mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Fixes #144196 Extends #144106 and #144110 ## Open Problems: - [ ] Annotating with `numbers.Number` is a bad idea, should consider using `float`, `SupportsFloat` or some `Procotol`. https://github.com/pytorch/pytorch/pull/144197#discussion_r1903324769 # Notes - `beta.py`: needed to add `type: ignore` since `broadcast_all` is untyped. - `categorical.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`dirichlet.py`: replaced `axis` with `dim` arguments.~~ #144402 - `gemoetric.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`independent.py`: fixed bug in `Independent.__init__` where `tuple[int, ...]` could be passed to `Distribution.__init__` instead of `torch.Size`.~~ **EDIT:** turns out the bug is related to typing of `torch.Size`. #144218 - `independent.py`: made `Independent` a generic class of its base distribution. - `multivariate_normal.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - `relaxed_bernoulli.py`: added class-level type hint for `base_dist`. - `relaxed_categorical.py`: added class-level type hint for `base_dist`. - ~~`transforms.py`: Added missing argument to docstring of `ReshapeTransform`~~ #144401 - ~~`transforms.py`: Fixed bug in `AffineTransform.sign` (could return `Tensor` instead of `int`).~~ #144400 - `transforms.py`: Added `type: ignore` comments to `AffineTransform.log_abs_det_jacobian`[^1]; replaced `torch.abs(scale)` with `scale.abs()`. - `transforms.py`: Added `type: ignore` comments to `AffineTransform.__eq__`[^1]. - `transforms.py`: Fixed type hint on `CumulativeDistributionTransform.domain`. Note that this is still an LSP violation, because `Transform.domain` is defined as `Constraint`, but `Distribution.domain` is defined as `Optional[Constraint]`. - skipped: `constraints.py`, `constraints_registry.py`, `kl.py`, `utils.py`, `exp_family.py`, `__init__.py`. ## Remark `TransformedDistribution`: `__init__` uses the check `if reinterpreted_batch_ndims > 0:`, which can lead to the creation of `Independent` distributions with only 1 component. This results in awkward code like `base_dist.base_dist` in `LogisticNormal`. ```python import torch from torch.distributions import * b1 = Normal(torch.tensor([0.0]), torch.tensor([1.0])) b2 = MultivariateNormal(torch.tensor([0.0]), torch.eye(1)) t = StickBreakingTransform() d1 = TransformedDistribution(b1, t) d2 = TransformedDistribution(b2, t) print(d1.base_dist) # Independent with 1 dimension print(d2.base_dist) # MultivariateNormal ``` One could consider changing this to `if reinterpreted_batch_ndims > 1:`. [^1]: Usage of `isinstance(value, numbers.Real)` leads to problems with static typing, as the `numbers` module is not supported by `mypy` (see <https://github.com/python/mypy/issues/3186>). This results in us having to add type-ignore comments in several places [^2]: Otherwise, we would have to add a bunch of `type: ignore` comments to make `mypy` happy, as it isn't able to perform the type narrowing. Ideally, such code should be replaced with structural pattern matching once support for Python 3.9 is dropped. Pull Request resolved: https://github.com/pytorch/pytorch/pull/144197 Approved by: https://github.com/malfet Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
100 lines
3.1 KiB
Python
100 lines
3.1 KiB
Python
# mypy: allow-untyped-defs
|
|
import math
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
from torch import inf, nan, Tensor
|
|
from torch.distributions import constraints
|
|
from torch.distributions.distribution import Distribution
|
|
from torch.distributions.utils import broadcast_all
|
|
from torch.types import _Number, _size
|
|
|
|
|
|
__all__ = ["Cauchy"]
|
|
|
|
|
|
class Cauchy(Distribution):
|
|
r"""
|
|
Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of
|
|
independent normally distributed random variables with means `0` follows a
|
|
Cauchy distribution.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
|
>>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0]))
|
|
>>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1
|
|
tensor([ 2.3214])
|
|
|
|
Args:
|
|
loc (float or Tensor): mode or median of the distribution.
|
|
scale (float or Tensor): half width at half maximum.
|
|
"""
|
|
|
|
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
|
|
support = constraints.real
|
|
has_rsample = True
|
|
|
|
def __init__(
|
|
self,
|
|
loc: Union[Tensor, float],
|
|
scale: Union[Tensor, float],
|
|
validate_args: Optional[bool] = None,
|
|
) -> None:
|
|
self.loc, self.scale = broadcast_all(loc, scale)
|
|
if isinstance(loc, _Number) and isinstance(scale, _Number):
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self.loc.size()
|
|
super().__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Cauchy, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.loc = self.loc.expand(batch_shape)
|
|
new.scale = self.scale.expand(batch_shape)
|
|
super(Cauchy, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
@property
|
|
def mean(self) -> Tensor:
|
|
return torch.full(
|
|
self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device
|
|
)
|
|
|
|
@property
|
|
def mode(self) -> Tensor:
|
|
return self.loc
|
|
|
|
@property
|
|
def variance(self) -> Tensor:
|
|
return torch.full(
|
|
self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device
|
|
)
|
|
|
|
def rsample(self, sample_shape: _size = torch.Size()) -> Tensor:
|
|
shape = self._extended_shape(sample_shape)
|
|
eps = self.loc.new(shape).cauchy_()
|
|
return self.loc + eps * self.scale
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
return (
|
|
-math.log(math.pi)
|
|
- self.scale.log()
|
|
- (((value - self.loc) / self.scale) ** 2).log1p()
|
|
)
|
|
|
|
def cdf(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5
|
|
|
|
def icdf(self, value):
|
|
return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc
|
|
|
|
def entropy(self):
|
|
return math.log(4 * math.pi) + self.scale.log()
|