mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17670 Update math::Transpose to support tensor with size > 2G i-am-not-moving-c2-to-c10 Differential Revision: D14313624 fbshipit-source-id: 0b4a85b913972e5a8981f0d40d0c539407b98f30
501 lines
13 KiB
C++
501 lines
13 KiB
C++
#include <array>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "caffe2/core/blob.h"
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/tensor.h"
|
|
#include "caffe2/proto/caffe2_pb.h"
|
|
#include "caffe2/utils/conversions.h"
|
|
#include "caffe2/utils/math.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
TEST(MathTest, GemmNoTransNoTrans) {
|
|
DeviceOption option;
|
|
CPUContext cpu_context(option);
|
|
Tensor X(std::vector<int>{5, 10}, CPU);
|
|
Tensor W(std::vector<int>{10, 6}, CPU);
|
|
Tensor Y(std::vector<int>{5, 6}, CPU);
|
|
EXPECT_EQ(X.numel(), 50);
|
|
EXPECT_EQ(W.numel(), 60);
|
|
math::Set<float, CPUContext>(
|
|
X.numel(), 1, X.mutable_data<float>(), &cpu_context);
|
|
math::Set<float, CPUContext>(
|
|
W.numel(), 1, W.mutable_data<float>(), &cpu_context);
|
|
EXPECT_EQ(Y.numel(), 30);
|
|
for (int i = 0; i < X.numel(); ++i) {
|
|
CHECK_EQ(X.data<float>()[i], 1);
|
|
}
|
|
for (int i = 0; i < W.numel(); ++i) {
|
|
CHECK_EQ(W.data<float>()[i], 1);
|
|
}
|
|
|
|
const float kOne = 1.0;
|
|
const float kPointFive = 0.5;
|
|
const float kZero = 0.0;
|
|
math::Gemm<float, CPUContext>(
|
|
CblasNoTrans,
|
|
CblasNoTrans,
|
|
5,
|
|
6,
|
|
10,
|
|
kOne,
|
|
X.data<float>(),
|
|
W.data<float>(),
|
|
kZero,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
EXPECT_EQ(Y.numel(), 30);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 10) << i;
|
|
}
|
|
// Test Accumulate
|
|
math::Gemm<float, CPUContext>(
|
|
CblasNoTrans,
|
|
CblasNoTrans,
|
|
5,
|
|
6,
|
|
10,
|
|
kOne,
|
|
X.data<float>(),
|
|
W.data<float>(),
|
|
kPointFive,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
EXPECT_EQ(Y.numel(), 30);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 15) << i;
|
|
}
|
|
// Test Accumulate
|
|
math::Gemm<float, CPUContext>(
|
|
CblasNoTrans,
|
|
CblasNoTrans,
|
|
5,
|
|
6,
|
|
10,
|
|
kPointFive,
|
|
X.data<float>(),
|
|
W.data<float>(),
|
|
kOne,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
EXPECT_EQ(Y.numel(), 30);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 20) << i;
|
|
}
|
|
}
|
|
|
|
TEST(MathTest, GemmNoTransTrans) {
|
|
DeviceOption option;
|
|
CPUContext cpu_context(option);
|
|
Tensor X(std::vector<int>{5, 10}, CPU);
|
|
Tensor W(std::vector<int>{6, 10}, CPU);
|
|
Tensor Y(std::vector<int>{5, 6}, CPU);
|
|
EXPECT_EQ(X.numel(), 50);
|
|
EXPECT_EQ(W.numel(), 60);
|
|
math::Set<float, CPUContext>(
|
|
X.numel(), 1, X.mutable_data<float>(), &cpu_context);
|
|
math::Set<float, CPUContext>(
|
|
W.numel(), 1, W.mutable_data<float>(), &cpu_context);
|
|
EXPECT_EQ(Y.numel(), 30);
|
|
for (int i = 0; i < X.numel(); ++i) {
|
|
CHECK_EQ(X.data<float>()[i], 1);
|
|
}
|
|
for (int i = 0; i < W.numel(); ++i) {
|
|
CHECK_EQ(W.data<float>()[i], 1);
|
|
}
|
|
|
|
const float kOne = 1.0;
|
|
const float kPointFive = 0.5;
|
|
const float kZero = 0.0;
|
|
math::Gemm<float, CPUContext>(
|
|
CblasNoTrans,
|
|
CblasTrans,
|
|
5,
|
|
6,
|
|
10,
|
|
kOne,
|
|
X.data<float>(),
|
|
W.data<float>(),
|
|
kZero,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
EXPECT_EQ(Y.numel(), 30);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 10) << i;
|
|
}
|
|
// Test Accumulate
|
|
math::Gemm<float, CPUContext>(
|
|
CblasNoTrans,
|
|
CblasTrans,
|
|
5,
|
|
6,
|
|
10,
|
|
kOne,
|
|
X.data<float>(),
|
|
W.data<float>(),
|
|
kPointFive,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
EXPECT_EQ(Y.numel(), 30);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 15) << i;
|
|
}
|
|
math::Gemm<float, CPUContext>(
|
|
CblasNoTrans,
|
|
CblasTrans,
|
|
5,
|
|
6,
|
|
10,
|
|
kPointFive,
|
|
X.data<float>(),
|
|
W.data<float>(),
|
|
kOne,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
EXPECT_EQ(Y.numel(), 30);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 20) << i;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
constexpr float kEps = 1e-5;
|
|
|
|
class GemmBatchedTest
|
|
: public testing::TestWithParam<testing::tuple<bool, bool>> {
|
|
protected:
|
|
void SetUp() override {
|
|
cpu_context_ = make_unique<CPUContext>(option_);
|
|
ReinitializeTensor(
|
|
&X_, std::vector<int64_t>{3, 5, 10}, at::dtype<float>().device(CPU));
|
|
ReinitializeTensor(
|
|
&W_, std::vector<int64_t>{3, 6, 10}, at::dtype<float>().device(CPU));
|
|
ReinitializeTensor(
|
|
&Y_, std::vector<int64_t>{3, 5, 6}, at::dtype<float>().device(CPU));
|
|
math::Set<float, CPUContext>(
|
|
X_.numel(), 1, X_.mutable_data<float>(), cpu_context_.get());
|
|
math::Set<float, CPUContext>(
|
|
W_.numel(), 1, W_.mutable_data<float>(), cpu_context_.get());
|
|
trans_X_ = std::get<0>(GetParam());
|
|
trans_W_ = std::get<1>(GetParam());
|
|
}
|
|
|
|
void RunGemmBatched(const float alpha, const float beta) {
|
|
const float* X_data = X_.template data<float>();
|
|
const float* W_data = W_.template data<float>();
|
|
float* Y_data = Y_.template mutable_data<float>();
|
|
const int X_stride = 5 * 10;
|
|
const int W_stride = 6 * 10;
|
|
const int Y_stride = 5 * 6;
|
|
std::array<const float*, 3> X_array = {
|
|
X_data, X_data + X_stride, X_data + 2 * X_stride};
|
|
std::array<const float*, 3> W_array = {
|
|
W_data, W_data + W_stride, W_data + 2 * W_stride};
|
|
std::array<float*, 3> Y_array = {
|
|
Y_data, Y_data + Y_stride, Y_data + 2 * Y_stride};
|
|
math::GemmBatched(
|
|
trans_X_ ? CblasTrans : CblasNoTrans,
|
|
trans_W_ ? CblasTrans : CblasNoTrans,
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
alpha,
|
|
X_array.data(),
|
|
W_array.data(),
|
|
beta,
|
|
Y_array.data(),
|
|
cpu_context_.get());
|
|
}
|
|
|
|
void RunGemmStridedBatched(const float alpha, const float beta) {
|
|
const float* X_data = X_.template data<float>();
|
|
const float* W_data = W_.template data<float>();
|
|
float* Y_data = Y_.template mutable_data<float>();
|
|
const int X_stride = 5 * 10;
|
|
const int W_stride = 6 * 10;
|
|
const int Y_stride = 5 * 6;
|
|
math::GemmStridedBatched<float, CPUContext>(
|
|
trans_X_ ? CblasTrans : CblasNoTrans,
|
|
trans_W_ ? CblasTrans : CblasNoTrans,
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
alpha,
|
|
X_data,
|
|
X_stride,
|
|
W_data,
|
|
W_stride,
|
|
beta,
|
|
Y_data,
|
|
Y_stride,
|
|
cpu_context_.get());
|
|
}
|
|
|
|
void VerifyOutput(const float value) const {
|
|
for (int i = 0; i < Y_.numel(); ++i) {
|
|
EXPECT_FLOAT_EQ(value, Y_.template data<float>()[i]);
|
|
}
|
|
}
|
|
|
|
DeviceOption option_;
|
|
std::unique_ptr<CPUContext> cpu_context_;
|
|
Tensor X_;
|
|
Tensor W_;
|
|
Tensor Y_;
|
|
bool trans_X_;
|
|
bool trans_W_;
|
|
};
|
|
|
|
TEST_P(GemmBatchedTest, GemmBatchedFloatTest) {
|
|
RunGemmBatched(1.0f, 0.0f);
|
|
VerifyOutput(10.0f);
|
|
RunGemmBatched(1.0f, 0.5f);
|
|
VerifyOutput(15.0f);
|
|
RunGemmBatched(0.5f, 1.0f);
|
|
VerifyOutput(20.0f);
|
|
}
|
|
|
|
TEST_P(GemmBatchedTest, GemmStridedBatchedFloatTest) {
|
|
RunGemmStridedBatched(1.0f, 0.0f);
|
|
VerifyOutput(10.0f);
|
|
RunGemmStridedBatched(1.0f, 0.5f);
|
|
VerifyOutput(15.0f);
|
|
RunGemmStridedBatched(0.5f, 1.0f);
|
|
VerifyOutput(20.0f);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(
|
|
GemmBatchedTrans,
|
|
GemmBatchedTest,
|
|
testing::Combine(testing::Bool(), testing::Bool()));
|
|
|
|
} // namespace
|
|
|
|
TEST(MathTest, GemvNoTrans) {
|
|
DeviceOption option;
|
|
CPUContext cpu_context(option);
|
|
Tensor A(std::vector<int>{5, 10}, CPU);
|
|
Tensor X(std::vector<int>{10}, CPU);
|
|
Tensor Y(std::vector<int>{5}, CPU);
|
|
EXPECT_EQ(A.numel(), 50);
|
|
EXPECT_EQ(X.numel(), 10);
|
|
math::Set<float, CPUContext>(
|
|
A.numel(), 1, A.mutable_data<float>(), &cpu_context);
|
|
math::Set<float, CPUContext>(
|
|
X.numel(), 1, X.mutable_data<float>(), &cpu_context);
|
|
EXPECT_EQ(Y.numel(), 5);
|
|
for (int i = 0; i < A.numel(); ++i) {
|
|
CHECK_EQ(A.data<float>()[i], 1);
|
|
}
|
|
for (int i = 0; i < X.numel(); ++i) {
|
|
CHECK_EQ(X.data<float>()[i], 1);
|
|
}
|
|
|
|
const float kOne = 1.0;
|
|
const float kPointFive = 0.5;
|
|
const float kZero = 0.0;
|
|
math::Gemv<float, CPUContext>(
|
|
CblasNoTrans,
|
|
5,
|
|
10,
|
|
kOne,
|
|
A.data<float>(),
|
|
X.data<float>(),
|
|
kZero,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 10) << i;
|
|
}
|
|
// Test Accumulate
|
|
math::Gemv<float, CPUContext>(
|
|
CblasNoTrans,
|
|
5,
|
|
10,
|
|
kOne,
|
|
A.data<float>(),
|
|
X.data<float>(),
|
|
kPointFive,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 15) << i;
|
|
}
|
|
// Test Accumulate
|
|
math::Gemv<float, CPUContext>(
|
|
CblasNoTrans,
|
|
5,
|
|
10,
|
|
kPointFive,
|
|
A.data<float>(),
|
|
X.data<float>(),
|
|
kOne,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 20) << i;
|
|
}
|
|
}
|
|
|
|
TEST(MathTest, GemvTrans) {
|
|
DeviceOption option;
|
|
CPUContext cpu_context(option);
|
|
Tensor A(std::vector<int>{6, 10}, CPU);
|
|
Tensor X(std::vector<int>{6}, CPU);
|
|
Tensor Y(std::vector<int>{10}, CPU);
|
|
EXPECT_EQ(A.numel(), 60);
|
|
EXPECT_EQ(X.numel(), 6);
|
|
math::Set<float, CPUContext>(
|
|
A.numel(), 1, A.mutable_data<float>(), &cpu_context);
|
|
math::Set<float, CPUContext>(
|
|
X.numel(), 1, X.mutable_data<float>(), &cpu_context);
|
|
EXPECT_EQ(Y.numel(), 10);
|
|
for (int i = 0; i < A.numel(); ++i) {
|
|
CHECK_EQ(A.data<float>()[i], 1);
|
|
}
|
|
for (int i = 0; i < X.numel(); ++i) {
|
|
CHECK_EQ(X.data<float>()[i], 1);
|
|
}
|
|
|
|
const float kOne = 1.0;
|
|
const float kPointFive = 0.5;
|
|
const float kZero = 0.0;
|
|
math::Gemv<float, CPUContext>(
|
|
CblasTrans,
|
|
6,
|
|
10,
|
|
kOne,
|
|
A.data<float>(),
|
|
X.data<float>(),
|
|
kZero,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 6) << i;
|
|
}
|
|
// Test Accumulate
|
|
math::Gemv<float, CPUContext>(
|
|
CblasTrans,
|
|
6,
|
|
10,
|
|
kOne,
|
|
A.data<float>(),
|
|
X.data<float>(),
|
|
kPointFive,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 9) << i;
|
|
}
|
|
// Test Accumulate
|
|
math::Gemv<float, CPUContext>(
|
|
CblasTrans,
|
|
6,
|
|
10,
|
|
kPointFive,
|
|
A.data<float>(),
|
|
X.data<float>(),
|
|
kOne,
|
|
Y.mutable_data<float>(),
|
|
&cpu_context);
|
|
for (int i = 0; i < Y.numel(); ++i) {
|
|
CHECK_EQ(Y.data<float>()[i], 12) << i;
|
|
}
|
|
}
|
|
|
|
TEST(MathTest, FloatToHalfConversion) {
|
|
float a = 1.0f;
|
|
float b = 1.75f;
|
|
float c = 128.125f;
|
|
|
|
float converted_a = static_cast<float>(at::Half(a));
|
|
float converted_b = static_cast<float>(at::Half(b));
|
|
float converted_c = static_cast<float>(at::Half(c));
|
|
|
|
CHECK_EQ(a, converted_a);
|
|
CHECK_EQ(b, converted_b);
|
|
CHECK_EQ(c, converted_c);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class BroadcastTest : public testing::Test {
|
|
protected:
|
|
void SetUp() override {
|
|
cpu_context_ = make_unique<CPUContext>(option_);
|
|
}
|
|
|
|
void RunBroadcastTest(
|
|
const std::vector<int>& X_dims,
|
|
const std::vector<int>& Y_dims,
|
|
const std::vector<float>& X_data,
|
|
const std::vector<float>& Y_data) {
|
|
std::vector<int64_t> X_dims_64;
|
|
std::vector<int64_t> Y_dims_64;
|
|
std::copy(X_dims.cbegin(), X_dims.cend(), std::back_inserter(X_dims_64));
|
|
std::copy(Y_dims.cbegin(), Y_dims.cend(), std::back_inserter(Y_dims_64));
|
|
ReinitializeTensor(&X_, X_dims_64, at::dtype<float>().device(CPU));
|
|
ReinitializeTensor(&Y_, Y_dims_64, at::dtype<float>().device(CPU));
|
|
ASSERT_EQ(X_data.size(), X_.numel());
|
|
cpu_context_->CopyFromCPU<float>(
|
|
X_data.size(), X_data.data(), X_.mutable_data<float>());
|
|
math::Broadcast<float, CPUContext>(
|
|
X_dims.size(),
|
|
X_dims.data(),
|
|
Y_dims.size(),
|
|
Y_dims.data(),
|
|
1.0f,
|
|
X_.data<float>(),
|
|
Y_.mutable_data<float>(),
|
|
cpu_context_.get());
|
|
ASSERT_EQ(Y_data.size(), Y_.numel());
|
|
for (int i = 0; i < Y_data.size(); ++i) {
|
|
EXPECT_FLOAT_EQ(Y_data[i], Y_.data<float>()[i]);
|
|
}
|
|
}
|
|
|
|
DeviceOption option_;
|
|
std::unique_ptr<CPUContext> cpu_context_;
|
|
|
|
Tensor X_;
|
|
Tensor Y_;
|
|
};
|
|
|
|
TEST_F(BroadcastTest, BroadcastFloatTest) {
|
|
RunBroadcastTest({2}, {2}, {1.0f, 2.0f}, {1.0f, 2.0f});
|
|
RunBroadcastTest({1}, {2}, {1.0f}, {1.0f, 1.0f});
|
|
RunBroadcastTest({1}, {2, 2}, {1.0f}, {1.0f, 1.0f, 1.0f, 1.0f});
|
|
RunBroadcastTest({2, 1}, {2, 2}, {1.0f, 2.0f}, {1.0f, 1.0f, 2.0f, 2.0f});
|
|
RunBroadcastTest(
|
|
{2, 1},
|
|
{2, 2, 2},
|
|
{1.0f, 2.0f},
|
|
{1.0f, 1.0f, 2.0f, 2.0f, 1.0f, 1.0f, 2.0f, 2.0f});
|
|
}
|
|
|
|
class RandFixedSumTest : public testing::Test {
|
|
protected:
|
|
void SetUp() override {
|
|
cpu_context_ = make_unique<CPUContext>(option_);
|
|
}
|
|
DeviceOption option_;
|
|
std::unique_ptr<CPUContext> cpu_context_;
|
|
};
|
|
|
|
TEST_F(RandFixedSumTest, UpperBound) {
|
|
std::vector<int> l(20);
|
|
math::RandFixedSum<int, CPUContext>(
|
|
20, 1, 1000, 1000, l.data(), cpu_context_.get());
|
|
}
|
|
|
|
} // namespace
|
|
|
|
} // namespace caffe2
|