Files
pytorch/torch/quasirandom.py
vishwakftw 5e462a3ed6 Introduce SobolEngine (#10505)
Summary:
`SobolEngine` is a quasi-random sampler used to sample points evenly between [0,1]. Here we use direction numbers to generate these samples. The maximum supported dimension for the sampler is 1111.

Documentation has been added, tests have been added based on Balandat 's references. The implementation is an optimized / tensor-ized implementation of Balandat 's implementation in Cython as provided in #9332.

This closes #9332 .

cc: soumith Balandat
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10505

Reviewed By: zou3519

Differential Revision: D9330179

Pulled By: ezyang

fbshipit-source-id: 01d5588e765b33b06febe99348f14d1e7fe8e55d
2019-03-26 07:53:07 -07:00

123 lines
4.8 KiB
Python

import torch
class SobolEngine(object):
r"""
The :class:`torch.quasirandom.SobolEngine` is an engine for generating
(scrambled) Sobol sequences. Sobol sequences are an example of low
discrepancy quasi-random sequences.
This implementation of an engine for Sobol sequences is capable of
sampling sequences up to a maximum dimension of 1111. It uses direction
numbers to generate these sequences, and these numbers have been adapted
from `here <http://web.maths.unsw.edu.au/~fkuo/sobol/joe-kuo-old.1111>`_.
References:
- Art B. Owen. Scrambling Sobol and Niederreiter-Xing points.
Journal of Complexity, 14(4):466-489, December 1998.
- I. M. Sobol. The distribution of points in a cube and the accurate
evaluation of integrals.
Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967.
Args:
dimension (Int): The dimensionality of the sequence to be drawn
scramble (bool, optional): Setting this to ``True`` will produce
scrambled Sobol sequences. Scrambling is
capable of producing better Sobol
sequences. Default: ``False``.
seed (Int, optional): This is the seed for the scrambling. The seed
of the random number generator is set to this,
if specified. Default: ``None``
Examples::
>>> soboleng = torch.quasirandom.SobolEngine(dimension=5)
>>> soboleng.draw(3)
tensor([[0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.7500, 0.2500, 0.7500, 0.2500, 0.7500],
[0.2500, 0.7500, 0.2500, 0.7500, 0.2500]])
"""
MAXBIT = 30
MAXDIM = 1111
def __init__(self, dimension, scramble=False, seed=None):
if dimension > self.MAXDIM or dimension < 1:
raise ValueError("Supported range of dimensionality "
"for SobolEngine is [1, {}]".format(self.MAXDIM))
self.seed = seed
self.scramble = scramble
self.dimension = dimension
self.sobolstate = torch.zeros(dimension, self.MAXBIT, dtype=torch.long)
torch._sobol_engine_initialize_state_(self.sobolstate, self.dimension)
if self.scramble:
g = torch.Generator()
if self.seed is not None:
g.manual_seed(self.seed)
self.shift = torch.mv(torch.randint(2, (self.dimension, self.MAXBIT), generator=g),
torch.pow(2, torch.arange(0, self.MAXBIT)))
ltm = torch.randint(2, (self.dimension, self.MAXBIT, self.MAXBIT), generator=g).tril()
torch._sobol_engine_scramble_(self.sobolstate, ltm, self.dimension)
else:
self.shift = torch.zeros(self.dimension, dtype=torch.long)
self.quasi = self.shift.clone()
self.num_generated = 0
def draw(self, n=1, out=None, dtype=torch.float32):
r"""
Function to draw a sequence of :attr:`n` points from a Sobol sequence.
Note that the samples are dependent on the previous samples. The size
of the result is :math:`(n, dimension)`.
Args:
n (Int, optional): The length of sequence of points to draw.
Default: 1
out (Tensor, optional): The output tensor
dtype (:class:`torch.dtype`, optional): the desired data type of the
returned tensor.
Default: ``torch.float32``
"""
result, self.quasi = torch._sobol_engine_draw(self.quasi, n, self.sobolstate,
self.dimension, self.num_generated, dtype=dtype)
self.num_generated += n
if out is not None:
out.resize_as_(result).copy_(result)
return out
return result
def reset(self):
r"""
Function to reset the ``SobolEngine`` to base state.
"""
self.quasi.copy_(self.shift)
self.num_generated = 0
return self
def fast_forward(self, n):
r"""
Function to fast-forward the state of the ``SobolEngine`` by
:attr:`n` steps. This is equivalent to drawing :attr:`n` samples
without using the samples.
Args:
n (Int): The number of steps to fast-forward by.
"""
torch._sobol_engine_ff_(self.quasi, n, self.sobolstate, self.dimension, self.num_generated)
self.num_generated += n
return self
def __repr__(self):
fmt_string = ['dimension={}'.format(self.dimension)]
if self.scramble:
fmt_string += ['scramble=True']
if self.seed is not None:
fmt_string += ['seed={}'.format(self.seed)]
return self.__class__.__name__ + '(' + ', '.join(fmt_string) + ')'