Files
pytorch/torch/csrc/MemoryFormat.cpp
Vitaly Fedyunin 5b78a5eadb Memory format support for contiguous and is_contiguous (#20455)
Summary:
#19975 was separated by 2 PRs.

This one:

Introduce MemoryFormat argument to the `x.is_contiguous(memory_format=torch.channels_last)` and to the `y = x.contiguous(memory_format=torch.channels_last)` functions.

At this moment both functions just operate with strides and doesn't store any tensor state.

(Original RFC #19092)

-----

Expands functionality of two tensor functions `.is_contiguous` and `.contiguous` (both python and c++ api).

Note: We had several complaints about `.to(memory_format)` function, and decided not to support it.

1.  `.contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.

    - Using `torch.contiguous_format` will preserve existing `.contiguous()` behavior.

    - Calling `x.contiguous(memory_format=torch.channels_last)` returns new tensor which maintain same semantical layout (NCHW), but have different memory allocation pattern.

        `x.contiguous(memory_format=torch.channels_last)` expects input tensor to be 3d, 4d or 5d; and fails otherwise.

2. `.is_contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.

    - `x.is_contiguous(memory_format=torch.contiguous_format)` preserves same functionality as `x.is_contiguous()` and remains unchanged.

    - `x.is_contiguous(memory_format=torch.channels_last)` returns true if A) input tensor is contiguous in memory AND B) allocated in the memory in NWHC (or similar for 3d,5d) format.

Note: By the end of the phase one `x.is_contiguous(memory_format=torch.channels_last)` will calculate state of the Tensor on every call. This functionality going to be updated later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20455

Differential Revision: D15341577

Pulled By: VitalyFedyunin

fbshipit-source-id: bbb6b4159a8a49149110ad321109a3742383185d
2019-05-16 07:18:24 -07:00

81 lines
3.5 KiB
C++

#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/python_strings.h>
#include <c10/core/MemoryFormat.h>
#include <structmember.h>
#include <cstring>
#include <string>
PyObject *THPMemoryFormat_New(at::MemoryFormat memory_format, const std::string& name)
{
auto type = (PyTypeObject*)&THPMemoryFormatType;
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
if (!self) throw python_error();
auto self_ = reinterpret_cast<THPMemoryFormat*>(self.get());
self_->memory_format = memory_format;
std::strncpy (self_->name, name.c_str(), MEMORY_FORMAT_NAME_LEN);
self_->name[MEMORY_FORMAT_NAME_LEN] = '\0';
return self.release();
}
PyObject *THPMemoryFormat_repr(THPMemoryFormat *self)
{
return THPUtils_packString(self->name);
}
PyTypeObject THPMemoryFormatType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch.memory_format", /* tp_name */
sizeof(THPMemoryFormat), /* tp_basicsize */
0, /* tp_itemsize */
nullptr, /* tp_dealloc */
nullptr, /* tp_print */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
(reprfunc)THPMemoryFormat_repr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
nullptr, /* tp_doc */
nullptr, /* tp_traverse */
nullptr, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
nullptr, /* tp_methods */
nullptr, /* tp_members */
nullptr, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
nullptr, /* tp_new */
};
void THPMemoryFormat_init(PyObject *module)
{
if (PyType_Ready(&THPMemoryFormatType) < 0) {
throw python_error();
}
Py_INCREF(&THPMemoryFormatType);
if (PyModule_AddObject(module, "memory_format", (PyObject *)&THPMemoryFormatType) != 0) {
throw python_error();
}
}