Files
pytorch/torch/distributions/multinomial.py
Randolf Scholz 6c38b9be73 [typing] Add type hints to __init__ methods in torch.distributions. (#144197)
Fixes #144196
Extends #144106 and #144110

## Open Problems:

- [ ] Annotating with `numbers.Number` is a bad idea, should consider using `float`, `SupportsFloat` or some `Procotol`. https://github.com/pytorch/pytorch/pull/144197#discussion_r1903324769

# Notes

- `beta.py`: needed to add `type: ignore` since `broadcast_all` is untyped.
- `categorical.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2].
- ~~`dirichlet.py`: replaced `axis` with `dim` arguments.~~ #144402
- `gemoetric.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2].
- ~~`independent.py`: fixed bug in `Independent.__init__` where `tuple[int, ...]` could be passed to `Distribution.__init__` instead of `torch.Size`.~~ **EDIT:** turns out the bug is related to typing of `torch.Size`. #144218
- `independent.py`: made `Independent` a generic class of its base distribution.
- `multivariate_normal.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2].
- `relaxed_bernoulli.py`: added class-level type hint for `base_dist`.
- `relaxed_categorical.py`: added class-level type hint for `base_dist`.
- ~~`transforms.py`: Added missing argument to docstring of `ReshapeTransform`~~ #144401
- ~~`transforms.py`: Fixed bug in `AffineTransform.sign` (could return `Tensor` instead of `int`).~~ #144400
- `transforms.py`: Added `type: ignore` comments to `AffineTransform.log_abs_det_jacobian`[^1]; replaced `torch.abs(scale)` with `scale.abs()`.
- `transforms.py`: Added `type: ignore` comments to `AffineTransform.__eq__`[^1].
- `transforms.py`: Fixed type hint on `CumulativeDistributionTransform.domain`. Note that this is still an LSP violation, because `Transform.domain` is defined as `Constraint`, but `Distribution.domain` is defined as `Optional[Constraint]`.
- skipped: `constraints.py`, `constraints_registry.py`, `kl.py`, `utils.py`, `exp_family.py`, `__init__.py`.

## Remark

`TransformedDistribution`: `__init__` uses the check `if reinterpreted_batch_ndims > 0:`, which can lead to the creation of `Independent` distributions with only 1 component. This results in awkward code like `base_dist.base_dist` in `LogisticNormal`.

```python
import torch
from torch.distributions import *
b1 = Normal(torch.tensor([0.0]), torch.tensor([1.0]))
b2 = MultivariateNormal(torch.tensor([0.0]), torch.eye(1))
t = StickBreakingTransform()
d1 = TransformedDistribution(b1, t)
d2 = TransformedDistribution(b2, t)
print(d1.base_dist)  # Independent with 1 dimension
print(d2.base_dist)  # MultivariateNormal
```

One could consider changing this to `if reinterpreted_batch_ndims > 1:`.

[^1]: Usage of `isinstance(value, numbers.Real)` leads to problems with static typing, as the `numbers` module is not supported by `mypy` (see <https://github.com/python/mypy/issues/3186>). This results in us having to add type-ignore comments in several places
[^2]: Otherwise, we would have to add a bunch of `type: ignore` comments to make `mypy` happy, as it isn't able to perform the type narrowing. Ideally, such code should be replaced with structural pattern matching once support for Python 3.9 is dropped.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144197
Approved by: https://github.com/malfet

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-04-06 17:50:35 +00:00

147 lines
5.5 KiB
Python

# mypy: allow-untyped-defs
from typing import Optional
import torch
from torch import inf, Tensor
from torch.distributions import Categorical, constraints
from torch.distributions.binomial import Binomial
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all
__all__ = ["Multinomial"]
class Multinomial(Distribution):
r"""
Creates a Multinomial distribution parameterized by :attr:`total_count` and
either :attr:`probs` or :attr:`logits` (but not both). The innermost dimension of
:attr:`probs` indexes over categories. All other dimensions index over batches.
Note that :attr:`total_count` need not be specified if only :meth:`log_prob` is
called (see example below)
.. note:: The `probs` argument must be non-negative, finite and have a non-zero sum,
and it will be normalized to sum to 1 along the last dimension. :attr:`probs`
will return this normalized value.
The `logits` argument will be interpreted as unnormalized log probabilities
and can therefore be any real number. It will likewise be normalized so that
the resulting probabilities sum to 1 along the last dimension. :attr:`logits`
will return this normalized value.
- :meth:`sample` requires a single shared `total_count` for all
parameters and samples.
- :meth:`log_prob` allows different `total_count` for each parameter and
sample.
Example::
>>> # xdoctest: +SKIP("FIXME: found invalid values")
>>> m = Multinomial(100, torch.tensor([ 1., 1., 1., 1.]))
>>> x = m.sample() # equal probability of 0, 1, 2, 3
tensor([ 21., 24., 30., 25.])
>>> Multinomial(probs=torch.tensor([1., 1., 1., 1.])).log_prob(x)
tensor([-4.1338])
Args:
total_count (int): number of trials
probs (Tensor): event probabilities
logits (Tensor): event log probabilities (unnormalized)
"""
arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector}
total_count: int
@property
def mean(self) -> Tensor:
return self.probs * self.total_count
@property
def variance(self) -> Tensor:
return self.total_count * self.probs * (1 - self.probs)
def __init__(
self,
total_count: int = 1,
probs: Optional[Tensor] = None,
logits: Optional[Tensor] = None,
validate_args: Optional[bool] = None,
) -> None:
if not isinstance(total_count, int):
raise NotImplementedError("inhomogeneous total_count is not supported")
self.total_count = total_count
self._categorical = Categorical(probs=probs, logits=logits)
self._binomial = Binomial(total_count=total_count, probs=self.probs)
batch_shape = self._categorical.batch_shape
event_shape = self._categorical.param_shape[-1:]
super().__init__(batch_shape, event_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Multinomial, _instance)
batch_shape = torch.Size(batch_shape)
new.total_count = self.total_count
new._categorical = self._categorical.expand(batch_shape)
super(Multinomial, new).__init__(
batch_shape, self.event_shape, validate_args=False
)
new._validate_args = self._validate_args
return new
def _new(self, *args, **kwargs):
return self._categorical._new(*args, **kwargs)
@constraints.dependent_property(is_discrete=True, event_dim=1)
def support(self):
return constraints.multinomial(self.total_count)
@property
def logits(self) -> Tensor:
return self._categorical.logits
@property
def probs(self) -> Tensor:
return self._categorical.probs
@property
def param_shape(self) -> torch.Size:
return self._categorical.param_shape
def sample(self, sample_shape=torch.Size()):
sample_shape = torch.Size(sample_shape)
samples = self._categorical.sample(
torch.Size((self.total_count,)) + sample_shape
)
# samples.shape is (total_count, sample_shape, batch_shape), need to change it to
# (sample_shape, batch_shape, total_count)
shifted_idx = list(range(samples.dim()))
shifted_idx.append(shifted_idx.pop(0))
samples = samples.permute(*shifted_idx)
counts = samples.new(self._extended_shape(sample_shape)).zero_()
counts.scatter_add_(-1, samples, torch.ones_like(samples))
return counts.type_as(self.probs)
def entropy(self):
n = torch.tensor(self.total_count)
cat_entropy = self._categorical.entropy()
term1 = n * cat_entropy - torch.lgamma(n + 1)
support = self._binomial.enumerate_support(expand=False)[1:]
binomial_probs = torch.exp(self._binomial.log_prob(support))
weights = torch.lgamma(support + 1)
term2 = (binomial_probs * weights).sum([0, -1])
return term1 + term2
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
logits, value = broadcast_all(self.logits, value)
logits = logits.clone(memory_format=torch.contiguous_format)
log_factorial_n = torch.lgamma(value.sum(-1) + 1)
log_factorial_xs = torch.lgamma(value + 1).sum(-1)
logits[(value == 0) & (logits == -inf)] = 0
log_powers = (logits * value).sum(-1)
return log_factorial_n - log_factorial_xs + log_powers