mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
This is to implement group_split as proposed in [docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89](https://docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89) Pull Request resolved: https://github.com/pytorch/pytorch/pull/157716 Approved by: https://github.com/d4l3k
880 lines
27 KiB
C++
880 lines
27 KiB
C++
#include <chrono>
|
|
#include <iostream>
|
|
|
|
#include <torch/csrc/distributed/c10d/FileStore.hpp>
|
|
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
|
|
#include "CUDATest.hpp"
|
|
#include "TestUtils.hpp"
|
|
#include "c10d/Types.hpp"
|
|
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
#include <c10/cuda/CUDAStream.h>
|
|
#include <c10/util/irange.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <torch/csrc/autograd/profiler.h>
|
|
|
|
using namespace c10d::test;
|
|
|
|
using at::cuda::CUDAStream;
|
|
|
|
class NCCLTestBase {
|
|
public:
|
|
NCCLTestBase(
|
|
std::string path,
|
|
const std::chrono::milliseconds pgTimeout =
|
|
c10d::kProcessGroupNCCLDefaultTimeout)
|
|
: path_(std::move(path)), pgTimeout_(pgTimeout) {}
|
|
|
|
NCCLTestBase(NCCLTestBase&& other) noexcept = default;
|
|
|
|
::c10::intrusive_ptr<::c10d::ProcessGroupNCCL> getProcessGroup() {
|
|
return pg_;
|
|
}
|
|
|
|
::c10::intrusive_ptr<::c10d::Store>& getProcessGroupStore() {
|
|
return store_;
|
|
}
|
|
|
|
void initialize(
|
|
int rank,
|
|
size_t size,
|
|
std::optional<::c10::intrusive_ptr<::c10d::ProcessGroupNCCL>> split_from =
|
|
std::nullopt) {
|
|
store_ = c10::make_intrusive<::c10d::FileStore>(path_, size);
|
|
|
|
c10::intrusive_ptr<c10d::ProcessGroupNCCL::Options> opts =
|
|
c10::make_intrusive<c10d::ProcessGroupNCCL::Options>();
|
|
opts->timeout = pgTimeout_;
|
|
#ifdef NCCL_HAS_COMM_SPLIT
|
|
if (split_from) {
|
|
opts->split_from = *split_from;
|
|
opts->split_color = ++color_;
|
|
}
|
|
#endif
|
|
pg_ = c10::make_intrusive<::c10d::ProcessGroupNCCL>(
|
|
store_, rank, size, std::move(opts));
|
|
}
|
|
|
|
protected:
|
|
std::string path_;
|
|
::c10::intrusive_ptr<::c10d::ProcessGroupNCCL> pg_;
|
|
std::chrono::milliseconds pgTimeout_;
|
|
::c10::intrusive_ptr<::c10d::Store> store_;
|
|
int color_{1};
|
|
};
|
|
|
|
class NCCLTest : public NCCLTestBase {
|
|
public:
|
|
NCCLTest(
|
|
const std::string& path,
|
|
int rank,
|
|
int worldSize,
|
|
std::chrono::milliseconds pgTimeout =
|
|
c10d::kProcessGroupNCCLDefaultTimeout,
|
|
int inputDim = 3)
|
|
: NCCLTestBase(path, pgTimeout), rank_(rank), worldSize_(worldSize) {
|
|
// Each device has a single tensor to perf the NCCL op
|
|
::at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
|
|
tensors_.resize(numDevices_);
|
|
inputs_.resize(numDevices_);
|
|
outputs_.resize(numDevices_);
|
|
at::cuda::OptionalCUDAGuard deviceGuard;
|
|
assert(numDevices_ == 1);
|
|
for (const auto i : c10::irange(numDevices_)) {
|
|
deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
|
|
tensors_[i] = at::empty({inputDim, inputDim}, at::kCUDA);
|
|
inputs_[i].resize(static_cast<size_t>(worldSize_) * numDevices_);
|
|
outputs_[i].resize(static_cast<size_t>(worldSize_) * numDevices_);
|
|
for (auto j = 0; j < worldSize_ * numDevices_; ++j) {
|
|
inputs_[i][j] = at::empty({inputDim, inputDim}, at::kCUDA);
|
|
outputs_[i][j] = at::empty({inputDim, inputDim}, at::kCUDA);
|
|
}
|
|
}
|
|
|
|
// Allocate a stream per device.
|
|
//
|
|
// The "current stream" is set globally per device in THC, so we
|
|
// can't make two tensors on the same device use different streams
|
|
// and pass this along to the collective (since it uses the THC
|
|
// getters to retrieve the current stream).
|
|
//
|
|
// 1 device only, hence 1 stream only
|
|
deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
|
|
streams_.push_back(at::cuda::getStreamFromPool());
|
|
}
|
|
|
|
void wait(
|
|
c10::intrusive_ptr<c10d::Work>& work,
|
|
std::chrono::milliseconds timeout = kNoTimeout) {
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
work->wait(timeout);
|
|
}
|
|
|
|
std::vector<at::Tensor> getTensors() {
|
|
std::vector<at::Tensor> outputs(numDevices_);
|
|
|
|
// For the duration of this function, make THC use our streams
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
|
|
// Copy inputs to outputs
|
|
for (const auto i : c10::irange(numDevices_)) {
|
|
C10_CUDA_CHECK(cudaStreamSynchronize(streams_[i].stream()));
|
|
outputs[i] = tensors_[i].cpu();
|
|
}
|
|
|
|
return outputs;
|
|
}
|
|
|
|
std::vector<std::vector<at::Tensor>> getInputTensors() {
|
|
return getTensorLists(inputs_);
|
|
}
|
|
std::vector<std::vector<at::Tensor>> getOutputTensors() {
|
|
return getTensorLists(outputs_);
|
|
}
|
|
|
|
int numDevices() const {
|
|
return numDevices_;
|
|
}
|
|
|
|
private:
|
|
std::vector<std::vector<at::Tensor>> getTensorLists(
|
|
std::vector<std::vector<at::Tensor>>& tensor_lists) {
|
|
std::vector<std::vector<at::Tensor>> outputs(numDevices_);
|
|
for (auto& output : outputs) {
|
|
output = std::vector<at::Tensor>(
|
|
static_cast<size_t>(worldSize_ * numDevices_));
|
|
}
|
|
|
|
// For the duration of this function, make THC use our streams
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
|
|
// Copy inputs to outputs
|
|
for (const auto i : c10::irange(numDevices_)) {
|
|
C10_CUDA_CHECK(cudaStreamSynchronize(streams_[i].stream()));
|
|
for (auto j = 0; j < worldSize_ * numDevices_; ++j) {
|
|
outputs[i][j] = tensor_lists[i][j].cpu();
|
|
}
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
protected:
|
|
// Launches sleep on every CUDA device
|
|
void launchDeviceSleep() {
|
|
at::cuda::OptionalCUDAGuard deviceGuard;
|
|
for (const auto i : c10::irange(numDevices_)) {
|
|
deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
|
|
cudaSleep(streams_[i], 2000ull * 1000 * 1000);
|
|
}
|
|
}
|
|
|
|
// Launches value initialization for every tensor
|
|
void valueInitialization() {
|
|
at::cuda::OptionalCUDAGuard deviceGuard;
|
|
for (const auto i : c10::irange(numDevices_)) {
|
|
deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
|
|
tensors_[i].fill_(pg_->getRank() * numDevices_ + i);
|
|
}
|
|
}
|
|
|
|
at::Tensor to_sparse_row_indices_format(at::Tensor& tensor) {
|
|
// Get the indices of all non-zero elements in the dense tensor
|
|
// Get the unique row indices of the non-zero elements
|
|
auto row_indices = std::get<0>(
|
|
at::_unique(tensor.nonzero().select(/*dim=*/1, /*index=*/0)));
|
|
at::Tensor sparse_values = tensor.index_select(
|
|
/*dim=*/0, row_indices); // get the values at the non-zero indices
|
|
return at::sparse_coo_tensor(
|
|
row_indices.unsqueeze(0), sparse_values, tensor.sizes())
|
|
.to(tensor.device());
|
|
}
|
|
|
|
// Launches value initialization for every sparse tensor
|
|
void valueInitializationForSparse() {
|
|
at::cuda::OptionalCUDAGuard deviceGuard;
|
|
for (const auto i : c10::irange(numDevices_)) {
|
|
deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
|
|
tensors_[i].fill_(pg_->getRank() * numDevices_ + i + 1);
|
|
// Convert the dense tensor to a sparse tensor in COO row format
|
|
tensors_[i] = to_sparse_row_indices_format(tensors_[i]);
|
|
}
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
|
const int numDevices_{1}; // one device per rank (thread)
|
|
int rank_;
|
|
int worldSize_;
|
|
std::vector<at::Tensor> tensors_;
|
|
std::vector<std::vector<at::Tensor>> inputs_;
|
|
std::vector<std::vector<at::Tensor>> outputs_;
|
|
std::vector<CUDAStream> streams_;
|
|
};
|
|
|
|
class AllreduceNCCLTest : public NCCLTest {
|
|
public:
|
|
AllreduceNCCLTest(const std::string& path, int rank, int worldSize)
|
|
: NCCLTest(path, rank, worldSize) {}
|
|
|
|
c10::intrusive_ptr<c10d::Work> run() {
|
|
// For the duration of this function, make THC use our streams
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
|
|
launchDeviceSleep();
|
|
valueInitialization();
|
|
|
|
using namespace torch::autograd::profiler;
|
|
// Make sure enabling profile does not make any issue. Note, in single
|
|
// process multi-device mode we do not expect any events be populated for
|
|
// collective operations, since profiling for that mode is not supported.
|
|
enableProfilerLegacy(ProfilerConfig(ProfilerState::CPU));
|
|
auto results = pg_->allreduce(tensors_);
|
|
disableProfilerLegacy();
|
|
return results;
|
|
}
|
|
};
|
|
|
|
class SparseAllreduceNCCLTest : public NCCLTest {
|
|
public:
|
|
SparseAllreduceNCCLTest(
|
|
const std::string& path,
|
|
int rank,
|
|
int worldSize,
|
|
int inputDim)
|
|
: NCCLTest(
|
|
path,
|
|
rank,
|
|
worldSize,
|
|
c10d::kProcessGroupNCCLDefaultTimeout,
|
|
inputDim) {}
|
|
|
|
c10::intrusive_ptr<c10d::Work> run() {
|
|
// For the duration of this function, make THC use our streams
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
launchDeviceSleep();
|
|
valueInitializationForSparse();
|
|
auto results = pg_->allreduce_sparse(tensors_);
|
|
return results;
|
|
}
|
|
};
|
|
|
|
class BroadcastNCCLTest : public NCCLTest {
|
|
public:
|
|
BroadcastNCCLTest(const std::string& path, int rank, int worldSize)
|
|
: NCCLTest(path, rank, worldSize) {}
|
|
|
|
c10::intrusive_ptr<c10d::Work> run(int rootRank, int rootTensor) {
|
|
// For the duration of this function, make THC use our streams
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
|
|
launchDeviceSleep();
|
|
valueInitialization();
|
|
|
|
::c10d::BroadcastOptions options;
|
|
options.rootRank = rootRank;
|
|
options.rootTensor = rootTensor;
|
|
return pg_->broadcast(tensors_, options);
|
|
}
|
|
};
|
|
|
|
class ReduceNCCLTest : public NCCLTest {
|
|
public:
|
|
ReduceNCCLTest(const std::string& path, int rank, int worldSize)
|
|
: NCCLTest(path, rank, worldSize) {}
|
|
|
|
c10::intrusive_ptr<c10d::Work> run(int rootRank, int rootTensor) {
|
|
// For the duration of this function, make THC use our streams
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
|
|
launchDeviceSleep();
|
|
valueInitialization();
|
|
|
|
::c10d::ReduceOptions options;
|
|
options.rootRank = rootRank;
|
|
options.rootTensor = rootTensor;
|
|
return pg_->reduce(tensors_, options);
|
|
}
|
|
};
|
|
|
|
class AllgatherNCCLTest : public NCCLTest {
|
|
public:
|
|
AllgatherNCCLTest(const std::string& path, int rank, int worldSize)
|
|
: NCCLTest(path, rank, worldSize) {}
|
|
|
|
c10::intrusive_ptr<c10d::Work> run() {
|
|
// For the duration of this function, make THC use our streams
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
|
|
launchDeviceSleep();
|
|
valueInitialization();
|
|
|
|
return pg_->allgather(outputs_, tensors_);
|
|
}
|
|
};
|
|
|
|
class AllgatherBaseNCCLTest : public NCCLTest {
|
|
public:
|
|
AllgatherBaseNCCLTest(const std::string& path, int rank, int worldSize)
|
|
: NCCLTest(path, rank, worldSize) {
|
|
output_tensor_ = at::empty({worldSize_, 3, 3}, at::kCUDA);
|
|
}
|
|
|
|
c10::intrusive_ptr<c10d::Work> run() {
|
|
// For the duration of this function, make THC use our streams
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
|
|
launchDeviceSleep();
|
|
valueInitialization();
|
|
// contains at least one element otherwise wouldn't run.
|
|
// this is a flattened allgather, hence one rank contributes
|
|
// only 1 tensor, regardless of number of devices
|
|
return pg_->_allgather_base(output_tensor_, tensors_[0]);
|
|
}
|
|
|
|
at::Tensor getOutputTensor() {
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
return output_tensor_.cpu();
|
|
}
|
|
|
|
at::Tensor getInputTensor() {
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
return tensors_[0].cpu();
|
|
}
|
|
|
|
private:
|
|
at::Tensor output_tensor_;
|
|
};
|
|
|
|
struct ReduceScatterNCCLTest : NCCLTest {
|
|
ReduceScatterNCCLTest(const std::string& path, int rank, int worldSize)
|
|
: NCCLTest(path, rank, worldSize) {}
|
|
|
|
c10::intrusive_ptr<c10d::Work> run() {
|
|
// For the duration of this function, make THC use our streams
|
|
c10::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
|
|
at::cuda::OptionalCUDAGuard deviceGuard;
|
|
launchDeviceSleep();
|
|
|
|
// Launch value initialization for every tensor
|
|
for (auto j = 0; j < worldSize_; ++j) {
|
|
inputs_[0][j].fill_(rank_ * worldSize_ + j);
|
|
}
|
|
|
|
return pg_->reduce_scatter(tensors_, inputs_);
|
|
}
|
|
};
|
|
|
|
class ReduceScatterBaseNCCLTest : public NCCLTest {
|
|
public:
|
|
ReduceScatterBaseNCCLTest(const std::string& path, int rank, int worldSize)
|
|
: NCCLTest(path, rank, worldSize) {
|
|
at::cuda::OptionalCUDAGuard deviceGuard;
|
|
deviceGuard.set_index(static_cast<c10::DeviceIndex>(rank_));
|
|
output_tensor_ = at::empty({1}, at::kCUDA);
|
|
input_tensor_ = at::empty({worldSize}, at::kCUDA);
|
|
for (const auto i : c10::irange(worldSize)) {
|
|
input_tensor_[i] = i;
|
|
}
|
|
}
|
|
|
|
c10::intrusive_ptr<c10d::Work> run() {
|
|
// For the duration of this function, make THC use our streams
|
|
at::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
|
|
launchDeviceSleep();
|
|
return pg_->_reduce_scatter_base(output_tensor_, input_tensor_);
|
|
}
|
|
|
|
at::Tensor getOutputTensor() {
|
|
at::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
return output_tensor_.cpu();
|
|
}
|
|
|
|
at::Tensor getInputTensor() {
|
|
at::cuda::CUDAMultiStreamGuard guard(streams_);
|
|
return input_tensor_.cpu();
|
|
}
|
|
|
|
private:
|
|
at::Tensor output_tensor_;
|
|
at::Tensor input_tensor_;
|
|
};
|
|
|
|
void testAllreduce(const std::string& path, int rank, int size) {
|
|
auto test = AllreduceNCCLTest(path, rank, size);
|
|
test.initialize(rank, size);
|
|
auto work = test.run();
|
|
// Wait for work to finish
|
|
test.wait(work);
|
|
|
|
// Validation
|
|
const int totalNumGPUs = test.numDevices() * size;
|
|
const auto expected = (totalNumGPUs * (totalNumGPUs - 1)) / 2;
|
|
const auto tensors = test.getTensors();
|
|
for (const auto& tensor : tensors) {
|
|
const auto* const data = tensor.const_data_ptr<float>();
|
|
for (const auto k : c10::irange(tensor.numel())) {
|
|
EXPECT_EQ(data[k], expected)
|
|
<< "Allreduce outputs do not match expected outputs";
|
|
}
|
|
}
|
|
}
|
|
|
|
void testSparseAllreduce(const std::string& path, int rank, int size) {
|
|
const int inputDim = 3;
|
|
auto test = SparseAllreduceNCCLTest(path, rank, size, inputDim);
|
|
test.initialize(rank, size);
|
|
auto work = test.run();
|
|
// Wait for work to finish
|
|
test.wait(work);
|
|
|
|
const auto input_tensors = test.getTensors();
|
|
|
|
// validate the work output is same as tensor
|
|
auto output_tensor = work->result();
|
|
// Validation
|
|
int totalNumGPUs = test.numDevices() * size;
|
|
// Add one since we are seeding with an additional 1 to prevent empty tensors
|
|
totalNumGPUs++;
|
|
const auto expected = (totalNumGPUs * (totalNumGPUs - 1)) / 2;
|
|
for (const auto i : c10::irange(input_tensors.size())) {
|
|
const auto& tensor = input_tensors[i];
|
|
|
|
// validate the tensor is sparse
|
|
EXPECT_EQ(tensor.is_sparse(), true);
|
|
|
|
auto indices = tensor._indices();
|
|
auto values = tensor._values();
|
|
|
|
// validate indices are expected size
|
|
auto sizes = indices.sizes();
|
|
EXPECT_EQ(sizes.size(), 2);
|
|
if (sizes[0] == 1) {
|
|
// row indices
|
|
EXPECT_EQ(sizes[1], inputDim);
|
|
} else if (sizes[0] == 2) {
|
|
// coordinate indices
|
|
EXPECT_EQ(sizes[1], inputDim * inputDim);
|
|
}
|
|
|
|
// validate all tensor values are expected value
|
|
const auto* const data = values.const_data_ptr<float>();
|
|
for (const auto k : c10::irange(values.numel())) {
|
|
EXPECT_EQ(data[k], expected)
|
|
<< "Allreduce outputs do not match expected outputs";
|
|
}
|
|
|
|
// expect the input and output tensors should be the same
|
|
auto input_dense = tensor.to_dense();
|
|
auto output_dense = output_tensor[i].to(input_dense.device()).to_dense();
|
|
EXPECT_TRUE(input_dense.allclose(output_dense));
|
|
}
|
|
}
|
|
|
|
void testSparseAllreduceLarge(const std::string& path, int rank, int size) {
|
|
const int inputDim = 2500;
|
|
auto test = SparseAllreduceNCCLTest(path, rank, size, inputDim);
|
|
test.initialize(rank, size);
|
|
auto work = test.run();
|
|
// Wait for work to finish
|
|
test.wait(work);
|
|
|
|
const auto input_tensors = test.getTensors();
|
|
|
|
// validate the work output is same as tensor
|
|
auto output_tensor = work->result();
|
|
// Validation
|
|
int totalNumGPUs = test.numDevices() * size;
|
|
// Add one since we are seeding with an additional 1 to prevent empty tensors
|
|
totalNumGPUs++;
|
|
const auto expected = (totalNumGPUs * (totalNumGPUs - 1)) / 2;
|
|
for (const auto i : c10::irange(input_tensors.size())) {
|
|
const auto& tensor = input_tensors[i];
|
|
|
|
// validate the tensor is sparse
|
|
EXPECT_EQ(tensor.is_sparse(), true);
|
|
|
|
auto indices = tensor._indices();
|
|
auto values = tensor._values();
|
|
|
|
// validate indices are expected size
|
|
auto sizes = indices.sizes();
|
|
EXPECT_EQ(sizes.size(), 2);
|
|
if (sizes[0] == 1) {
|
|
// row indices
|
|
EXPECT_EQ(sizes[1], inputDim);
|
|
} else if (sizes[0] == 2) {
|
|
// coordinate indices
|
|
EXPECT_EQ(sizes[1], inputDim * inputDim);
|
|
}
|
|
|
|
// validate all tensor values are expected value
|
|
const auto* const data = values.const_data_ptr<float>();
|
|
for (const auto k : c10::irange(values.numel())) {
|
|
EXPECT_EQ(data[k], expected)
|
|
<< "Allreduce outputs do not match expected outputs";
|
|
}
|
|
|
|
// expect the input and output tensors should be the same
|
|
auto input_dense = tensor.to_dense();
|
|
auto output_dense = output_tensor[i].to(input_dense.device()).to_dense();
|
|
EXPECT_TRUE(input_dense.allclose(output_dense));
|
|
}
|
|
}
|
|
|
|
void testBroadcast(const std::string& path, int rank, int size) {
|
|
auto test = BroadcastNCCLTest(path, rank, size);
|
|
test.initialize(rank, size);
|
|
|
|
const int numDevices = test.numDevices();
|
|
// try every permutation of root rank and root tensor
|
|
for (const auto rootRank : c10::irange(size)) {
|
|
for (const auto rootTensor : c10::irange(numDevices)) {
|
|
auto work = test.run(rootRank, rootTensor);
|
|
|
|
// wait for work to complete
|
|
test.wait(work);
|
|
|
|
// Check results
|
|
const auto expected = (rootRank * numDevices + rootTensor);
|
|
const auto tensors = test.getTensors();
|
|
for (const auto& tensor : tensors) {
|
|
const auto* const data = tensor.const_data_ptr<float>();
|
|
for (const auto k : c10::irange(tensor.numel())) {
|
|
EXPECT_EQ(data[k], expected)
|
|
<< "Broadcast outputs do not match expected outputs";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void testReduce(const std::string& path, int rank, int size) {
|
|
auto test = ReduceNCCLTest(path, rank, size);
|
|
test.initialize(rank, size);
|
|
|
|
const int numDevices = test.numDevices();
|
|
// try every permutation of root rank and root tensor
|
|
for (const auto rootRank : c10::irange(size)) {
|
|
for (const auto rootTensor : c10::irange(numDevices)) {
|
|
auto work = test.run(rootRank, rootTensor);
|
|
|
|
// wait for work to complete
|
|
test.wait(work);
|
|
|
|
// Validation
|
|
const int totalNumGPUs = numDevices * size;
|
|
const auto expected = (totalNumGPUs * (totalNumGPUs - 1)) / 2;
|
|
auto tensors = test.getTensors();
|
|
if (rank == rootRank) {
|
|
auto& tensor = tensors[rootTensor];
|
|
auto data = tensor.data_ptr<float>();
|
|
for (const auto k : c10::irange(tensor.numel())) {
|
|
EXPECT_EQ(data[k], expected)
|
|
<< "Reduce outputs do not match expected outputs";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void testAllgather(const std::string& path, int rank, int size) {
|
|
auto test = AllgatherNCCLTest(path, rank, size);
|
|
test.initialize(rank, size);
|
|
auto work = test.run();
|
|
// Wait for work to finish
|
|
test.wait(work);
|
|
|
|
// Validation
|
|
auto tensors = test.getOutputTensors();
|
|
// device index
|
|
for (auto& device : tensors) {
|
|
// rank index
|
|
for (const auto j : c10::irange(device.size())) {
|
|
const auto expected = j;
|
|
auto& tensor = device[j];
|
|
auto data = tensor.data_ptr<float>();
|
|
for (const auto k : c10::irange(tensor.numel())) {
|
|
EXPECT_EQ(data[k], expected)
|
|
<< "Allgather outputs do not match expected outputs";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void testAllgatherBase(const std::string& path, int rank, int size) {
|
|
auto test = AllgatherBaseNCCLTest(path, rank, size);
|
|
test.initialize(rank, size);
|
|
auto work = test.run();
|
|
// Wait for work to finish
|
|
test.wait(work);
|
|
// Validation
|
|
auto output_tensor = test.getOutputTensor();
|
|
auto input_tensor = test.getInputTensor();
|
|
|
|
auto data = output_tensor.data_ptr<float>();
|
|
|
|
// Rank index
|
|
for (const auto i : c10::irange(output_tensor.numel())) {
|
|
// expected is i // input.numel() <- rank, and each rank contributed rank *
|
|
// num_gpu
|
|
const auto expected = (i / input_tensor.numel()) * test.numDevices();
|
|
EXPECT_EQ(data[i], expected)
|
|
<< "Allgather_base outputs do not match expected outputs";
|
|
}
|
|
}
|
|
void testReduceScatterBase(const std::string& path, int rank, int size) {
|
|
auto test = ReduceScatterBaseNCCLTest(path, rank, size);
|
|
test.initialize(rank, size);
|
|
auto work = test.run();
|
|
// Wait for work to finish
|
|
test.wait(work);
|
|
// Validation
|
|
auto output_tensor = test.getOutputTensor();
|
|
auto input_tensor = test.getInputTensor();
|
|
|
|
auto data = output_tensor.data_ptr<float>();
|
|
|
|
// Rank index
|
|
for (const auto i : c10::irange(output_tensor.numel())) {
|
|
// expected is i * input.numel() <- rank, and each rank contributed rank *
|
|
// num_gpu
|
|
const auto expected = size * rank * test.numDevices();
|
|
EXPECT_EQ(data[i], expected)
|
|
<< "Reducescatter_base outputs do not match expected outputs";
|
|
}
|
|
}
|
|
|
|
void testReduceScatter(const std::string& path, int rank, int size) {
|
|
auto test = ReduceScatterNCCLTest(path, rank, size);
|
|
test.initialize(rank, size);
|
|
auto work = test.run();
|
|
// Wait for work to finish
|
|
test.wait(work);
|
|
|
|
const auto participants = size;
|
|
const auto base = (participants * (participants - 1)) / 2;
|
|
|
|
// Validation
|
|
auto tensors = test.getTensors();
|
|
const auto modifier = rank * participants;
|
|
const auto expected = base * participants + modifier;
|
|
auto& tensor = tensors[0];
|
|
auto data = tensor.data_ptr<float>();
|
|
for (const auto j : c10::irange(tensor.numel())) {
|
|
EXPECT_EQ(data[j], expected)
|
|
<< "ReduceScatter outputs do not match expected outputs!";
|
|
}
|
|
}
|
|
|
|
void testSequenceNumInit(const std::string& path, int rank, int size) {
|
|
NCCLTest test(path, rank, size);
|
|
test.initialize(rank, size);
|
|
test.getProcessGroup()->setSequenceNumberForGroup();
|
|
auto seqNum = test.getProcessGroup()->getSequenceNumberForGroup();
|
|
EXPECT_EQ(seqNum, 0);
|
|
}
|
|
|
|
void testSplittingCommunicator(const std::string& path, int rank, int size) {
|
|
auto test1 = BroadcastNCCLTest(path, rank, size);
|
|
test1.initialize(rank, size);
|
|
|
|
auto test2 = BroadcastNCCLTest(path, rank, size);
|
|
test2.initialize(rank, size, test1.getProcessGroup());
|
|
|
|
// Steal the broadcast test and issue it for both of our groups.
|
|
// This ensures consistent full collective communication. TODO:
|
|
// maybe refactor the guts rather than copy-pasta, but it may not be
|
|
// worth it.
|
|
for (auto test : {&test1, &test2}) {
|
|
const int numDevices = test->numDevices();
|
|
// try every permutation of root rank and root tensor
|
|
for (const auto rootRank : c10::irange(size)) {
|
|
for (const auto rootTensor : c10::irange(numDevices)) {
|
|
auto work = test->run(rootRank, rootTensor);
|
|
test->wait(work);
|
|
|
|
// Check results
|
|
const auto expected = (rootRank * numDevices + rootTensor);
|
|
const auto tensors = test->getTensors();
|
|
for (const auto& tensor : tensors) {
|
|
const auto* const data = tensor.const_data_ptr<float>();
|
|
for (const auto k : c10::irange(tensor.numel())) {
|
|
EXPECT_EQ(data[k], expected)
|
|
<< "Broadcast outputs do not match expected outputs";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that we've run full operations on both the original and split process
|
|
// group, ensure we saw exactly as many splits as we expected: 0 in the
|
|
// original process group, and one per device in the second.
|
|
EXPECT_EQ(test2.getProcessGroup()->getCommSplitCounter(), 0);
|
|
EXPECT_EQ(test1.getProcessGroup()->getCommSplitCounter(), test1.numDevices());
|
|
}
|
|
|
|
// All testAbc's use this signature
|
|
using FuncType = void (*)(const std::string&, int, int);
|
|
|
|
class ProcessGroupNCCLTest : public ::testing::Test {
|
|
protected:
|
|
void SetUp() override {
|
|
c10::initLogging();
|
|
// Use WORLD_SIZE and RANK environmental variables to do multi-node
|
|
// distributed testing
|
|
auto sizeEnv = std::getenv("WORLD_SIZE");
|
|
if (sizeEnv) {
|
|
size_ = std::stoi(std::string(sizeEnv));
|
|
}
|
|
LOG(INFO) << "ProcessGroupNCCLTest world size: " << size_;
|
|
}
|
|
|
|
void TearDown() override {
|
|
// Reset TORCH_NCCL_BLOCKING_WAIT environment variable after each run.
|
|
ASSERT_TRUE(setenv(c10d::TORCH_NCCL_BLOCKING_WAIT[0].c_str(), "0", 1) == 0);
|
|
}
|
|
|
|
bool skipTest() {
|
|
// Skip tests if CUDA is not available.
|
|
if (!at::cuda::is_available()) {
|
|
LOG(INFO) << "CUDA not available, skipping test";
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void multiThreadRun(FuncType testFunc) {
|
|
TemporaryFile file;
|
|
std::vector<std::thread> threads;
|
|
threads.reserve(size_);
|
|
for (const auto rank : c10::irange(size_)) {
|
|
threads.emplace_back(testFunc, file.path, rank, size_);
|
|
}
|
|
for (const auto rank : c10::irange(size_)) {
|
|
threads[rank].join();
|
|
}
|
|
}
|
|
|
|
int size_{1};
|
|
};
|
|
|
|
TEST_F(ProcessGroupNCCLTest, CUDAEventCache) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
|
|
// Test that the CUDAEventCache can be used to create CUDA events and reuse.
|
|
auto event1 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1)->create(true);
|
|
auto event2 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1)->create(false);
|
|
|
|
auto event1_ptr = event1.get();
|
|
auto event2_ptr = event2.get();
|
|
// Mimic the behavior of the destroy of events.
|
|
event1 = nullptr;
|
|
event2 = nullptr;
|
|
|
|
// Test that the CUDAEventCache is indeed reused.
|
|
auto event3 = c10d::ProcessGroupNCCL::CUDAEventCache::get(2)->create(true);
|
|
auto event4 = c10d::ProcessGroupNCCL::CUDAEventCache::get(2)->create(false);
|
|
// The cache has been used up, new events should be created.
|
|
auto event5 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1)->create(true);
|
|
auto event6 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1)->create(false);
|
|
// The cache has been used up, new events should be created.
|
|
auto event7 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1)->create(true);
|
|
auto event8 = c10d::ProcessGroupNCCL::CUDAEventCache::get(1)->create(false);
|
|
EXPECT_NE(event1_ptr, event3.get());
|
|
EXPECT_NE(event2_ptr, event4.get());
|
|
EXPECT_EQ(event1_ptr, event5.get());
|
|
EXPECT_EQ(event2_ptr, event6.get());
|
|
EXPECT_NE(event1_ptr, event7.get());
|
|
EXPECT_NE(event2_ptr, event8.get());
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testAllreduce) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testAllreduce);
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testBroadcast) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testBroadcast);
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testReduce) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testReduce);
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testAllgather) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testAllgather);
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testAllgatherBase) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testAllgatherBase);
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testReduceScatter) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testReduceScatter);
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testSequenceNumInit) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testSequenceNumInit);
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testReduceScatterBase) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testReduceScatterBase);
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testBackendName) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
TemporaryFile file;
|
|
auto test = NCCLTestBase(file.path);
|
|
test.initialize(/*rank=*/0, /*size=*/1);
|
|
EXPECT_EQ(
|
|
test.getProcessGroup()->getBackendName(),
|
|
std::string(c10d::NCCL_BACKEND_NAME));
|
|
}
|
|
|
|
TEST_F(ProcessGroupNCCLTest, testSplittingCommunicator) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testSplittingCommunicator);
|
|
}
|
|
|
|
#ifdef IS_NCCLX
|
|
TEST_F(ProcessGroupNCCLTest, testSparseAllreduce) {
|
|
if (skipTest()) {
|
|
return;
|
|
}
|
|
multiThreadRun(testSparseAllreduce);
|
|
multiThreadRun(testSparseAllreduceLarge);
|
|
}
|
|
#endif
|