Files
pytorch/torch/csrc/distributed/c10d/ProcessGroupGloo.cpp
fduwjj 6b2bef10af [c10d] Prototype of group_split for dist2 work (#157716)
This is to implement group_split as proposed in [docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89](https://docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157716
Approved by: https://github.com/d4l3k
2025-07-14 21:04:12 +00:00

2703 lines
83 KiB
C++

#include <c10/util/Exception.h>
#include <c10/util/error.h>
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
#ifdef USE_C10D_GLOO
#include <torch/csrc/distributed/c10d/FlightRecorder.hpp>
#include <torch/csrc/distributed/c10d/GlooDeviceFactory.hpp>
#include <torch/csrc/distributed/c10d/PrefixStore.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupGlooDetail.hpp>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <chrono>
#include <exception>
#ifdef _WIN32
#include <gloo/common/win.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#else
#include <netdb.h>
#include <sys/socket.h>
#include <unistd.h>
#endif
#include <sys/types.h>
#include <type_traits>
#include <utility>
#include <ATen/ThreadLocalState.h>
#include <ATen/native/SparseTensorUtils.h>
#include <c10/util/StringUtil.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/util/irange.h>
#include <gloo/config.h>
#include <gloo/rendezvous/context.h>
#include <gloo/rendezvous/prefix_store.h>
namespace c10d {
namespace {
using steady_clock_time_point =
std::chrono::time_point<std::chrono::steady_clock>;
std::chrono::milliseconds getRemainingTime(
steady_clock_time_point startTime,
const std::chrono::milliseconds& timeout,
bool waitAllRanks) {
if (waitAllRanks) {
// See Note in monitoredBarrier
return timeout;
}
auto elapsedTime = std::chrono::steady_clock::now() - startTime;
auto remainingMillis = timeout -
std::chrono::duration_cast<std::chrono::milliseconds>(elapsedTime);
// If no more remaining time, return -1 to indicate to caller.
if (remainingMillis.count() <= 0) {
return std::chrono::milliseconds(-1);
}
return remainingMillis;
}
// Emit a LOG(ERROR) and throws using TORCH_CHECK with the given messages.
void logAndThrow(
const std::string& logMessage,
const std::string& errorMessage) {
LOG(ERROR) << logMessage;
TORCH_CHECK(false, errorMessage);
}
// For monitoredBarrier, checks remaining time left to finish processing ranks
// and throws error if timeout.
void checkRemainingTime(
const std::chrono::milliseconds& monitoredBarrierTimeout,
const std::chrono::milliseconds& remainingTime,
const std::vector<int>& processedRanks,
int currentRank) {
const std::string kNoRemainingTimeError = c10::str(
"Rank ",
currentRank,
" timed out in monitoredBarrier after ",
monitoredBarrierTimeout.count(),
" ms.");
if (remainingTime.count() < 0) {
std::string rankInfo;
if (!processedRanks.empty()) {
rankInfo = c10::str(
"Successfully processed ranks: ", c10::Join(", ", processedRanks));
} else {
rankInfo = "No ranks successfully processed in monitoredBarrier.";
}
auto error = c10::str(kNoRemainingTimeError, "\n", rankInfo);
logAndThrow(error, error);
}
}
const auto kLoopbackAddress = "127.0.0.1";
} // namespace
// This function initializes a vector of CUDA streams, one for every
// tensor in the input tensor vector, and ensures that these streams are
// synchronized with the current default streams. This is needed so
// that new work on the new streams is serialized w.r.t. all operations
// on the tensors.
void initializeStreamsEvents(
const std::vector<at::Tensor>& tensors,
std::vector<c10::Stream>& streams,
std::vector<c10::Event>& events) {
streams.reserve(tensors.size());
events.reserve(tensors.size());
for (const auto i : c10::irange(tensors.size())) {
c10::Device device = tensors[i].device();
c10::impl::VirtualGuardImpl impl(device.type());
// Record event on current stream
events.emplace_back(device.type());
events[i].record(impl.getStream(device));
// Get a non-default stream to execute asynchronous CUDA operations
// on this device. This ensures that the default stream used
// by the caller is not occupied by c10d related operations.
streams.push_back(
impl.getStreamFromGlobalPool(device, /*isHighPriority=*/true));
// Ensure the new stream is synchronized with the current stream.
events[i].block(streams[i]);
// `tensors` are created on a different stream. Hence, they must record
// new streams in this Work to prevent being freed before the Work finishes.
if (tensors[i].is_sparse()) {
if (tensors[i].is_coalesced()) {
impl.recordDataPtrOnStream(
tensors[i].indices().storage().data_ptr(), streams[i]);
impl.recordDataPtrOnStream(
tensors[i].values().storage().data_ptr(), streams[i]);
} else {
// We will need to coalesce first, which means new tensors will
// be allocated on the streams we just allocated, and there
// is no need to record them separately.
}
} else {
impl.recordDataPtrOnStream(tensors[i].storage().data_ptr(), streams[i]);
}
}
}
// This function initializes a vector of CUDA streams, one per device,
// and ensures that these streams are synchronized with the current default
// streams. It is assumed that the tensors in the nested tensor vectors are
// on the same device.
void initializeStreamsEvents(
std::vector<std::vector<at::Tensor>>& tensors,
std::vector<c10::Stream>& streams,
std::vector<c10::Event>& events) {
// Ensure that the tensors in the nested tensor vectors are on the same
// device.
for (const auto& tensorgroup : tensors) {
const auto device_id = tensorgroup[0].device().index();
for (const auto& tensor : tensorgroup) {
if (tensor.device().index() != device_id) {
TORCH_CHECK(
false,
"tensors in the nested tensor vectors need to "
"be on the same device");
}
}
}
streams.reserve(tensors.size());
events.reserve(tensors.size());
for (const auto i : c10::irange(tensors.size())) {
c10::Device device = tensors[i][0].device();
c10::impl::VirtualGuardImpl impl(device.type());
// Record event on current stream
events.emplace_back(device.type());
events[i].record(impl.getStream(device));
// Get a non-default stream to execute asynchronous CUDA operations
// on for this output. This ensures that the default stream used
// by the caller is not occupied by c10d related operations.
streams.push_back(
impl.getStreamFromGlobalPool(device, /*isHighPriority=*/true));
// Ensure the new stream is synchronized with the current stream.
events[i].block(streams[i]);
for (at::Tensor& tensor : tensors[i]) {
// `tensors` are created on a different stream. Hence, they must record
// new streams in this Work to prevent being freed before the Work
// finishes.
impl.recordDataPtrOnStream(tensor.storage().data_ptr(), streams[i]);
}
}
}
bool getDefaultGlooLazyInit() {
return ::c10d::getCvarBool(TORCH_GLOO_LAZY_INIT, false);
}
// static
void ProcessGroupGloo::AsyncWork::execute(
const c10::intrusive_ptr<AsyncWork>& work) {
if (work->recordFunctionBeforeCallback_) {
work->recordFunctionBeforeCallback_();
}
try {
at::ThreadLocalStateGuard g(work->getTLS());
work->run();
} catch (...) {
work->finishWorkGlooError(std::current_exception());
return;
}
// FIXME: We need to call it here since Future completion requires all
// the work to be synchronized to CUDA.
work->synchronize();
work->finishWorkGloo();
}
std::vector<at::Tensor> ProcessGroupGloo::AsyncWork::result() {
TORCH_CHECK(
isCompleted(),
"Work needs to be completed before calling result(). "
"Should call wait() before result().");
TORCH_CHECK(
outputTensors_.size() <= 1,
"work result does not support list of lists, use .getFuture() and value()");
return outputTensors_.empty() ? std::vector<at::Tensor>()
: outputTensors_.at(0);
}
c10::intrusive_ptr<c10::ivalue::Future> ProcessGroupGloo::AsyncWork::
getFuture() {
return future_;
}
std::chrono::milliseconds ProcessGroupGloo::AsyncWork::getTimeout() const {
return context_->getTimeout();
}
namespace {
c10::intrusive_ptr<c10::ivalue::Future> createFutureAsOutput(
const std::vector<std::vector<at::Tensor>>& outputTensors) {
if (outputTensors.size() > 1) {
return c10::make_intrusive<c10::ivalue::Future>(
c10::ListType::create(c10::ListType::create(c10::TensorType::get())));
}
return c10::make_intrusive<c10::ivalue::Future>(
c10::ListType::create(c10::TensorType::get()));
}
void returnFutureWithOutput(
c10::intrusive_ptr<c10::ivalue::Future>& future,
const std::vector<std::vector<at::Tensor>>& outputTensors) {
if (outputTensors.empty()) {
future->markCompleted(c10::IValue(std::vector<at::Tensor>()));
return;
}
if (outputTensors.size() > 1) {
future->markCompleted(c10::IValue(outputTensors));
return;
}
future->markCompleted(c10::IValue(outputTensors[0]));
}
} // namespace
inline void ProcessGroupGloo::AsyncWork::recordAsyncWorkProfilingInfo(
const char* profilingTitle,
const std::optional<std::vector<at::Tensor>>& inputTensors) {
auto recordingFunction =
std::make_shared<at::RecordFunction>(at::RecordScope::USER_SCOPE);
if (recordingFunction->isActive()) {
std::function<void()> before_handler =
[inputTensors, profilingTitle, recordingFunction]() {
// The work will be started and completed by different threads.
recordingFunction->_setAsync();
std::vector<c10::IValue> inputs;
if (inputTensors) {
inputs.reserve(inputTensors->size());
for (const auto& tensor : *inputTensors) {
inputs.emplace_back(tensor);
}
}
recordingFunction->before(
profilingTitle,
c10::ArrayRef<const c10::IValue>(inputs.data(), inputs.size()));
};
recordFunctionBeforeCallback_ =
at::wrapPropagateTLSState(std::move(before_handler));
std::function<void()> end_handler = [recordingFunction]() {
recordingFunction->end();
};
recordFunctionEndCallback_ = at::wrapPropagateTLSState(end_handler);
}
}
ProcessGroupGloo::AsyncWork::AsyncWork(
std::shared_ptr<gloo::Context> context,
std::vector<std::vector<at::Tensor>> outputTensors,
OpType opType,
uint64_t seq,
std::chrono::milliseconds timeout,
const char* profilingTitle,
const std::optional<std::vector<at::Tensor>>& inputTensors)
// Profiler: Pass nullptr as profilingTitle to parent constructor to
// replace default profiler implementation with async version that reports
// correct timestamps for work that is asynchronously executed.
: Work(-1, opType, nullptr, inputTensors),
context_(std::move(context)),
timeout_(timeout == kUnsetTimeout ? context_->getTimeout() : timeout),
outputTensors_(std::move(outputTensors)),
future_(createFutureAsOutput(outputTensors_)),
seq_(seq) {
if (profilingTitle != nullptr) {
recordAsyncWorkProfilingInfo(profilingTitle, inputTensors);
profilingTitle_ = profilingTitle;
}
}
uint64_t ProcessGroupGloo::AsyncWork::getSequencenumber() const {
return seq_;
}
void ProcessGroupGloo::AsyncWork::finishWorkGlooError(
const std::exception_ptr& eptr) {
future_->setError(eptr);
finish(eptr);
}
void ProcessGroupGloo::AsyncWork::finishWorkGloo() {
returnFutureWithOutput(future_, outputTensors_);
finish();
}
ProcessGroupGloo::SendWork::SendWork(
at::Tensor& tensor,
std::unique_ptr<::gloo::transport::UnboundBuffer> buffer,
uint64_t seq)
: Work(
-1,
OpType::SEND,
"gloo:send",
std::optional<std::vector<at::Tensor>>({tensor})),
tensor_(tensor),
buffer_(std::move(buffer)),
seq_(seq) {}
uint64_t ProcessGroupGloo::SendWork::getSequencenumber() const {
return seq_;
}
bool ProcessGroupGloo::SendWork::wait(std::chrono::milliseconds timeout) {
bool sendCompleted = false;
std::exception_ptr exception{nullptr};
try {
if (timeout == kNoTimeout) {
sendCompleted = buffer_->waitSend();
} else {
sendCompleted = buffer_->waitSend(timeout);
}
} catch (...) {
exception = std::current_exception();
}
// Completes the Work object and throws the exception.
finishAndThrow(exception);
if (c10d::allow_inflight_collective_as_graph_input()) {
c10d::unregister_work(
c10::intrusive_ptr<
ProcessGroupGloo::SendWork>::unsafe_reclaim_from_nonowning(this));
}
return sendCompleted;
}
void ProcessGroupGloo::SendWork::abort() {
buffer_->abortWaitSend();
}
ProcessGroupGloo::RecvWork::RecvWork(
at::Tensor& tensor,
std::unique_ptr<::gloo::transport::UnboundBuffer> buffer,
OpType opType,
uint64_t seq,
const char* profilingTitle)
: Work(
-1,
opType,
profilingTitle,
std::optional<std::vector<at::Tensor>>({tensor})),
tensor_(tensor),
buffer_(std::move(buffer)),
srcRank_(-1),
seq_(seq) {}
uint64_t ProcessGroupGloo::RecvWork::getSequencenumber() const {
return seq_;
}
int ProcessGroupGloo::RecvWork::sourceRank() const {
std::lock_guard<std::mutex> lock(mutex_);
return srcRank_;
}
bool ProcessGroupGloo::RecvWork::wait(std::chrono::milliseconds timeout) {
bool recvCompleted = false;
std::exception_ptr exception{nullptr};
try {
if (timeout == kNoTimeout) {
recvCompleted = buffer_->waitRecv(&srcRank_);
} else {
recvCompleted = buffer_->waitRecv(&srcRank_, timeout);
}
} catch (...) {
exception = std::current_exception();
}
// Completes the Work object and throws the exception.
finishAndThrow(exception);
if (c10d::allow_inflight_collective_as_graph_input()) {
c10d::unregister_work(
c10::intrusive_ptr<
ProcessGroupGloo::RecvWork>::unsafe_reclaim_from_nonowning(this));
}
return recvCompleted;
}
void ProcessGroupGloo::RecvWork::abort() {
buffer_->abortWaitRecv();
}
ProcessGroupGloo::Options::Options(std::chrono::milliseconds timeout)
: Backend::Options(GLOO_BACKEND_NAME, timeout), threads(2) {}
namespace {
void socketInitialize() {
#ifdef _WIN32
::gloo::init_winsock();
#endif
}
// Gloo assumes that this machine's hostname can always be resolved
// to an address. If it doesn't it throws a runtime error saying
// that it can't be resolved. Instead of catching it, we choose
// to proactively check if an address can be resolved, so we can
// gracefully fall back to an alternative if it doesn't.
bool doesHostnameResolveToUsableAddress(const std::string& hostname) {
socketInitialize();
struct addrinfo hints{};
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
struct addrinfo* result = nullptr;
auto rv = getaddrinfo(hostname.c_str(), nullptr, &hints, &result);
if (rv < 0) {
return false;
}
struct addrinfo* rp = nullptr;
for (rp = result; rp != nullptr; rp = rp->ai_next) {
auto fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (fd == -1) {
continue;
}
rv = bind(fd, rp->ai_addr, rp->ai_addrlen);
#ifdef _WIN32
closesocket(fd);
#else
close(fd);
#endif
if (rv == -1) {
continue;
}
break;
}
freeaddrinfo(result);
return rp != nullptr;
}
} // namespace
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
createDeviceForInterface(const std::string& interface_name, bool lazyInit) {
return ::c10d::GlooDeviceFactory::makeDeviceForInterface(
interface_name, lazyInit);
}
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
createDeviceForHostname(const std::string& hostname, bool lazyInit) {
TORCH_CHECK(
doesHostnameResolveToUsableAddress(hostname),
"Cannot resolve ",
hostname,
" to a (local) address");
return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname, lazyInit);
}
#if defined(__linux__) || defined(_WIN32)
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
createDefaultDevice(bool lazyInit) {
// Use the hostname to resolve the network address to
// use. Note: if the hostname does not resolve to an address (e.g.
// because of misconfigured /etc/hosts file), this will not work.
socketInitialize();
std::array<char, HOST_NAME_MAX> hostname{};
auto rv = gethostname(hostname.data(), HOST_NAME_MAX);
if (rv != 0) {
C10_THROW_ERROR(DistBackendError, c10::utils::str_error(errno));
}
// Use this machine's hostname if it resolves to an address.
if (doesHostnameResolveToUsableAddress(hostname.data())) {
return ::c10d::GlooDeviceFactory::makeDeviceForHostname(
hostname.data(), lazyInit);
}
// Otherwise, use the loopback address.
TORCH_WARN_ONCE(
"Unable to resolve hostname to a (local) address. ",
"Using the loopback address as fallback. ",
"Manually set the network interface to bind to with GLOO_SOCKET_IFNAME.");
return createDeviceForHostname(kLoopbackAddress, lazyInit);
}
#endif
#ifdef __APPLE__
std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo::
createDefaultDevice(bool lazyInit) {
// Use the hostname to resolve the network address to
// use. Note: if the hostname does not resolve to an address (e.g.
// because of misconfigured /etc/hosts file), this will not work.
const auto hostNameMax = sysconf(_SC_HOST_NAME_MAX);
auto hostname = std::unique_ptr<char[]>(new char[hostNameMax]);
auto rv = gethostname(hostname.get(), hostNameMax);
if (rv != 0) {
C10_THROW_ERROR(DistBackendError, c10::utils::str_error(errno));
}
// Use this machine's hostname if it resolves to an address.
if (doesHostnameResolveToUsableAddress(hostname.get())) {
return ::c10d::GlooDeviceFactory::makeDeviceForHostname(
hostname.get(), lazyInit);
}
// Otherwise, use the loopback address.
TORCH_WARN_ONCE(
"Unable to resolve hostname to a (local) address. ",
"Using the loopback address as fallback. ",
"Manually set the network interface to bind to with GLOO_SOCKET_IFNAME.");
return createDeviceForHostname(kLoopbackAddress, lazyInit);
}
#endif
static std::atomic<size_t> process_group_id = 0;
ProcessGroupGloo::ProcessGroupGloo(
const c10::intrusive_ptr<Store>& store,
int rank,
int size,
c10::intrusive_ptr<Options> options)
: Backend(rank, size),
store_(new GlooStore(store)),
options_(std::move(options)),
stop_(false),
collectiveCounter_(0),
local_id_(process_group_id++) {
auto& devices = options_->devices;
if (devices.empty()) {
TORCH_CHECK(false, "No device(s) specified");
}
// Create and connect a context for every device.
//
// Note that the same device can be specified multiple times, either
// the same object, or the same logical device as different objects.
// Either mode is fine and only has performance implications.
//
// Using the same object multiple times means all contexts share a
// single I/O thread. If you use different objects for the same
// logical device they will have independent I/O threads. The latter
// option is needed if you have a fast NIC that cannot be saturated
// by a single I/O thread.
//
contexts_.reserve(options_->devices.size());
for (const auto i : c10::irange(options_->devices.size())) {
auto context = std::make_shared<::gloo::rendezvous::Context>(rank_, size_);
#ifdef GLOO_SHARED_STORE
auto underlyingStore = store_;
#else
auto& underlyingStore = *store_;
#endif
auto store = std::make_shared<::gloo::rendezvous::PrefixStore>(
std::to_string(i), underlyingStore);
#ifdef GLOO_SHARED_STORE
auto connectStore = store;
#else
auto& connectStore = *store;
#endif
context->setTimeout(options_->timeout);
try {
context->connectFullMesh(connectStore, options_->devices[i]);
} catch (const std::runtime_error& e) {
auto err = e.what();
// TORCH_CHECK to print the cpp stacktrace.
auto msg = c10::str("Gloo connectFullMesh failed with ", err);
logAndThrow(msg, msg);
}
contexts_.push_back(std::move(context));
}
// Every worker thread stores the AsyncWork object it's currently
// working on in the workInProgress_ vector. It must have size equal
// to the number of workers such that they can simply index into it
// using the worker index they are started with.
workInProgress_.resize(options_->threads);
threads_.resize(options_->threads);
for (const auto i : c10::irange(threads_.size())) {
threads_[i] = std::thread(&ProcessGroupGloo::runLoop, this, i);
}
this->setGroupUid(options_->group_name);
// TODO: If gloo has version, we also need to log gloo version into FR.
FlightRecorder<c10::Event>::get()->record_pg_ranks(
std::make_tuple(pg_uid_, pg_desc_), groupRanks());
init();
// TODO: Add configs print like ProcessGroupNCCL.
}
ProcessGroupGloo::~ProcessGroupGloo() {
std::unique_lock<std::mutex> lock(workMutex_);
workConsumeCV_.wait(lock, [&] { return workQueue_.empty(); });
// Queue is empty, signal stop
stop_ = true;
// Release lock to allow threads to terminate
lock.unlock();
workProduceCV_.notify_all();
// Wait for worker threads to terminate
for (auto& thread : threads_) {
thread.join();
}
}
uint32_t ProcessGroupGloo::nextTag() {
return collectiveCounter_++;
}
std::shared_ptr<::gloo::Context> ProcessGroupGloo::getContext(uint32_t tag) {
return contexts_[tag % contexts_.size()];
}
void ProcessGroupGloo::runLoop(int workerIndex) {
std::unique_lock<std::mutex> lock(workMutex_);
while (!stop_) {
if (workQueue_.empty()) {
workProduceCV_.wait(lock);
continue;
}
auto work = std::move(workQueue_.front());
workQueue_.pop_front();
workInProgress_[workerIndex] = work;
lock.unlock();
// Notify after releasing the lock so that the waiter
// does not immediately block.
workConsumeCV_.notify_one();
AsyncWork::execute(work);
// TODO: Need to find a way to calculate the difference of duration of two
// c10d::Event
pgStatus_->lastCompletedSeq = static_cast<int64_t>(work->seq_);
pgStatus_->lastCompletedWorkName = opTypeToString(work->opType_);
// TODO: We need to have numel of tensors for gloo as well.
pgStatus_->lastCompletedNumelIn = 0;
pgStatus_->lastCompletedNumelOut = 0;
FlightRecorder<c10::Event>::get()->retire_id(work->trace_id_, false);
lock.lock();
workInProgress_[workerIndex].reset();
}
}
const std::vector<uint64_t>& ProcessGroupGloo::groupRanks() const {
if (options_->global_ranks_in_group.empty() && local_id_ == 0) {
static std::vector<uint64_t> globalRanks(size_);
std::iota(globalRanks.begin(), globalRanks.end(), 0);
return globalRanks;
}
return options_->global_ranks_in_group;
}
c10::intrusive_ptr<Backend> ProcessGroupGloo::splitBackend(
const std::vector<int>& ranks,
const c10::intrusive_ptr<Backend::Options> opts) {
auto it = std::find(ranks.begin(), ranks.end(), rank_);
int groupRank;
if (it == ranks.end()) {
return nullptr;
} else {
groupRank = std::distance(ranks.begin(), it);
}
auto glooOpts = c10::dynamic_intrusive_pointer_cast<Options>(opts);
TORCH_CHECK(glooOpts != nullptr, "opts not a ProcessGroupGloo::Options.");
// TODO: we need to get rid of globalRanksInGroup eventually.
std::vector<uint64_t> globalRanksInGroup;
for (auto rank : ranks) {
globalRanksInGroup.emplace_back(groupRanks()[rank]);
}
glooOpts->global_ranks_in_group = std::move(globalRanksInGroup);
auto store = std::dynamic_pointer_cast<GlooStore>(store_);
TORCH_CHECK(
store != nullptr,
"store inside ProcessGroupGloo not a ProcessGroupGloo::GlooStore.");
auto pg = c10::make_intrusive<ProcessGroupGloo>(
store->_getStore()->clone(), groupRank, ranks.size(), glooOpts);
return c10::static_intrusive_pointer_cast<Backend>(pg);
}
void ProcessGroupGloo::enqueue(c10::intrusive_ptr<AsyncWork> work) {
std::unique_lock<std::mutex> lock(workMutex_);
pgStatus_->lastEnqueuedSeq = static_cast<int64_t>(work->seq_);
pgStatus_->lastEnqueuedWorkName = opTypeToString(work->opType_);
// TODO: We need to have numel of tensors for gloo as well.
pgStatus_->lastEnqueuedNumelIn = 0;
pgStatus_->lastEnqueuedNumelOut = 0;
// using c10d::FlightRecorder;
// TODO: We need to have a way to use c10::Event inside gloo as well.
work->trace_id_ = FlightRecorder<c10::Event>::get()->record(
local_id_,
std::make_tuple(pg_uid_, pg_desc_),
collectiveCounter_,
0, // p2p_seq_id, set 0 for now since p2p does not call enqueue
work->getSequencenumber(), // We need to differentiate between p2p and
// non-p2p op.
work->getProfilerTitle(),
work->getInputTensors(),
work->getOutputTensors(),
nullptr,
nullptr,
work->getTimeout(),
pgStatus_,
false);
workQueue_.push_back(std::move(work));
lock.unlock();
// Notify after releasing the lock so that the waiter
// does not immediately block.
workProduceCV_.notify_one();
}
namespace {
class AsyncBroadcastWork : public ProcessGroupGloo::AsyncWork {
public:
AsyncBroadcastWork(
std::shared_ptr<gloo::Context> context,
std::vector<at::Tensor>& inputs,
int rootRank,
int rootTensor,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: ProcessGroupGloo::AsyncWork(
std::move(context),
{inputs},
OpType::BROADCAST,
seq,
timeout,
"gloo:broadcast",
inputs),
inputs(inputs),
rootRank(rootRank),
rootTensor(rootTensor),
tag(tag) {}
std::vector<at::Tensor> inputs{};
const int rootRank;
const int rootTensor;
const uint32_t tag;
void broadcast(at::Tensor& tensor) {
const auto& scalarType = tensor.scalar_type();
gloo::BroadcastOptions opts(context_);
opts.setRoot(rootRank);
opts.setTag(tag);
opts.setTimeout(timeout_);
GENERATE_ALL_TYPES(scalarType, setOutput, opts, tensor);
gloo::broadcast(opts);
}
const std::vector<at::Tensor> getInputTensors() override {
return inputs;
}
const std::vector<at::Tensor> getOutputTensors() override {
return inputs;
}
void run() override {
broadcast(inputs[rootTensor]);
// Copy to non-root tensors
for (const auto i : c10::irange(inputs.size())) {
if (i == static_cast<size_t>(rootTensor)) {
continue;
}
inputs[i].copy_(inputs[rootTensor]);
}
}
};
class AsyncBroadcastCUDAWork : public AsyncBroadcastWork {
public:
AsyncBroadcastCUDAWork(
const std::shared_ptr<gloo::Context>& context,
std::vector<at::Tensor>& inputs,
int rootRank,
int rootTensor,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: AsyncBroadcastWork(
context,
inputs,
rootRank,
rootTensor,
tag,
seq,
timeout) {
initializeStreamsEvents(inputs, streams, events);
// Create pinned host side tensors.
tmp = pinnedLike(inputs[rootTensor]);
c10::OptionalStreamGuard guard;
if (context_->rank == rootRank) {
guard.reset_stream(streams[rootTensor]);
tmp.copy_(inputs[rootTensor], /* non_blocking */ true);
}
}
void run() override {
// Synchronize with copy operation if applicable.
if (context_->rank == rootRank) {
streams[rootTensor].synchronize();
}
// Run broadcast on host side tensors.
broadcast(tmp);
// Kick off copy back to the CUDA tensors.
c10::OptionalStreamGuard guard;
for (const auto i : c10::irange(inputs.size())) {
guard.reset_stream(streams[i]);
inputs[i].copy_(tmp, /* non_blocking */ true);
events[i].record(streams[i]);
}
}
void synchronize() override {
// Synchronize with the copy back to CUDA tensors.
for (const auto i : c10::irange(inputs.size())) {
c10::Device device = inputs[i].device();
events[i].block(
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
}
}
at::Tensor tmp;
std::vector<c10::Stream> streams{};
std::vector<c10::Event> events{};
};
} // namespace
c10::intrusive_ptr<Work> ProcessGroupGloo::broadcast(
std::vector<at::Tensor>& inputs,
const BroadcastOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupGloo::broadcast: " + msg);
};
assertRootRank(invalidArgument, opts.rootRank, size_);
assertRootTensor(
invalidArgument, opts.rootTensor, static_cast<int64_t>(inputs.size()));
assertDense(invalidArgument, inputs);
assertTypeAndSizesMatch(invalidArgument, inputs);
const auto& device = inputs[0].device();
switch (device.type()) {
case at::kCPU:
break;
case at::kCUDA:
// If the user gave us a CUDA tensor then CUDA must be loaded.
TORCH_INTERNAL_ASSERT(at::hasCUDA());
break;
default:
invalidArgument(c10::str("unsupported device type ", device.type()));
}
c10::intrusive_ptr<AsyncBroadcastWork> work;
auto tag = nextTag();
auto context = getContext(tag);
++seq_;
if (device.type() == at::kCPU) {
work = c10::make_intrusive<AsyncBroadcastWork>(
std::move(context),
inputs,
opts.rootRank,
opts.rootTensor,
tag,
seq_,
opts.timeout);
} else if (device.type() == at::kCUDA) {
work = c10::make_intrusive<AsyncBroadcastCUDAWork>(
std::move(context),
inputs,
opts.rootRank,
opts.rootTensor,
tag,
seq_,
opts.timeout);
} else {
TORCH_CHECK(false, "Invalid backend");
}
enqueue(work);
return work;
}
c10::intrusive_ptr<Work> ProcessGroupGloo::allreduce(
std::vector<at::Tensor>& inputs,
const AllreduceOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupGloo::allreduce: " + msg);
};
assertNonEmpty(invalidArgument, inputs);
assertLayoutMatch(invalidArgument, inputs);
assertTypeAndSizesMatch(invalidArgument, inputs);
const auto& device = inputs[0].device();
switch (device.type()) {
case at::kCPU:
break;
case at::kCUDA:
// If the user gave us a CUDA tensor then CUDA must be loaded.
TORCH_INTERNAL_ASSERT(at::hasCUDA());
break;
default:
invalidArgument(c10::str("unsupported device type ", device.type()));
}
const auto& layout = inputs[0].layout();
if (layout == c10::kSparse && opts.reduceOp != ReduceOp::SUM) {
invalidArgument(
"unsupported reduction operation "
"(allreduce of sparse tensors only works with ReduceOp.SUM)");
}
c10::intrusive_ptr<AsyncWork> work;
auto tag = nextTag();
auto context = getContext(tag);
++seq_;
work = GlooAllreduceRegistry()->Create(
device.type(), context, inputs, opts.reduceOp, tag, seq_, opts.timeout);
enqueue(work);
return work;
}
static c10::intrusive_ptr<ProcessGroupGloo::AsyncWork> makeAllreduceCPUWork(
std::shared_ptr<gloo::Context> context,
std::vector<at::Tensor>& inputs,
ReduceOp reduceOp,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout) {
auto layout = inputs[0].layout();
if (layout == c10::kStrided) {
return c10::make_intrusive<AsyncAllreduceWork>(
std::move(context), inputs, reduceOp, tag, seq, timeout);
} else if (layout == c10::kSparse) {
return c10::make_intrusive<AsyncSparseAllreduceWork>(
std::move(context), inputs, tag, seq, timeout);
} else {
TORCH_CHECK(false, "ProcessGroupGloo::allreduce: unsupported layout");
}
}
C10_DEFINE_TYPED_REGISTRY(
GlooAllreduceRegistry,
c10::DeviceType,
ProcessGroupGloo::AsyncWork,
c10::intrusive_ptr,
std::shared_ptr<gloo::Context>,
std::vector<at::Tensor>&,
ReduceOp,
uint32_t,
uint64_t,
std::chrono::milliseconds)
C10_REGISTER_TYPED_CREATOR(
GlooAllreduceRegistry,
at::kCPU,
makeAllreduceCPUWork)
c10::intrusive_ptr<Work> ProcessGroupGloo::allreduce_sparse(
std::vector<at::Tensor>& inputs,
const AllreduceOptions& opts) {
// all reduce sparse calls into default allreduce which
// implemented with all_gathering indices and values
// we do this we do not have a native cuda implementation
return allreduce(inputs, opts);
}
c10::intrusive_ptr<Work> ProcessGroupGloo::allreduce_coalesced(
std::vector<at::Tensor>& tensors,
const AllreduceCoalescedOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupGloo::allreduce_coalesced: " + msg);
};
assertNonEmpty(invalidArgument, tensors);
// tensors will be flattened and concatenated (coalesced). This means that
// input
// tensors must have the same device, layout and type.
assertLayoutMatch(invalidArgument, tensors);
if (!std::all_of(tensors.begin(), tensors.end(), [&](at::Tensor& t) {
return t.options().type_equal(tensors[0].options());
})) {
invalidArgument("tensors must all have the same type");
}
if (!std::all_of(tensors.begin(), tensors.end(), [&](at::Tensor& t) {
return t.device() == tensors[0].device();
})) {
invalidArgument("tensors must all be on the same device");
}
const c10::Device& device = tensors[0].device();
const c10::Layout& layout = tensors[0].layout();
// invalid arguments are detected early here before any calls to nextTag()
// which result in the collectiveCounter_ being incremented.
switch (device.type()) {
case c10::kCPU:
break;
default:
invalidArgument(c10::str("unsupported device type ", device.type()));
}
switch (layout) {
case c10::kStrided:
break;
default:
invalidArgument("unsupported layout");
}
c10::intrusive_ptr<AsyncWork> work;
const uint32_t tag = nextTag();
std::shared_ptr<gloo::Context> context = getContext(tag);
++seq_;
if (device.type() == c10::kCPU) {
if (layout == c10::kStrided) {
work = c10::make_intrusive<AsyncAllreduceCoalescedWork>(
std::move(context), tensors, opts.reduceOp, tag, seq_, opts.timeout);
} else {
invalidArgument("unsupported layout");
}
} else {
TORCH_CHECK(false, "Invalid backend");
}
enqueue(work);
return work;
}
namespace {
class AsyncReduceWork : public ProcessGroupGloo::AsyncWork {
public:
AsyncReduceWork(
std::shared_ptr<gloo::Context> context,
std::vector<at::Tensor>& inputs,
int rootRank,
int rootTensor,
ReduceOp reduceOp,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: ProcessGroupGloo::AsyncWork(
std::move(context),
{inputs},
OpType::REDUCE,
seq,
timeout,
"gloo:reduce",
inputs),
inputs(inputs),
rootRank(rootRank),
rootTensor(rootTensor),
reduceOp(std::move(reduceOp)),
tag(tag) {}
std::vector<at::Tensor> inputs{};
const int rootRank;
const int rootTensor;
const ReduceOp reduceOp;
const uint32_t tag;
void reduce(std::vector<at::Tensor>& tensors) {
const auto& scalarType = tensors[0].scalar_type();
gloo::ReduceOptions opts(context_);
opts.setRoot(rootRank);
opts.setTag(tag);
opts.setReduceFunction(getFunction(scalarType, reduceOp));
opts.setTimeout(timeout_);
GENERATE_ALL_TYPES(scalarType, setOutput, opts, tensors[0]);
gloo::reduce(opts);
// Gloo doesn't support AVG so we use SUM + division.
if (reduceOp == ReduceOp::AVG) {
tensors[0] /= context_->size;
}
}
void run() override {
reduce(inputs);
}
const std::vector<at::Tensor> getInputTensors() override {
return inputs;
}
const std::vector<at::Tensor> getOutputTensors() override {
return inputs;
}
protected:
template <typename T>
void getFunction(gloo::ReduceOptions::Func& fn, const ReduceOp op) {
fn = toFunction<T>(op);
}
gloo::ReduceOptions::Func getFunction(
const at::ScalarType& dtype,
const ReduceOp& op) {
gloo::ReduceOptions::Func fn;
GENERATE_ALL_TYPES(dtype, getFunction, fn, op);
return fn;
}
};
class AsyncReduceCUDAWork : public AsyncReduceWork {
public:
AsyncReduceCUDAWork(
const std::shared_ptr<gloo::Context>& context,
std::vector<at::Tensor>& inputs,
int rootRank,
int rootTensor,
ReduceOp reduceOp,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: AsyncReduceWork(
context,
inputs,
rootRank,
rootTensor,
std::move(reduceOp),
tag,
seq,
timeout) {
initializeStreamsEvents(inputs, streams, events);
// Kick off copy from CUDA tensors to pinned CPU tensors.
tmp.reserve(inputs.size());
c10::OptionalStreamGuard guard;
for (const auto i : c10::irange(inputs.size())) {
guard.reset_stream(streams[i]);
tmp.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
}
}
void run() override {
// Synchronize with copy operations.
for (const auto i : c10::irange(inputs.size())) {
streams[i].synchronize();
}
// Run reduce on host side tensors.
reduce(tmp);
// Kick off copy back to the CUDA tensors.
c10::OptionalStreamGuard guard;
for (const auto i : c10::irange(inputs.size())) {
guard.reset_stream(streams[i]);
inputs[i].copy_(tmp[i], /* non_blocking */ true);
events[i].record(streams[i]);
}
}
void synchronize() override {
// Synchronize with the copy back to CUDA tensors.
for (const auto i : c10::irange(inputs.size())) {
c10::Device device = inputs[i].device();
events[i].block(
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
}
}
std::vector<at::Tensor> tmp{};
std::vector<c10::Stream> streams{};
std::vector<c10::Event> events{};
};
} // namespace
c10::intrusive_ptr<Work> ProcessGroupGloo::reduce(
std::vector<at::Tensor>& inputs,
const ReduceOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupGloo::reduce: " + msg);
};
assertRootRank(invalidArgument, opts.rootRank, size_);
assertRootTensor(
invalidArgument, opts.rootTensor, static_cast<int64_t>(inputs.size()));
assertSingleElement(invalidArgument, inputs);
assertDense(invalidArgument, inputs);
const auto& device = inputs[0].device();
switch (device.type()) {
case at::kCPU:
break;
case at::kCUDA:
// If the user gave us a CUDA tensor then CUDA must be loaded.
TORCH_INTERNAL_ASSERT(at::hasCUDA());
break;
default:
invalidArgument(c10::str("unsupported device type ", device.type()));
}
c10::intrusive_ptr<AsyncReduceWork> work;
auto tag = nextTag();
auto context = getContext(tag);
++seq_;
if (device.type() == at::kCPU) {
work = c10::make_intrusive<AsyncReduceWork>(
std::move(context),
inputs,
opts.rootRank,
opts.rootTensor,
opts.reduceOp,
tag,
seq_,
opts.timeout);
} else if (device.type() == at::kCUDA) {
work = c10::make_intrusive<AsyncReduceCUDAWork>(
std::move(context),
inputs,
opts.rootRank,
opts.rootTensor,
opts.reduceOp,
tag,
seq_,
opts.timeout);
} else {
TORCH_CHECK(false, "Invalid backend");
}
enqueue(work);
return work;
}
namespace {
class AsyncAllgatherWork : public ProcessGroupGloo::AsyncWork {
public:
AsyncAllgatherWork(
std::shared_ptr<gloo::Context> context,
std::vector<std::vector<at::Tensor>>& outputs,
std::vector<at::Tensor>& inputs,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: ProcessGroupGloo::AsyncWork(
std::move(context),
outputs,
OpType::ALLGATHER,
seq,
timeout,
"gloo:all_gather",
inputs),
outputs(outputs),
inputs(inputs),
tag(tag) {}
std::vector<std::vector<at::Tensor>> outputs{};
std::vector<at::Tensor> inputs{};
const uint32_t tag;
void allgather(
std::vector<std::vector<at::Tensor>>& outputs,
std::vector<at::Tensor>& inputs) {
const auto& scalarType = inputs[0].scalar_type();
gloo::AllgatherOptions opts(context_);
opts.setTag(tag);
opts.setTimeout(timeout_);
// Use single flattened input tensor.
at::Tensor flatInputTensor = flattenDenseTensors(inputs);
GENERATE_ALL_TYPES(scalarType, setInput, opts, flatInputTensor);
// Use single flat output tensor.
// The first dimension corresponds to the index into outputs[N],
// so copying into the actual output later is easy.
at::Tensor flatOutputTensor = newLikeFlat(outputs[0]);
GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor);
gloo::allgather(opts);
// Unflatten into output tensors.
for (auto& outputgroup : outputs) {
for (const auto j : c10::irange(outputgroup.size())) {
outputgroup[j].copy_(flatOutputTensor[static_cast<int64_t>(j)]);
}
}
}
const std::vector<at::Tensor> getInputTensors() override {
return inputs;
}
const std::vector<at::Tensor> getOutputTensors() override {
return {newLikeFlat(outputs[0])};
}
void run() override {
allgather(outputs, inputs);
}
};
// Note: current CUDA implementation holds the assumption that the
// tensors in the nested output tensor vectors are on the same device.
class AsyncAllgatherCUDAWork : public AsyncAllgatherWork {
public:
AsyncAllgatherCUDAWork(
const std::shared_ptr<gloo::Context>& context,
std::vector<std::vector<at::Tensor>>& outputs,
std::vector<at::Tensor>& inputs,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: AsyncAllgatherWork(context, outputs, inputs, tag, seq, timeout) {
initializeStreamsEvents(inputs, inputStreams, inputEvents);
initializeStreamsEvents(outputs, outputStreams, outputEvents);
// Kick off copy from CUDA tensors to pinned CPU tensors.
tmpInputs.reserve(inputs.size());
c10::OptionalStreamGuard guard;
for (const auto i : c10::irange(inputs.size())) {
guard.reset_stream(inputStreams[i]);
tmpInputs.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
}
tmpOutputs.resize(outputs.size());
for (const auto i : c10::irange(outputs.size())) {
tmpOutputs[i].reserve(outputs[i].size());
for (const auto j : c10::irange(outputs[i].size())) {
tmpOutputs[i].push_back(pinnedLike(outputs[i][j]));
}
}
}
void run() override {
// Synchronize with copy operations.
for (const auto i : c10::irange(inputs.size())) {
inputStreams[i].synchronize();
}
for (const auto i : c10::irange(outputs.size())) {
outputStreams[i].synchronize();
}
// Run allgather on host side tensors.
allgather(tmpOutputs, tmpInputs);
// Kick off copy back to the CUDA tensors.
c10::OptionalStreamGuard guard;
for (const auto i : c10::irange(outputs.size())) {
guard.reset_stream(outputStreams[i]);
for (const auto j : c10::irange(outputs[i].size())) {
outputs[i][j].copy_(tmpOutputs[i][j], /* non_blocking */ true);
}
outputEvents[i].record(outputStreams[i]);
}
}
void synchronize() override {
// Synchronize with the copy back to CUDA tensors.
for (const auto i : c10::irange(outputs.size())) {
c10::Device device = outputs[i][0].device();
outputEvents[i].block(
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
}
}
std::vector<at::Tensor> tmpInputs{};
std::vector<c10::Stream> inputStreams{};
std::vector<c10::Event> inputEvents{};
std::vector<std::vector<at::Tensor>> tmpOutputs{};
std::vector<c10::Stream> outputStreams{};
std::vector<c10::Event> outputEvents{};
};
// A work that takes an lambda on construction and calls it on wait.
// It is useful for add a continuation to another work, and/or
// composing multiple works together.
class LambdaWork : public Work {
public:
LambdaWork(std::function<void(void)> fn) : fn_(std::move(fn)) {}
bool wait(std::chrono::milliseconds /* unused */) override {
fn_();
return true;
}
private:
std::function<void(void)> fn_;
};
} // namespace
c10::intrusive_ptr<Work> ProcessGroupGloo::_reduce_scatter_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
const ReduceScatterOptions& opts) {
std::vector<at::Tensor> outputTensors = {outputTensor};
std::vector<at::Tensor> inputTensors = {inputTensor};
return reduce_scatter_tensor_coalesced(outputTensors, inputTensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupGloo::reduce_scatter_tensor_coalesced(
std::vector<at::Tensor>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const ReduceScatterOptions& opts) {
if (outputTensors.size() != inputTensors.size()) {
TORCH_CHECK(
false, "requires input/output tensor lists to have the same length");
}
const auto rank = getRank();
const auto worldSize = getSize();
std::vector<at::Tensor> buffers;
for (const auto i : c10::irange(inputTensors.size())) {
auto inputShape = inputTensors[i].sizes().vec();
auto outputShape = outputTensors[i].sizes().vec();
TORCH_CHECK_EQ(outputTensors[i].dtype(), inputTensors[i].dtype());
TORCH_CHECK_EQ(outputShape[0] * worldSize, inputShape[0]);
for (size_t i = 1; i < outputShape.size(); ++i) {
TORCH_CHECK_EQ(outputShape[i], inputShape[i]);
}
buffers.push_back(inputTensors[i].clone());
}
std::vector<c10::intrusive_ptr<Work>> works;
for (const auto i : c10::irange(buffers.size())) {
std::vector<at::Tensor> inp = {buffers[i]};
AllreduceOptions arOpts;
arOpts.reduceOp = opts.reduceOp;
arOpts.timeout = opts.timeout;
works.push_back(allreduce(inp, arOpts));
}
return c10::make_intrusive<LambdaWork>(
[rank, worldSize, buffers, outputTensors, works = std::move(works)]() {
for (const auto i : c10::irange(outputTensors.size())) {
works[i]->wait();
outputTensors[i].copy_(buffers[i].chunk(worldSize)[rank]);
}
});
}
c10::intrusive_ptr<Work> ProcessGroupGloo::_allgather_base(
at::Tensor& output_tensor,
at::Tensor& input_tensor,
const AllgatherOptions& opts) {
auto tensor_list = at::chunk(output_tensor, this->getSize(), 0);
std::vector<std::vector<at::Tensor>> outputs = {tensor_list};
std::vector<at::Tensor> inputs = {input_tensor};
return this->allgather(outputs, inputs, opts);
}
// Note: current CUDA implementation holds the assumption that the
// tensors in the nested output tensor vectors are on the same device.
c10::intrusive_ptr<Work> ProcessGroupGloo::allgather(
std::vector<std::vector<at::Tensor>>& outputs,
std::vector<at::Tensor>& inputs,
const AllgatherOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupGloo::allgather: " + msg);
};
if (inputs.empty()) {
invalidArgument("requires non-empty input tensor list");
}
if (inputs.size() != outputs.size()) {
invalidArgument(
"requires input/output tensor lists to have the same length");
}
for (const auto i : c10::irange(outputs.size())) {
const auto expected = inputs.size() * getSize();
const auto actual = outputs[i].size();
if (actual != expected) {
invalidArgument(
"invalid output tensor list at index " + std::to_string(i) +
" (expected length " + std::to_string(expected) + ", got " +
std::to_string(actual) + ")");
}
}
assertDense(invalidArgument, inputs);
// Expect all input/output tensors to have the same type and sizes
const auto& options = inputs[0].options();
const auto& sizes = inputs[0].sizes();
assertTypeAndSizesMatch(invalidArgument, inputs, options, sizes);
for (const auto& output : outputs) {
assertTypeAndSizesMatch(invalidArgument, output, options, sizes);
}
const auto& device = inputs[0].device();
switch (device.type()) {
case at::kCPU:
break;
case at::kCUDA:
// If the user gave us a CUDA tensor then CUDA must be loaded.
TORCH_INTERNAL_ASSERT(at::hasCUDA());
break;
default:
invalidArgument(c10::str("unsupported device type ", device.type()));
}
c10::intrusive_ptr<AsyncAllgatherWork> work;
auto tag = nextTag();
auto context = getContext(tag);
++seq_;
if (device.type() == at::kCPU) {
work = c10::make_intrusive<AsyncAllgatherWork>(
std::move(context), outputs, inputs, tag, seq_, opts.timeout);
} else if (device.type() == at::kCUDA) {
work = c10::make_intrusive<AsyncAllgatherCUDAWork>(
std::move(context), outputs, inputs, tag, seq_, opts.timeout);
} else {
TORCH_CHECK(false, "Invalid backend");
}
enqueue(work);
return work;
}
namespace {
class AsyncAllgatherCoalescedWork : public ProcessGroupGloo::AsyncWork {
public:
AsyncAllgatherCoalescedWork(
std::shared_ptr<gloo::Context> context,
std::vector<std::vector<at::Tensor>>& output_lists,
std::vector<at::Tensor>& input_list,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: ProcessGroupGloo::AsyncWork(
std::move(context),
output_lists,
OpType::ALLGATHER_COALESCED,
seq,
timeout,
"gloo:all_gather",
input_list),
output_lists(output_lists),
input_list(input_list),
tag(tag) {}
std::vector<std::vector<at::Tensor>> output_lists{};
std::vector<at::Tensor> input_list{};
const uint32_t tag;
void allgather_coalesced() {
assert(!output_lists.empty());
assert(!output_lists[0].empty());
assert(!input_list.empty());
const auto& scalarType = input_list[0].scalar_type();
gloo::AllgatherOptions opts(context_);
opts.setTag(tag);
opts.setTimeout(timeout_);
// Use single flattened input tensor.
at::Tensor flatInputTensor = flattenDenseTensors(input_list);
GENERATE_ALL_TYPES(scalarType, setInput, opts, flatInputTensor);
// Compute total number of elements we need to allocate for all tensors
// requested.
int64_t output_numel = 0;
for (const auto& t : output_lists[0]) {
output_numel += t.numel();
}
output_numel *= static_cast<int64_t>(output_lists.size());
// Use single flat output tensor.
at::Tensor flatOutputTensor =
at::empty({output_numel}, output_lists[0][0].options());
GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor);
gloo::allgather(opts);
int64_t current_element = 0;
for (auto& output_list : output_lists) {
for (auto& output_tensor : output_list) {
output_tensor.copy_(
flatOutputTensor.narrow(0, current_element, output_tensor.numel())
.reshape(output_tensor.sizes()),
true);
current_element += output_tensor.numel();
}
}
}
const std::vector<at::Tensor> getInputTensors() override {
return input_list;
}
const std::vector<at::Tensor> getOutputTensors() override {
return {newLikeFlat(output_lists[0])};
}
void run() override {
allgather_coalesced();
}
};
} // namespace
c10::intrusive_ptr<Work> ProcessGroupGloo::allgather_coalesced(
std::vector<std::vector<at::Tensor>>& output_lists,
std::vector<at::Tensor>& input_list,
const AllgatherOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupGloo::allgather_coalesced: " + msg);
};
if (input_list.empty()) {
invalidArgument("requires non-empty input tensor list");
}
if (output_lists.size() != static_cast<size_t>(getSize())) {
invalidArgument("output lists should be equal to world size");
}
assertSameDevice(invalidArgument, input_list);
// Expect i'th tensor of each list from 'output_lists' match i'th tensor
// from 'input_list' in type and size.
for (const auto& output_list : output_lists) {
if (output_list.size() != input_list.size()) {
invalidArgument(
"invalid output size: (expected length " +
std::to_string(input_list.size()) + ", got " +
std::to_string(output_list.size()) + ")");
}
for (const auto i : c10::irange(output_list.size())) {
const auto expected = input_list[i].sizes();
const auto actual = output_list[i].sizes();
if (actual != expected) {
invalidArgument(
"invalid size of output tensor at index " + std::to_string(i) +
" (expected length " + toString(expected) + ", got " +
toString(actual) + ")");
}
if (!input_list[i].options().type_equal(output_list[i].options())) {
invalidArgument(
"invalid tensor type at index " + std::to_string(i) +
" (expected " + input_list[i].toString() + ", got " +
output_list[i].toString() + ")");
}
}
}
assertDense(invalidArgument, input_list);
auto tag = nextTag();
auto context = getContext(tag);
++seq_;
auto work = c10::make_intrusive<AsyncAllgatherCoalescedWork>(
std::move(context), output_lists, input_list, tag, seq_, opts.timeout);
enqueue(work);
return work;
}
c10::intrusive_ptr<Work> ProcessGroupGloo::allgather_into_tensor_coalesced(
std::vector<at::Tensor>& outputs,
std::vector<at::Tensor>& inputs,
const AllgatherOptions& opts) {
TORCH_CHECK_EQ(outputs.size(), inputs.size());
std::vector<std::vector<at::Tensor>> output_lists(getSize());
for (auto& output : outputs) {
auto chunks = output.chunk(getSize());
for (const auto i : c10::irange(output_lists.size())) {
output_lists[i].push_back(std::move(chunks[i]));
}
}
return allgather_coalesced(output_lists, inputs, opts);
}
namespace {
class AsyncGatherWork : public ProcessGroupGloo::AsyncWork {
public:
AsyncGatherWork(
std::shared_ptr<gloo::Context> context,
std::vector<std::vector<at::Tensor>>& outputs,
std::vector<at::Tensor>& inputs,
int root,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: ProcessGroupGloo::AsyncWork(
std::move(context),
outputs,
OpType::GATHER,
seq,
timeout,
"gloo:gather",
inputs),
outputs(outputs),
inputs(inputs),
root(root),
tag(tag) {}
std::vector<std::vector<at::Tensor>> outputs{};
std::vector<at::Tensor> inputs{};
const int root;
const uint32_t tag;
void gather(
std::vector<std::vector<at::Tensor>>& outputs,
std::vector<at::Tensor>& inputs) {
const auto scalarType = inputs[0].scalar_type();
gloo::GatherOptions opts(context_);
opts.setRoot(root);
opts.setTag(tag);
opts.setTimeout(timeout_);
// Set single temporary tensor on root process.
// This is later scattered to the separate output tensors.
at::Tensor flatOutputTensor;
if (context_->rank == root) {
flatOutputTensor = newLikeFlat(outputs[0]);
GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor);
}
// Set single input tensor on all processes.
GENERATE_ALL_TYPES(scalarType, setInput, opts, inputs[0]);
gloo::gather(opts);
// Unflatten into output tensors on root process.
if (context_->rank == root) {
for (const auto i : c10::irange(outputs[0].size())) {
outputs[0][i].copy_(flatOutputTensor[static_cast<int64_t>(i)]);
}
}
}
const std::vector<at::Tensor> getInputTensors() override {
return inputs;
}
const std::vector<at::Tensor> getOutputTensors() override {
return outputs.empty() ? std::vector<at::Tensor>{}
: std::vector<at::Tensor>{newLikeFlat(outputs[0])};
}
void run() override {
gather(outputs, inputs);
}
};
// Note: current CUDA implementation holds the assumptions:
// - inputs.size() is 1
// - outputs.size() is 1
// - the size of the nested output tensors is world size, i.e.,
// outputs[0].size, is world size
class AsyncGatherCUDAWork : public AsyncGatherWork {
public:
AsyncGatherCUDAWork(
const std::shared_ptr<gloo::Context>& context,
std::vector<std::vector<at::Tensor>>& outputs,
std::vector<at::Tensor>& inputs,
int root,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: AsyncGatherWork(context, outputs, inputs, root, tag, seq, timeout) {
initializeStreamsEvents(inputs, inputStreams, inputEvents);
initializeStreamsEvents(outputs, outputStreams, outputEvents);
// Kick off copy from CUDA tensors to pinned CPU tensors.
tmpInputs.reserve(inputs.size());
c10::OptionalStreamGuard guard;
for (const auto i : c10::irange(inputs.size())) {
guard.reset_stream(inputStreams[i]);
tmpInputs.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true));
}
tmpOutputs.resize(outputs.size());
for (const auto i : c10::irange(outputs.size())) {
tmpOutputs[i].reserve(outputs[i].size());
for (const auto j : c10::irange(outputs[i].size())) {
tmpOutputs[i].push_back(pinnedLike(outputs[i][j]));
}
}
}
void run() override {
// Synchronize with copy operations.
for (const auto i : c10::irange(inputs.size())) {
inputStreams[i].synchronize();
}
for (const auto i : c10::irange(outputs.size())) {
outputStreams[i].synchronize();
}
// Run gather on host side tensors.
gather(tmpOutputs, tmpInputs);
// Kick off copy back to the CUDA tensors.
c10::OptionalStreamGuard guard;
for (const auto i : c10::irange(outputs.size())) {
guard.reset_stream(outputStreams[i]);
for (const auto j : c10::irange(outputs[i].size())) {
outputs[i][j].copy_(tmpOutputs[i][j], /* non_blocking */ true);
}
outputEvents[i].record(outputStreams[i]);
}
}
void synchronize() override {
// Synchronize with the copy back to CUDA tensors.
for (const auto i : c10::irange(outputs.size())) {
c10::Device device = outputs[i][0].device();
outputEvents[i].block(
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
}
}
std::vector<at::Tensor> tmpInputs{};
std::vector<c10::Stream> inputStreams{};
std::vector<c10::Event> inputEvents{};
std::vector<std::vector<at::Tensor>> tmpOutputs{};
std::vector<c10::Stream> outputStreams{};
std::vector<c10::Event> outputEvents{};
};
} // namespace
c10::intrusive_ptr<Work> ProcessGroupGloo::gather(
std::vector<std::vector<at::Tensor>>& outputs,
std::vector<at::Tensor>& inputs,
const GatherOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupGloo::gather: " + msg);
};
assertRootRank(invalidArgument, opts.rootRank, size_);
assertSingleElementInput(invalidArgument, inputs);
assertDense(invalidArgument, inputs);
if (getRank() == opts.rootRank) {
if (outputs.size() != 1) {
std::stringstream ss;
ss << "requires a single-element output list containing a list with "
<< getSize() << " tensors.";
invalidArgument(ss.str());
} else if (outputs[0].size() != static_cast<size_t>(getSize())) {
std::stringstream ss;
ss << "Incorrect output list size " << outputs[0].size()
<< ". Output list size should be " << getSize()
<< ", same as size of the process group.";
invalidArgument(ss.str());
}
const auto& options = inputs[0].options();
const auto& sizes = inputs[0].sizes();
assertTypeAndSizesMatch(invalidArgument, outputs[0], options, sizes);
} else {
if (!outputs.empty()) {
invalidArgument("requires empty output on non-root");
}
}
const auto& device = inputs[0].device();
switch (device.type()) {
case at::kCPU:
break;
case at::kCUDA:
// If the user gave us a CUDA tensor then CUDA must be loaded.
TORCH_INTERNAL_ASSERT(at::hasCUDA());
break;
default:
invalidArgument(c10::str("unsupported device type ", device.type()));
}
c10::intrusive_ptr<AsyncGatherWork> work;
auto tag = nextTag();
auto context = getContext(tag);
++seq_;
if (device.type() == at::kCPU) {
work = c10::make_intrusive<AsyncGatherWork>(
std::move(context),
outputs,
inputs,
opts.rootRank,
tag,
seq_,
opts.timeout);
} else if (device.type() == at::kCUDA) {
work = c10::make_intrusive<AsyncGatherCUDAWork>(
std::move(context),
outputs,
inputs,
opts.rootRank,
tag,
seq_,
opts.timeout);
} else {
TORCH_CHECK(false, "Invalid backend");
}
enqueue(work);
return work;
}
namespace {
class AsyncScatterWork : public ProcessGroupGloo::AsyncWork {
public:
AsyncScatterWork(
std::shared_ptr<gloo::Context> context,
std::vector<at::Tensor>& outputs,
std::vector<std::vector<at::Tensor>>& inputs,
int root,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: ProcessGroupGloo::AsyncWork(
std::move(context),
{outputs},
OpType::SCATTER,
seq,
timeout,
"gloo:scatter",
!inputs.empty() ? std::optional<std::vector<at::Tensor>>(inputs[0])
: std::nullopt),
outputs(outputs),
inputs(inputs),
root(root),
tag(tag) {}
std::vector<at::Tensor> outputs{};
std::vector<std::vector<at::Tensor>> inputs{};
const int root;
const uint32_t tag;
void scatter(
std::vector<at::Tensor>& outputs,
std::vector<std::vector<at::Tensor>>& inputs) {
const auto scalarType = outputs[0].scalar_type();
gloo::ScatterOptions opts(context_);
opts.setRoot(root);
opts.setTag(tag);
opts.setTimeout(timeout_);
// Set list of input tensors on root process
if (context_->rank == root) {
GENERATE_ALL_TYPES(scalarType, setInputs, opts, inputs[0]);
}
// Set single output tensor on all processes
GENERATE_ALL_TYPES(scalarType, setOutput, opts, outputs[0]);
gloo::scatter(opts);
}
const std::vector<at::Tensor> getInputTensors() override {
return inputs.empty() ? std::vector<at::Tensor>{}
: std::vector<at::Tensor>{newLikeFlat(inputs[0])};
}
const std::vector<at::Tensor> getOutputTensors() override {
return outputs;
}
void run() override {
scatter(outputs, inputs);
}
};
class AsyncScatterCUDAWork : public AsyncScatterWork {
public:
AsyncScatterCUDAWork(
const std::shared_ptr<gloo::Context>& context,
std::vector<at::Tensor>& outputs,
std::vector<std::vector<at::Tensor>>& inputs,
int root,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: AsyncScatterWork(context, outputs, inputs, root, tag, seq, timeout) {
initializeStreamsEvents(inputs, inputStreams, inputEvents);
initializeStreamsEvents(outputs, outputStreams, outputEvents);
// Kick off copy from CUDA tensors to pinned CPU tensors.
tmpInputs.resize(inputs.size());
c10::OptionalStreamGuard guard;
for (const auto i : c10::irange(inputs.size())) {
guard.reset_stream(inputStreams[i]);
tmpInputs[i].reserve(inputs[i].size());
for (const auto j : c10::irange(inputs[i].size())) {
tmpInputs[i].push_back(
pinnedLike(inputs[i][j]).copy_(inputs[i][j], true));
}
}
tmpOutputs.reserve(outputs.size());
for (auto& output : outputs) {
tmpOutputs.push_back(pinnedLike(output));
}
}
void run() override {
// Synchronize with copy operations.
for (const auto i : c10::irange(inputs.size())) {
inputStreams[i].synchronize();
}
for (const auto i : c10::irange(outputs.size())) {
outputStreams[i].synchronize();
}
// Run scatter on host side tensors.
scatter(tmpOutputs, tmpInputs);
// Kick off copy back to the CUDA tensors.
c10::OptionalStreamGuard guard;
for (const auto i : c10::irange(outputs.size())) {
guard.reset_stream(outputStreams[i]);
outputs[i].copy_(tmpOutputs[i], /* non_blocking */ true);
outputEvents[i].record(outputStreams[i]);
}
}
void synchronize() override {
// Synchronize with the copy back to CUDA tensors.
for (const auto i : c10::irange(outputs.size())) {
c10::Device device = outputs[i].device();
outputEvents[i].block(
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
}
}
std::vector<at::Tensor> tmpOutputs{};
std::vector<c10::Stream> outputStreams{};
std::vector<c10::Event> outputEvents{};
std::vector<std::vector<at::Tensor>> tmpInputs{};
std::vector<c10::Stream> inputStreams{};
std::vector<c10::Event> inputEvents{};
};
} // namespace
c10::intrusive_ptr<Work> ProcessGroupGloo::scatter(
std::vector<at::Tensor>& outputs,
std::vector<std::vector<at::Tensor>>& inputs,
const ScatterOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupGloo::scatter: " + msg);
};
assertRootRank(invalidArgument, opts.rootRank, size_);
assertSingleElementOutput(invalidArgument, outputs);
assertDense(invalidArgument, outputs);
if (getRank() == opts.rootRank) {
if (inputs.size() != 1) {
std::stringstream ss;
ss << "requires a single-element input list containing a list with "
<< getSize() << " tensors";
invalidArgument(ss.str());
} else if (inputs[0].size() != static_cast<size_t>(getSize())) {
std::stringstream ss;
ss << "Incorrect input list size " << inputs[0].size()
<< ". Input list size should be " << getSize()
<< ", same as size of the process group.";
invalidArgument(ss.str());
}
const auto& options = outputs[0].options();
const auto& sizes = outputs[0].sizes();
assertTypeAndSizesMatch(invalidArgument, inputs[0], options, sizes);
} else {
if (!inputs.empty()) {
invalidArgument("requires empty input on non-root");
}
}
const auto& device = outputs[0].device();
switch (device.type()) {
case at::kCPU:
break;
case at::kCUDA:
// If the user gave us a CUDA tensor then CUDA must be loaded.
TORCH_INTERNAL_ASSERT(at::hasCUDA());
break;
default:
invalidArgument(c10::str("unsupported device type ", device.type()));
}
c10::intrusive_ptr<AsyncScatterWork> work;
auto tag = nextTag();
auto context = getContext(tag);
++seq_;
if (device.type() == at::kCPU) {
work = c10::make_intrusive<AsyncScatterWork>(
std::move(context),
outputs,
inputs,
opts.rootRank,
tag,
seq_,
opts.timeout);
} else if (device.type() == at::kCUDA) {
work = c10::make_intrusive<AsyncScatterCUDAWork>(
std::move(context),
outputs,
inputs,
opts.rootRank,
tag,
seq_,
opts.timeout);
} else {
TORCH_CHECK(false, "Invalid backend");
}
enqueue(work);
return work;
}
c10::intrusive_ptr<Work> ProcessGroupGloo::reduce_scatter(
std::vector<at::Tensor>& outputs,
std::vector<std::vector<at::Tensor>>& inputs,
const ReduceScatterOptions& opts) {
const auto rank = getRank();
const auto worldSize = getSize();
TORCH_CHECK(outputs.size() == 1, "reduce_scatter only supports 1 output");
TORCH_CHECK(
outputs.size() == inputs.size(),
"requires input/output tensor lists to have the same length");
TORCH_CHECK(
static_cast<int>(inputs[0].size()) == worldSize,
"invalid input tensor list size, must be world size");
std::vector<at::Tensor> buffers;
for (const auto i : c10::irange(worldSize)) {
if (i == rank) {
TORCH_CHECK_EQ(outputs[0].dtype(), inputs[0][i].dtype());
TORCH_CHECK_EQ(outputs[0].sizes().vec(), inputs[0][i].sizes().vec());
// for our own input, we can just use the output tensor instead of
// allocating a new tensor
outputs[0].copy_(inputs[0][i]);
buffers.push_back(outputs[0]);
} else {
buffers.push_back(inputs[0][i].clone());
}
}
std::vector<c10::intrusive_ptr<Work>> works;
for (const auto i : c10::irange(buffers.size())) {
std::vector<at::Tensor> inp = {buffers[i]};
AllreduceOptions arOpts;
arOpts.reduceOp = opts.reduceOp;
arOpts.timeout = opts.timeout;
works.push_back(allreduce(inp, arOpts));
}
return c10::make_intrusive<LambdaWork>(
[worldSize, works = std::move(works)]() {
for (const auto i : c10::irange(worldSize)) {
works[i]->wait();
}
});
}
namespace {
class AsyncAlltoallWork : public ProcessGroupGloo::AsyncWork {
public:
AsyncAlltoallWork(
std::shared_ptr<gloo::Context> context,
at::Tensor& outputTensor,
at::Tensor& inputTensor,
std::vector<int64_t>& outputCounts,
std::vector<int64_t>& inputCounts,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: ProcessGroupGloo::AsyncWork(
std::move(context),
{{outputTensor}},
OpType::ALLTOALL,
seq,
timeout,
"gloo:all_to_all",
std::optional<std::vector<at::Tensor>>({inputTensor})),
outputTensor(outputTensor),
inputTensor(inputTensor),
outputCounts(std::move(outputCounts)),
inputCounts(std::move(inputCounts)),
tag(tag) {}
at::Tensor outputTensor;
at::Tensor inputTensor;
std::vector<int64_t> outputCounts{};
std::vector<int64_t> inputCounts{};
const uint32_t tag;
void alltoall(at::Tensor& outputTensor, at::Tensor& inputTensor) {
const auto scalarType = outputTensor.scalar_type();
if (outputCounts.empty() && inputCounts.empty()) {
// Gloo alltoall
gloo::AlltoallOptions opts(context_);
opts.setTag(tag);
opts.setTimeout(timeout_);
GENERATE_ALL_TYPES(scalarType, setInput, opts, inputTensor);
GENERATE_ALL_TYPES(scalarType, setOutput, opts, outputTensor);
gloo::alltoall(opts);
} else {
// Gloo alltoallv
c10d::checkSplitSizes(inputCounts, inputTensor, context_->size);
c10d::checkSplitSizes(outputCounts, outputTensor, context_->size);
std::vector<int64_t> sendCounts(context_->size);
std::vector<int64_t> recvCounts(context_->size);
std::vector<int64_t> sendOffsets(context_->size);
std::vector<int64_t> recvOffsets(context_->size);
c10d::computeLengthsAndOffsets(
inputCounts, inputTensor, &sendCounts, &sendOffsets);
c10d::computeLengthsAndOffsets(
outputCounts, outputTensor, &recvCounts, &recvOffsets);
gloo::AlltoallvOptions opts(context_);
opts.setTag(tag);
opts.setTimeout(timeout_);
GENERATE_ALL_TYPES(scalarType, setInput, opts, inputTensor, sendCounts);
GENERATE_ALL_TYPES(scalarType, setOutput, opts, outputTensor, recvCounts);
gloo::alltoallv(opts);
}
}
const std::vector<at::Tensor> getInputTensors() override {
return {inputTensor};
}
const std::vector<at::Tensor> getOutputTensors() override {
return {outputTensor};
}
void run() override {
alltoall(outputTensor, inputTensor);
}
};
class AsyncAlltoallCUDAWork : public AsyncAlltoallWork {
public:
AsyncAlltoallCUDAWork(
const std::shared_ptr<gloo::Context>& context,
at::Tensor& outputTensor,
at::Tensor& inputTensor,
std::vector<int64_t>& outputCounts,
std::vector<int64_t>& inputCounts,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: AsyncAlltoallWork(
context,
outputTensor,
inputTensor,
outputCounts,
inputCounts,
tag,
seq,
timeout) {
initializeStreamsEvents({inputTensor}, inputStreams, inputEvents);
initializeStreamsEvents({outputTensor}, outputStreams, outputEvents);
// Kick off copy from CUDA tensors to pinned CPU tensors.
c10::OptionalStreamGuard guard;
guard.reset_stream(inputStreams.front());
cpuInput = pinnedLike(inputTensor).copy_(inputTensor, true);
guard.reset_stream(outputStreams.front());
cpuOutput = pinnedLike(outputTensor);
}
void run() override {
// Synchronize with copy operations.
inputStreams.front().synchronize();
outputStreams.front().synchronize();
// Run alltoall on host side tensors.
alltoall(cpuOutput, cpuInput);
// Kick off copy back to the CUDA tensors.
c10::OptionalStreamGuard guard;
guard.reset_stream(outputStreams.front());
outputTensor.copy_(cpuOutput, /* non_blocking */ true);
outputEvents.front().record(outputStreams.front());
}
void synchronize() override {
// Synchronize with the copy back to CUDA tensors.
c10::Device device = outputTensor.device();
outputEvents.front().block(
c10::impl::VirtualGuardImpl(device.type()).getStream(device));
}
at::Tensor cpuOutput;
std::vector<c10::Stream> outputStreams{};
std::vector<c10::Event> outputEvents{};
at::Tensor cpuInput;
std::vector<c10::Stream> inputStreams{};
std::vector<c10::Event> inputEvents{};
};
} // namespace
c10::intrusive_ptr<Work> ProcessGroupGloo::alltoall_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
std::vector<int64_t>& outputCounts,
std::vector<int64_t>& inputCounts,
const AllToAllOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupGloo::alltoall_base: " + msg);
};
TORCH_CHECK(
outputTensor.device() == inputTensor.device(),
"output tensor and input tensor must be on the same type of device");
assertDense(invalidArgument, {outputTensor});
assertDense(invalidArgument, {inputTensor});
if (!inputTensor.is_contiguous(inputTensor.suggest_memory_format())) {
C10_THROW_ERROR(ValueError, "Tensors must be contiguous");
}
const auto& device = outputTensor.device();
c10::intrusive_ptr<AsyncAlltoallWork> work;
auto tag = nextTag();
auto context = getContext(tag);
++seq_;
if (device.type() == at::kCPU) {
work = c10::make_intrusive<AsyncAlltoallWork>(
std::move(context),
outputTensor,
inputTensor,
outputCounts,
inputCounts,
tag,
seq_,
opts.timeout);
} else if (device.type() == at::kCUDA) {
work = c10::make_intrusive<AsyncAlltoallCUDAWork>(
std::move(context),
outputTensor,
inputTensor,
outputCounts,
inputCounts,
tag,
seq_,
opts.timeout);
} else {
invalidArgument(c10::str("unsupported device type ", device.type()));
}
enqueue(work);
return work;
}
static at::Tensor& checkSingleTensor(std::vector<at::Tensor>& tensors) {
if (tensors.size() != 1) {
TORCH_CHECK(false, "ProcessGroupGloo::send takes a single tensor");
}
auto& tensor = tensors[0];
if (!tensor.is_contiguous()) {
TORCH_CHECK(false, "input tensor has to be contiguous");
}
if (tensor.is_sparse()) {
TORCH_CHECK(false, "input tensor has to be dense");
}
return tensor;
}
static uint32_t checkTag(int32_t tag) {
TORCH_CHECK(tag >= 0, "Tag must be nonnegative");
return (uint32_t)tag;
}
c10::intrusive_ptr<Work> ProcessGroupGloo::send(
std::vector<at::Tensor>& tensors,
int dstRank,
int tag) {
auto& tensor = checkSingleTensor(tensors);
auto utag = checkTag(tag);
auto ptr = tensor.const_data_ptr();
auto size = tensor.numel() * tensor.element_size();
// Construct unbound buffer.
auto context = getContext(tag);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
auto buf = context->createUnboundBuffer(const_cast<void*>(ptr), size);
buf->send(dstRank, utag);
++seq_;
// The work captures the tensor to prevent it being deallocated and
// the unbound buffer to synchronize on completion of the send.
return c10::make_intrusive<SendWork>(tensor, std::move(buf), seq_);
}
c10::intrusive_ptr<Work> ProcessGroupGloo::recv(
std::vector<at::Tensor>& tensors,
int srcRank,
int tag) {
auto& tensor = checkSingleTensor(tensors);
auto utag = checkTag(tag);
auto ptr = tensor.mutable_data_ptr();
auto size = tensor.numel() * tensor.element_size();
// Construct unbound buffer.
auto context = getContext(tag);
auto buf = context->createUnboundBuffer(ptr, size);
buf->recv(srcRank, utag);
++seq_;
// The work captures the tensor to prevent it being deallocated and
// the unbound buffer to synchronize on completion of the recv.
return c10::make_intrusive<RecvWork>(
tensor, std::move(buf), OpType::RECV, seq_, "gloo:recv");
}
c10::intrusive_ptr<Work> ProcessGroupGloo::recvAnysource(
std::vector<at::Tensor>& tensors,
int tag) {
auto& tensor = checkSingleTensor(tensors);
auto utag = checkTag(tag);
auto ptr = tensor.mutable_data_ptr();
auto size = tensor.numel() * tensor.element_size();
// Construct unbound buffer.
auto context = getContext(tag);
auto buf = context->createUnboundBuffer(ptr, size);
// Build list of ranks that this operation can recv from. In these
// bindings we don't differentiate between ranks and can receive
// from any other process in the group.
std::vector<int> srcRanks;
srcRanks.resize(size_);
for (const auto i : c10::irange(size_)) {
srcRanks.push_back(i);
}
buf->recv(srcRanks, utag);
++seq_;
// The work captures the tensor to prevent it being deallocated and
// the unbound buffer to synchronize on completion of the recv.
return c10::make_intrusive<RecvWork>(
tensor,
std::move(buf),
OpType::RECVANYSOURCE,
seq_,
"gloo:recvAnySource");
}
namespace {
class AsyncBarrierWork : public ProcessGroupGloo::AsyncWork {
public:
AsyncBarrierWork(
std::shared_ptr<gloo::Context> context,
std::vector<c10::weak_intrusive_ptr<AsyncWork>> priorWork,
uint32_t tag,
uint64_t seq,
std::chrono::milliseconds timeout)
: ProcessGroupGloo::AsyncWork(
std::move(context),
{},
OpType::BARRIER,
seq,
timeout,
"gloo:barrier",
std::nullopt),
priorWork(std::move(priorWork)),
tag(tag) {}
std::vector<c10::weak_intrusive_ptr<AsyncWork>> priorWork{};
const uint32_t tag;
std::vector<at::Tensor> inputs{};
const std::vector<at::Tensor> getInputTensors() override {
return inputs;
}
const std::vector<at::Tensor> getOutputTensors() override {
return inputs;
}
void run() override {
// Wait on prior work to complete
for (auto& weakWork : priorWork) {
auto work = weakWork.lock();
if (work) {
work->wait();
}
}
gloo::BarrierOptions opts(context_);
opts.setTag(tag);
opts.setTimeout(timeout_);
gloo::barrier(opts);
}
};
} // namespace
c10::intrusive_ptr<Work> ProcessGroupGloo::barrier(const BarrierOptions& opts) {
std::vector<c10::weak_intrusive_ptr<AsyncWork>> priorWork;
// Snapshot all in progress and pending work as weak_ptr.
// When executing a barrier, we need to ensure that all prior work
// has completed before completing itself.
{
std::unique_lock<std::mutex> lock(workMutex_);
priorWork.insert(
priorWork.end(), workInProgress_.begin(), workInProgress_.end());
priorWork.insert(priorWork.end(), workQueue_.begin(), workQueue_.end());
}
auto tag = nextTag();
auto context = getContext(tag);
++seq_;
auto work = c10::make_intrusive<AsyncBarrierWork>(
std::move(context), std::move(priorWork), tag, seq_, opts.timeout);
enqueue(work);
return work;
}
void ProcessGroupGloo::monitoredBarrier(
const BarrierOptions& opts,
bool waitAllRanks) {
C10_LOG_API_USAGE_ONCE("torch.distributed.monitored_barrier");
// Use default timeout if no timeout was specified.
auto monitoredBarrierTimeout =
(opts.timeout == kUnsetTimeout) ? this->options_->timeout : opts.timeout;
auto rank = this->getRank();
auto t1 = nextTag();
auto t2 = nextTag();
std::vector<at::Tensor> commTensor = {at::tensor({rank})};
// only enforce timeout on rank 0. This is so that other ranks aren't timed
// out first, bringing down the job without reporting which rank timed out.
if (rank != 0) {
auto sendWork = send(commTensor, 0, static_cast<int>(t1));
auto recvWork = recv(commTensor, 0, static_cast<int>(t2));
try {
sendWork->wait();
recvWork->wait();
} catch (const std::exception& e) {
const std::string error = c10::str(
"Rank ",
rank,
" successfully reached monitoredBarrier, but received errors while waiting",
" for send/recv from rank 0. Please check rank 0 logs for faulty rank.");
logAndThrow(
error, c10::str(error, "\n Original exception: \n", e.what()));
}
return;
}
auto startTime = std::chrono::steady_clock::now();
auto worldSize = this->getSize();
// Mappings of rank to recvWork/sendWork respectively.
std::map<int, c10::intrusive_ptr<Work>> recvWorkMap;
std::map<int, c10::intrusive_ptr<Work>> sendWorkMap;
// Kick off recvWork and wait to unblock sendWork->wait() from non-zero ranks.
// Failed/hanging ranks will not ack this call, letting rank 0 know about the
// failure.
for (const auto dstRank : c10::irange(1, worldSize)) {
recvWorkMap.emplace(
dstRank, recv(commTensor, dstRank, static_cast<int>(t1)));
}
auto waitLoop = [&](const std::map<int, c10::intrusive_ptr<Work>>& works) {
std::vector<int> processedRanks;
for (auto& work : works) {
bool rankResponded = false;
try {
// Note: if waitAllRanks=false, we recompute the time remaining in
// barrier and use this recomputed time in wait(). However, if
// waitAllRanks=true, we use the original timeout, since if we use
// up the entire timeout waiting for response from rank n, then we
// won't have any timeout left to query ranks beginning with n + 1.
auto remainingTime =
getRemainingTime(startTime, monitoredBarrierTimeout, waitAllRanks);
if (!waitAllRanks) {
checkRemainingTime(
monitoredBarrierTimeout, remainingTime, processedRanks, rank);
}
work.second->wait(remainingTime);
rankResponded = true;
} catch (const std::exception& e) {
const std::string error = c10::str(
"[Rank 0]: Rank ",
work.first,
" failed to pass monitoredBarrier in ",
monitoredBarrierTimeout.count(),
" ms");
if (waitAllRanks) {
LOG(ERROR) << error;
} else {
logAndThrow(
error, c10::str(error, "\n Original exception: \n", e.what()));
}
}
if (rankResponded) {
processedRanks.push_back(work.first);
}
}
// If we are collecting all failed ranks, check if we need to throw if
// some ranks have not responded.
// Ensure all ranks from 1, ... WORLD_SIZE -1 have been successfully
// processed.
auto rankFailure =
(processedRanks.size() != static_cast<size_t>(size_ - 1));
if (waitAllRanks && rankFailure) {
std::vector<int> failedRanks;
for (const auto i : c10::irange(1, size_)) {
if (std::find(processedRanks.begin(), processedRanks.end(), i) ==
processedRanks.end()) {
failedRanks.push_back(i);
}
}
TORCH_INTERNAL_ASSERT(!failedRanks.empty());
const std::string ranksStr = c10::Join(", ", failedRanks);
const std::string error = c10::str(
"[Rank 0]: Ranks ",
ranksStr,
" failed to pass monitoredBarrier in ",
monitoredBarrierTimeout.count(),
" ms");
logAndThrow(error, error);
}
};
waitLoop(recvWorkMap);
// If we've reached here successfully, this means all ranks have acked in
// monitoredBarrier. Unblock all ranks now by responding to their recv(). This
// ensures that this is a true barrier in that all ranks exit it successfully
// or none of them do.
for (const auto dstRank : c10::irange(1, worldSize)) {
sendWorkMap.emplace(
dstRank, send(commTensor, dstRank, static_cast<int>(t2)));
}
waitLoop(sendWorkMap);
}
void ProcessGroupGloo::setSequenceNumberForGroup() {
} // Gloo just starts sequence numbers at 0.
uint64_t ProcessGroupGloo::getSequenceNumberForGroup() {
return seq_;
}
void ProcessGroupGloo::enableCollectivesTiming() {
// Nothing to do to enable timing
}
} // namespace c10d
#endif // USE_C10D_GLOO