mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
This PR add XPU support for AOT Inductor, and reuse the corresponding UT. Pull Request resolved: https://github.com/pytorch/pytorch/pull/140269 Approved by: https://github.com/desertfire, https://github.com/EikanWang ghstack dependencies: #140268 Co-authored-by: Bin Bao <binbao@meta.com>
246 lines
7.8 KiB
Python
246 lines
7.8 KiB
Python
# Owner(s): ["module: inductor"]
|
|
|
|
import copy
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import types
|
|
|
|
import torch
|
|
import torch._export
|
|
import torch._inductor
|
|
import torch.export._trace
|
|
import torch.fx._pytree as fx_pytree
|
|
from torch._dynamo.testing import same
|
|
from torch._inductor import config
|
|
from torch._inductor.test_case import TestCase
|
|
from torch.testing import FileCheck
|
|
from torch.testing._internal.common_utils import IS_FBCODE
|
|
from torch.utils import _pytree as pytree
|
|
|
|
|
|
class WrapperModule(torch.nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.model = model
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return self.model(*args, **kwargs)
|
|
|
|
|
|
class AOTIRunnerUtil:
|
|
@staticmethod
|
|
def compile(
|
|
model,
|
|
example_inputs,
|
|
options=None,
|
|
dynamic_shapes=None,
|
|
disable_constraint_solver=False,
|
|
):
|
|
if not isinstance(model, torch.nn.Module):
|
|
model = WrapperModule(model)
|
|
# The exact API is subject to change
|
|
if torch._inductor.config.is_predispatch:
|
|
ep = torch.export._trace._export(
|
|
model, example_inputs, dynamic_shapes=dynamic_shapes, pre_dispatch=True
|
|
)
|
|
gm = ep.module()
|
|
else:
|
|
gm = torch.export._trace._export_to_torch_ir(
|
|
model,
|
|
example_inputs,
|
|
dynamic_shapes=dynamic_shapes,
|
|
disable_constraint_solver=disable_constraint_solver,
|
|
# Disabling this flag, because instead we can rely on the mapping
|
|
# dynamo_flat_name_to_original_fqn which is coming from Dynamo.
|
|
restore_fqn=False,
|
|
)
|
|
|
|
if IS_FBCODE:
|
|
from deeplearning.aot_inductor.extern_node_thrift_serializer import (
|
|
thrift_serializer,
|
|
)
|
|
|
|
if options is None:
|
|
options = {}
|
|
options["extern_node_serializer"] = thrift_serializer
|
|
|
|
with torch.no_grad():
|
|
so_path = torch._inductor.aot_compile(gm, example_inputs, options=options) # type: ignore[arg-type]
|
|
|
|
return so_path
|
|
|
|
@staticmethod
|
|
def load_runner(device, so_path):
|
|
if IS_FBCODE:
|
|
from .fb import test_aot_inductor_model_runner_pybind # @manual
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
# copy *.so file to a unique path just before loading
|
|
# to avoid stale dlopen handles when an updated *.so
|
|
# from the same path is loaded repetitively in a test
|
|
temp_so_path = os.path.join(temp_dir, "model.so")
|
|
shutil.copy(so_path, temp_so_path)
|
|
|
|
# We also need to copy over the serialized extern_kernel_nodes for custom ops
|
|
extern_kernel_nodes_path = f"{so_path[:-3]}.json"
|
|
if os.path.isfile(extern_kernel_nodes_path):
|
|
temp_extern_kernel_nodes_path = os.path.join(temp_dir, "model.json")
|
|
shutil.copy(extern_kernel_nodes_path, temp_extern_kernel_nodes_path)
|
|
|
|
return test_aot_inductor_model_runner_pybind.Runner(
|
|
temp_so_path, device == "cpu"
|
|
)
|
|
else:
|
|
if device == "cpu":
|
|
return torch._C._aoti.AOTIModelContainerRunnerCpu(so_path, 1)
|
|
elif device == "xpu":
|
|
return torch._C._aoti.AOTIModelContainerRunnerXpu(so_path, 1, device)
|
|
else:
|
|
return torch._C._aoti.AOTIModelContainerRunnerCuda(so_path, 1, device)
|
|
|
|
@staticmethod
|
|
def load(device, so_path):
|
|
# TODO: unify fbcode and oss behavior to only use torch._export.aot_load
|
|
if IS_FBCODE:
|
|
runner = AOTIRunnerUtil.load_runner(device, so_path)
|
|
|
|
def optimized(*args, **kwargs):
|
|
call_spec = runner.get_call_spec()
|
|
in_spec = pytree.treespec_loads(call_spec[0])
|
|
out_spec = pytree.treespec_loads(call_spec[1])
|
|
flat_inputs = fx_pytree.tree_flatten_spec((args, kwargs), in_spec)
|
|
flat_inputs = [x for x in flat_inputs if isinstance(x, torch.Tensor)]
|
|
flat_outputs = runner.run(flat_inputs)
|
|
return pytree.tree_unflatten(flat_outputs, out_spec)
|
|
|
|
return optimized
|
|
else:
|
|
return torch._export.aot_load(so_path, device)
|
|
|
|
@staticmethod
|
|
def run(
|
|
device,
|
|
model,
|
|
example_inputs,
|
|
options=None,
|
|
dynamic_shapes=None,
|
|
disable_constraint_solver=False,
|
|
):
|
|
so_path = AOTIRunnerUtil.compile(
|
|
model,
|
|
example_inputs,
|
|
options=options,
|
|
dynamic_shapes=dynamic_shapes,
|
|
disable_constraint_solver=disable_constraint_solver,
|
|
)
|
|
optimized = AOTIRunnerUtil.load(device, so_path)
|
|
return optimized(*example_inputs)
|
|
|
|
@staticmethod
|
|
def run_multiple(
|
|
device,
|
|
model,
|
|
list_example_inputs,
|
|
options=None,
|
|
dynamic_shapes=None,
|
|
):
|
|
so_path = AOTIRunnerUtil.compile(
|
|
model,
|
|
list_example_inputs[0],
|
|
options=options,
|
|
dynamic_shapes=dynamic_shapes,
|
|
)
|
|
optimized = AOTIRunnerUtil.load(device, so_path)
|
|
list_output_tensors = []
|
|
for example_inputs in list_example_inputs:
|
|
list_output_tensors.append(optimized(*example_inputs))
|
|
return list_output_tensors
|
|
|
|
|
|
def check_model(
|
|
self: TestCase,
|
|
model,
|
|
example_inputs,
|
|
options=None,
|
|
dynamic_shapes=None,
|
|
disable_constraint_solver=False,
|
|
atol=None,
|
|
rtol=None,
|
|
):
|
|
with torch.no_grad(), config.patch(
|
|
{
|
|
"aot_inductor.allow_stack_allocation": self.allow_stack_allocation,
|
|
"aot_inductor.use_minimal_arrayref_interface": self.use_minimal_arrayref_interface,
|
|
}
|
|
):
|
|
torch.manual_seed(0)
|
|
if not isinstance(model, types.FunctionType):
|
|
model = model.to(self.device)
|
|
ref_model = copy.deepcopy(model)
|
|
ref_inputs = copy.deepcopy(example_inputs)
|
|
expected = ref_model(*ref_inputs)
|
|
|
|
torch.manual_seed(0)
|
|
actual = AOTIRunnerUtil.run(
|
|
self.device,
|
|
model,
|
|
example_inputs,
|
|
options,
|
|
dynamic_shapes,
|
|
disable_constraint_solver,
|
|
)
|
|
|
|
self.assertEqual(actual, expected, atol=atol, rtol=rtol)
|
|
|
|
|
|
def check_model_with_multiple_inputs(
|
|
self: TestCase,
|
|
model,
|
|
list_example_inputs,
|
|
options=None,
|
|
dynamic_shapes=None,
|
|
):
|
|
with torch.no_grad(), config.patch(
|
|
{
|
|
"aot_inductor.allow_stack_allocation": self.allow_stack_allocation,
|
|
"aot_inductor.use_minimal_arrayref_interface": self.use_minimal_arrayref_interface,
|
|
}
|
|
):
|
|
torch.manual_seed(0)
|
|
model = model.to(self.device)
|
|
ref_model = copy.deepcopy(model)
|
|
ref_inputs = copy.deepcopy(list_example_inputs)
|
|
list_expected = [ref_model(*inputs) for inputs in ref_inputs]
|
|
|
|
torch.manual_seed(0)
|
|
list_actual = AOTIRunnerUtil.run_multiple(
|
|
self.device, model, list_example_inputs, options, dynamic_shapes
|
|
)
|
|
|
|
self.assertTrue(same(list_actual, list_expected))
|
|
|
|
|
|
def code_check_count(
|
|
self: TestCase,
|
|
model,
|
|
example_inputs,
|
|
target_str: str,
|
|
target_count: int,
|
|
):
|
|
with torch.no_grad(), config.patch(
|
|
{
|
|
"aot_inductor.allow_stack_allocation": self.allow_stack_allocation,
|
|
"aot_inductor.use_minimal_arrayref_interface": self.use_minimal_arrayref_interface,
|
|
}
|
|
):
|
|
so_path = torch._export.aot_compile(model, example_inputs)
|
|
|
|
with open(os.path.splitext(so_path)[0] + ".cpp") as cpp:
|
|
src_code = cpp.read()
|
|
FileCheck().check_count(
|
|
target_str,
|
|
target_count,
|
|
exactly=True,
|
|
).run(src_code)
|