Files
pytorch/binaries/convert_encoded_to_raw_leveldb.cc
Yangqing Jia 7d5f7ed270 Using c10 namespace across caffe2. (#12714)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12714

This is a short change to enable c10 namespace in caffe2. We did not enable
it before due to gflags global variable confusion, but it should have been
mostly cleaned now. Right now, the plan on record is that namespace caffe2 and
namespace aten will fully be supersets of namespace c10.

Most of the diff is codemod, and only two places of non-codemod is in caffe2/core/common.h, where

```
using namespace c10;
```

is added, and in Flags.h, where instead of creating aliasing variables in c10 namespace, we directly put it in the global namespace to match gflags (and same behavior if gflags is not being built with).

Reviewed By: dzhulgakov

Differential Revision: D10390486

fbshipit-source-id: 5e2df730e28e29a052f513bddc558d9f78a23b9b
2018-10-17 12:57:19 -07:00

158 lines
5.0 KiB
C++

/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This script converts an image dataset to leveldb.
//
// FLAGS_input_folder is the root folder that holds all the images, and
// FLAGS_list_file should be a list of files as well as their labels, in
// the format as
// subfolder1/file1.JPEG 7
// ....
#include <opencv2/opencv.hpp>
#include <fstream> // NOLINT(readability/streams)
#include <memory>
#include <random>
#include <string>
#include "caffe2/core/init.h"
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/core/logging.h"
#include "leveldb/db.h"
#include "leveldb/write_batch.h"
C10_DEFINE_string(input_db_name, "", "The input image file name.");
C10_DEFINE_string(output_db_name, "", "The output training leveldb name.");
C10_DEFINE_bool(color, true, "If set, load images in color.");
C10_DEFINE_int(
scale,
256,
"If FLAGS_raw is set, scale all the images' shorter edge to the given "
"value.");
C10_DEFINE_bool(warp, false, "If warp is set, warp the images to square.");
namespace caffe2 {
using std::string;
using std::unique_ptr;
void ConvertToRawDataset(
const string& input_db_name, const string& output_db_name) {
// input leveldb
std::unique_ptr<leveldb::DB> input_db;
LOG(INFO) << "Opening input leveldb " << input_db_name;
{
leveldb::Options options;
options.create_if_missing = false;
leveldb::DB* db_temp;
leveldb::Status status = leveldb::DB::Open(
options, input_db_name, &db_temp);
CAFFE_ENFORCE(status.ok(), "Failed to open leveldb ", input_db_name, ".");
input_db.reset(db_temp);
}
// output leveldb
std::unique_ptr<leveldb::DB> output_db;
std::unique_ptr<leveldb::WriteBatch> batch;
LOG(INFO) << "Opening leveldb " << output_db_name;
{
leveldb::Options options;
options.error_if_exists = true;
options.create_if_missing = true;
options.write_buffer_size = 268435456;
leveldb::DB* db_temp;
leveldb::Status status = leveldb::DB::Open(
options, output_db_name, &db_temp);
CAFFE_ENFORCE(
status.ok(),
"Failed to open leveldb ",
output_db_name,
". Is it already existing?");
output_db.reset(db_temp);
}
batch.reset(new leveldb::WriteBatch());
TensorProtos input_protos;
TensorProtos output_protos;
TensorProto* data = output_protos.add_protos();
TensorProto* label = output_protos.add_protos();
data->set_data_type(TensorProto::BYTE);
data->add_dims(0);
data->add_dims(0);
if (FLAGS_color) {
data->add_dims(3);
}
string value;
unique_ptr<leveldb::Iterator> iter;
iter.reset(input_db->NewIterator(leveldb::ReadOptions()));
iter->SeekToFirst();
int count = 0;
for (; iter->Valid(); iter->Next()) {
CAFFE_ENFORCE(input_protos.ParseFromString(iter->value().ToString()));
label->CopyFrom(input_protos.protos(1));
const string& encoded_image = input_protos.protos(0).string_data(0);
int encoded_size = encoded_image.size();
cv::Mat img = cv::imdecode(
cv::Mat(
1, &encoded_size, CV_8UC1, const_cast<char*>(encoded_image.data())),
FLAGS_color ? cv::IMREAD_COLOR : cv::IMREAD_GRAYSCALE);
cv::Mat resized_img;
int scaled_width, scaled_height;
if (FLAGS_warp) {
scaled_width = FLAGS_scale;
scaled_height = FLAGS_scale;
} else if (img.rows > img.cols) {
scaled_width = FLAGS_scale;
scaled_height = static_cast<float>(img.rows) * FLAGS_scale / img.cols;
} else {
scaled_height = FLAGS_scale;
scaled_width = static_cast<float>(img.cols) * FLAGS_scale / img.rows;
}
cv::resize(img, resized_img, cv::Size(scaled_width, scaled_height), 0, 0,
cv::INTER_LINEAR);
data->set_dims(0, scaled_height);
data->set_dims(1, scaled_width);
DCHECK(resized_img.isContinuous());
data->set_byte_data(
resized_img.ptr(),
scaled_height * scaled_width * (FLAGS_color ? 3 : 1));
output_protos.SerializeToString(&value);
// Put in db
batch->Put(iter->key(), value);
if (++count % 1000 == 0) {
output_db->Write(leveldb::WriteOptions(), batch.get());
batch.reset(new leveldb::WriteBatch());
LOG(INFO) << "Processed " << count << " files.";
}
}
// write the last batch
if (count % 1000 != 0) {
output_db->Write(leveldb::WriteOptions(), batch.get());
}
LOG(INFO) << "Processed a total of " << count << " files.";
}
} // namespace caffe2
int main(int argc, char** argv) {
caffe2::GlobalInit(&argc, &argv);
caffe2::ConvertToRawDataset(FLAGS_input_db_name, FLAGS_output_db_name);
return 0;
}