensor(torch.Tensor):
ALIAS_ARG_OUT = {"aten::add"}
ALIAS_OUT_OUT = {"aten::aminmax"}
MUTATE_ARGS_OUT = {"aten::sub"}
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
# The wrapping tensor (IncorrectAliasTensor) shouldn't hold any
# memory for the class in question, but it should still
# advertise the same device as before
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls, elem.size(),
strides=elem.stride(), storage_offset=elem.storage_offset(),
# TODO: clone storage aliasing
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=kwargs.get("requires_grad", False)
)
# ...the real tensor is held as an element on the tensor.
r.elem = elem.detach() if r.requires_grad else elem
return r
def __repr__(self):
return super().__repr__(tensor_contents=f"{self.elem}")
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
return e.elem if isinstance(e, cls) else e
def wrap(e):
return cls(e) if isinstance(e, torch.Tensor) else e
unwrapped_args = tree_map(unwrap, args)
out = func(*unwrapped_args, **tree_map(unwrap, kwargs))
if func._schema.name in IncorrectAliasTensor.ALIAS_ARG_OUT:
args[0].elem = out
if func._schema.name in IncorrectAliasTensor.MUTATE_ARGS_OUT:
args[0].elem = torch.rand(args[0].elem.shape)
if func._schema.name in IncorrectAliasTensor.ALIAS_OUT_OUT:
incorrect_out = list(out)
incorrect_out[0] = incorrect_out[1]
return tree_map(wrap, tuple(incorrect_out))
return tree_map(wrap, out)
# Tests various schema checking functionalities.
class TestSchemaCheck(JitTestCase):
def setUp(self):
if TEST_WITH_TORCHDYNAMO:
self.skipTest("SchemaCheckMode is ignored by dynamo")
super().setUp()
# Tests that SchemaCheckMode records operator order with grad
def test_schema_check_mode_operator_order(self):
with SchemaCheckMode() as schema_check:
x = torch.rand((3, 3), requires_grad=True)
x.relu().sin()
self.assertEqual(["aten::rand", "aten::relu", "aten::detach", "aten::sin"], schema_check.ops)
# Tests that SchemaCheckMode records operator order without grad
def test_schema_check_mode_operator_order_without_grad(self):
with SchemaCheckMode() as schema_check:
x = torch.rand((3, 3), requires_grad=False)
x.relu().sin()
self.assertEqual(["aten::rand", "aten::relu", "aten::sin"], schema_check.ops)
# Tests that SchemaCheckMode records mutations and aliases with none expected
def test_schema_check_mode_mutated_aliasing_none(self):
# NB: previously requires_grad=True, but this induces a detach for
# saved variable
x = torch.rand((3, 3))
with SchemaCheckMode() as schema_check:
actual = x.relu().sin()
self.assertEqual([], schema_check.mutated)
self.assertEqual([], schema_check.aliasing)
# Tests that SchemaCheckMode records mutations and aliases with mutation expected
def test_schema_check_mode_mutated_aliasing_mutation(self):
actual = torch.rand((3, 3), requires_grad=False)
with SchemaCheckMode() as schema_check:
actual.sinh_()
self.assertEqual([('aten::sinh_', 'input')], schema_check.mutated)
self.assertEqual([('aten::sinh_', 'input', 'output_0')], schema_check.aliasing)
# Tests that SchemaCheckMode records mutations and aliases with resize_
def test_schema_check_mode_mutated_aliasing_resize_(self):
actual = torch.rand((3, 3), requires_grad=False)
with SchemaCheckMode() as schema_check:
actual.resize_(9)
self.assertEqual([('aten::resize_', 'input')], schema_check.mutated)
self.assertEqual([('aten::resize_', 'input', 'output_0')], schema_check.aliasing)
# Tests that SchemaCheckMode records mutations and aliases with aliasing inputs
def test_schema_check_mode_mutated_aliasing_aliasing_inputs(self):
actual = torch.rand((3, 3))
y = actual
with SchemaCheckMode() as schema_check:
actual.add_(y)
self.assertEqual(
[
('aten::add_', 'input'),
('aten::add_', 'other')
],
schema_check.mutated
)
self.assertEqual(
[
('aten::add_', 'input', 'output_0'),
('aten::add_', 'other', 'output_0')
],
schema_check.aliasing
)
# Tests that SchemaCheckMode records mutations and alias with as_strided
def test_schema_check_mode_mutated_aliasing_as_strided(self):
x = torch.rand((3, 6, 4))
with SchemaCheckMode() as schema_check:
x.as_strided_([3, 6, 4], [9, 1, 1])
self.assertEqual(
[
('aten::as_strided_', 'input')
],
schema_check.mutated
)
self.assertEqual(
[
('aten::as_strided_', 'input', 'output_0')
],
schema_check.aliasing
)
# Tests that SchemaCheckMode records mutations and aliases with multiple outputs
def test_schema_check_mode_mutated_aliasing_multiple_outputs(self):
x = torch.arange(9.)
m_actual = torch.arange(9.)
e_actual = torch.zeros([9], dtype=torch.int32)
with SchemaCheckMode() as schema_check:
torch.frexp(x, out=(m_actual, e_actual))
self.assertEqual(
[
('aten::frexp', 'mantissa'),
('aten::frexp', 'exponent')
],
schema_check.mutated
)
self.assertEqual(
[
('aten::frexp', 'mantissa', 'output_0'),
('aten::frexp', 'exponent', 'output_1')
],
schema_check.aliasing
)
# Tests that SchemaCheckMode records mutations and aliases with aliasing outputs
def test_schema_check_mode_mutated_aliasing_aliasing_outputs(self):
x = torch.rand((3, 3))
actual = torch.zeros(3)
with SchemaCheckMode() as schema_check:
torch.aminmax(x, dim=0, out=[actual, actual])
self.assertEqual(
[
('aten::aminmax', 'min'),
('aten::aminmax', 'max')
],
schema_check.mutated
)
self.assertEqual(
[
('aten::aminmax', 'min', 'output_0'),
('aten::aminmax', 'min', 'output_1'),
('aten::aminmax', 'max', 'output_0'),
('aten::aminmax', 'max', 'output_1')
],
schema_check.aliasing
)
# Tests that SchemaCheckMode wraps torch.Tensor
def test_schema_check_mode_functionality(self):
x = torch.rand((3, 3), requires_grad=True)
expected = x.relu().sin()
with SchemaCheckMode():
actual = x.relu().sin()
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor when an argument's default is overridden
def test_schema_check_mode_functionality_default_replaced(self):
x = torch.rand((3, 3), requires_grad=True)
expected = x.add(x, alpha=2)
with SchemaCheckMode():
actual = x.add(x, alpha=2)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor when there is a Tensor[] argument
def test_schema_check_mode_functionality_list_input(self):
a = torch.rand((3, 3))
b = torch.rand((3, 3))
c = torch.rand((3, 3))
expected = torch.linalg.multi_dot([a, b, c])
with SchemaCheckMode():
actual = torch.linalg.multi_dot([a, b, c])
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor with an op that has the (a -> *) notation
def test_schema_check_mode_functionality_wildcard_after(self):
x = torch.rand((3, 3))
expected = x.chunk(6)
with SchemaCheckMode():
actual = x.chunk(6)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor when there is a kwarg tensor input
@unittest.skipIf(not torch._C.has_spectral, "ATen not built with FFT.")
def test_schema_check_mode_functionality_kwarg_tensor(self):
x = torch.rand((3, 5))
w = torch.rand(4)
expected = torch.stft(x, 4, win_length=4, window=w, return_complex=True)
with SchemaCheckMode():
actual = torch.stft(x, 4, win_length=4, window=w, return_complex=True)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor with a mutable op
def test_schema_check_mode_functionality_mutable_inputs(self):
expected = torch.rand((3, 3), requires_grad=False)
actual = torch.clone(expected)
expected.sinh_()
with SchemaCheckMode():
actual.sinh_()
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps Torch.tensor when inputs alias
def test_schema_check_mode_functionality_aliasing_inputs(self):
expected = torch.rand((3, 3))
x = expected
actual = torch.clone(expected)
y = actual
expected.add_(x)
with SchemaCheckMode():
actual.add_(y)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps Torch.tensor with multiple tensor outputs
def test_schema_check_mode_functionality_with_multiple_outputs(self):
x = torch.arange(9.)
m_expected, e_expected = torch.frexp(x)
m_actual = torch.arange(9.)
e_actual = torch.zeros([9], dtype=torch.int32)
with SchemaCheckMode():
torch.frexp(x, out=(m_actual, e_actual))
self.assertEqual(m_expected, m_actual)
self.assertEqual(e_expected, e_actual)
# Tests that SchemaCheckMode wraps Torch.tensor with aliasing outputs due to aliasing inputs
def test_schema_check_mode_functionality_with_multiple_outputs_aliasing(self):
x = torch.rand((3, 3))
actual = torch.zeros(3)
with SchemaCheckMode():
torch.aminmax(x, dim=0, out=[actual, actual])
self.assertEqual(torch.amax(x, dim=0), actual)
# Tests that SchemaCheckMode wraps Torch.tensor in ops with real Device input
def test_schema_check_mode_functionality_device_input(self):
with SchemaCheckMode():
x = torch.rand((3, 3), device="cpu", dtype=torch.double)
y = x + x
self.assertEqual(x + x, y)
# Tests that SchemaCheckMode wraps Torch.tensor in special training op edge case
def test_schema_check_mode_functionality_training_op(self):
x = torch.rand((3, 3), requires_grad=True)
batch = torch.nn.BatchNorm1d(3, track_running_stats=True)
expected = batch(x)
with SchemaCheckMode():
actual = batch(x)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps Torch.tensor with nested training op edge case
def test_schema_check_mode_functionality_nested_training_op(self):
actual = torch.rand((3, 3))
batch = torch.nn.BatchNorm1d(3, track_running_stats=True)
expected = torch.clone(actual)
expected.sinh_()
expected.tanh_()
expected.relu_()
expected = batch(expected)
with SchemaCheckMode():
actual.sinh_()
actual.tanh_()
actual.relu_()
actual = batch(actual)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps Torch.tensor with empty list input
def test_schema_check_mode_empty_list_input(self):
expected = torch.atleast_1d([])
with SchemaCheckMode():
actual = torch.atleast_1d([])
self.assertEqual(expected, actual)
# Tests that an exception is raised for a mismatching mutation
def test_mutation_check_fail(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined as mutable but was mutated"):
x = torch.rand((3, 3))
y = torch.rand((3, 3))
with SchemaCheckMode():
IncorrectAliasTensor(x).sub(IncorrectAliasTensor(y))
# # Tests that an exception is raised for a mismatching mutation over multiple ops
def test_mutation_check_fail_multiple_operators(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined as mutable but was mutated"):
x = torch.rand((3, 3))
y = torch.rand((3, 3))
with SchemaCheckMode():
IncorrectAliasTensor(x).sin().cos().sub(IncorrectAliasTensor(y))
# Tests that an exception is raised for a mismatching alias
def test_alias_check_fail_simple(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined to alias output but was aliasing"):
x = torch.rand((3, 3), requires_grad=True)
y = torch.rand((3, 3))
with SchemaCheckMode():
IncorrectAliasTensor(x).add(IncorrectAliasTensor(y), alpha=2)
# Tests that an exception is raised for a mismatching alias over multiple ops
def test_alias_check_fail_multiple_operators(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined to alias output but was aliasing"):
x = torch.rand((3, 3), requires_grad=True)
y = torch.zeros((3, 3), requires_grad=True)
with SchemaCheckMode():
IncorrectAliasTensor(x).sin().relu().add(IncorrectAliasTensor(y), alpha=2)
# Tests that an exception is raised for a centered mismatching alias over multiple ops
def test_alias_check_fail_multiple_operators_centered(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined to alias output but was aliasing"):
x = torch.rand((3, 3), requires_grad=True)
y = torch.zeros((3, 3), requires_grad=True)
with SchemaCheckMode():
IncorrectAliasTensor(x).sin().add(IncorrectAliasTensor(y), alpha=2).relu()
# Tests that an exception is raised for a centered mismatching alias over multiple ops
def test_alias_check_fail_outputs_unexpectedly_aliasing(self):
with self.assertRaisesRegex(RuntimeError, "Outputs 0 and 1 alias unexpectedly"):
x = torch.rand((3, 3))
with SchemaCheckMode() as s:
IncorrectAliasTensor(x).aminmax(dim=0)
# When this file was written, python op registration didn't exist.
# It's probably worth re-writing the entire file to use it,
# but instead I just added extra tests.
def test_alias_check_fail_custom_ops_secretly_aliasing(self):
def f(x):
return torch.ops.bad_schemas.secretly_aliasing(x)
x = torch.rand((3, 3))
with self.assertRaisesRegex(RuntimeError, "not defined to alias output but was aliasing"):
with SchemaCheckMode() as s:
out = f(x)
def test_alias_check_fail_custom_ops_secretly_mutating(self):
def f(x):
return torch.ops.bad_schemas.secretly_mutating(x)
x = torch.rand((3, 3))
with self.assertRaisesRegex(RuntimeError, "not defined as mutable but was mutated"):
with SchemaCheckMode() as s:
out = f(x)
def test_alias_check_fail_custom_ops_output_is_input(self):
def f(x):
return torch.ops.bad_schemas.output_is_input(x)
x = torch.rand((3, 3))
with self.assertRaisesRegex(RuntimeError, "are not allowed to directly return inputs"):
with SchemaCheckMode() as s:
out = f(x)
# Tests that is_alias_of returns as expected
def test_is_alias_of_basic(self):
x = torch.rand((3, 3), requires_grad=True)
y = torch.rand((3, 3), requires_grad=True)
y = x.add(x, alpha=2)
self.assertTrue(torch._C._is_alias_of(x, x))
self.assertFalse(torch._C._is_alias_of(x, y))
# Tests that is_alias_of returns as expected with empty containers
def test_is_alias_of_empty_container(self):
x = []
y = torch.rand((3, 3), requires_grad=True)
self.assertFalse(torch._C._is_alias_of(x, x))
self.assertFalse(torch._C._is_alias_of(x, y))
# Tests that overlaps returns as expected
def test_overlaps_basic(self):
x = torch.rand((3, 3), requires_grad=True)
y = torch.rand((3, 3), requires_grad=True)
z = [x, y]
self.assertTrue(torch._C._overlaps(x, x))
self.assertFalse(torch._C._overlaps(x, y))
self.assertTrue(torch._C._overlaps(z, x))
self.assertTrue(torch._C._overlaps(z, y))
# Tests that overlaps returns correctly with empty containers
def test_overlaps_empty_container(self):
x = []
y = [torch.rand((3, 3), requires_grad=True)]
# Empty containers return false
self.assertFalse(torch._C._overlaps(y, x))
self.assertTrue(torch._C._overlaps(y, y))
# Tests that SchemaInfo Bindings work as expected
def test_schema_info_bind_basic(self):
class SchemaInfoBindTestMode(TorchDispatchMode):
def __init__(self, test_self):
self.test_self = test_self
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
named_arg_list = normalize_function(
func,
args,
kwargs,
normalize_to_only_use_kwargs=True
).kwargs
schema_info_value_test = torch._C._SchemaInfo(func._schema)
schema_info_values_test = torch._C._SchemaInfo(func._schema)
self.test_self.assertFalse(schema_info_value_test.may_alias(
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
self.test_self.assertFalse(schema_info_values_test.may_alias(
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
for i in named_arg_list:
schema_info_value_test.add_argument_value(i, named_arg_list[i])
schema_info_values_test.add_argument_values(named_arg_list)
self.test_self.assertTrue(schema_info_value_test.may_alias(
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
self.test_self.assertTrue(schema_info_values_test.may_alias(
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
return func(*args, **kwargs)
x = torch.rand((3, 3))
with SchemaInfoBindTestMode(self) as schemaInfoCheck:
x.add(x)
class TestSchemaCheckModeOpInfo(JitTestCase):
@ops(op_db, dtypes=OpDTypes.supported)
def test_schema_correctness(self, device, dtype, op):
# Currently torch.equal isn't supported with torch.complex32
# There's also errors with complex64 and complex128
if (dtype == torch.complex32):
return
for sample in op.sample_inputs(device, dtype, requires_grad=False):
with SchemaCheckMode():
op(sample.input, *sample.args, **sample.kwargs)
instantiate_device_type_tests(TestSchemaCheckModeOpInfo, globals(), only_for=("cpu", "cuda"))
if __name__ == '__main__':
run_tests()