mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This PR rechecks the autotune cache on Precompile.serialize(), allowing us to ahead of time save autotune results for statically compiled triton kernels, so that warm start does not need to check the autotune cache. It has a few extra changes to make this work: ### Storing source code in TritonBundler - We now store the source_code for statically compiled triton kernels instead of the hash of the source code in TritonBundler, so that we can easily access their source code when rechecking the autotune cache on PrecompileContext.serialize. To make sure that this is not a huge space concern, I ran the entire hugging face benchmark on training. The total space of `/tmp/torchinductor_jjwu/fxgraph` before my change was 1185004 KB (1.18 GB). After my change, this increased to 1207312 KB (1.2 GB), for an increased storage cost of ~1.8%, which seems safe. - We now return early from recheck_autotune_cache if the number of triton kernels being compiled is 1, since there's no reason to check the cache at all in those cases. Pull Request resolved: https://github.com/pytorch/pytorch/pull/158656 Approved by: https://github.com/zhxchen17
4237 lines
161 KiB
Python
4237 lines
161 KiB
Python
from __future__ import annotations
|
|
|
|
import base64
|
|
import copyreg
|
|
import dataclasses
|
|
import functools
|
|
import hashlib
|
|
import importlib
|
|
import importlib.resources
|
|
import io
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import os
|
|
import pickle
|
|
import pkgutil
|
|
import re
|
|
import shlex
|
|
import shutil
|
|
import struct
|
|
import subprocess
|
|
import sys
|
|
import tempfile
|
|
import textwrap
|
|
import threading
|
|
import warnings
|
|
from bisect import bisect_right
|
|
from copy import copy
|
|
from ctypes import c_void_p, CDLL, cdll
|
|
from datetime import timedelta
|
|
from functools import lru_cache, partial
|
|
from pathlib import Path
|
|
from tempfile import _TemporaryFileWrapper
|
|
from time import time, time_ns
|
|
from types import ModuleType
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
cast,
|
|
Generic,
|
|
NoReturn,
|
|
Optional,
|
|
TYPE_CHECKING,
|
|
TypeVar,
|
|
Union,
|
|
)
|
|
from typing_extensions import override, Self
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import SymInt, Tensor
|
|
from torch._dynamo.exc import SkipFrame
|
|
from torch._dynamo.utils import CompileEventLogger, counters, dynamo_timed
|
|
from torch._inductor import config, exc, metrics
|
|
from torch._inductor.codegen.common import (
|
|
custom_backend_codegen_configs,
|
|
custom_backend_passes,
|
|
init_backend_registration,
|
|
)
|
|
from torch._inductor.codegen.cuda import cuda_env
|
|
from torch._inductor.codegen.rocm.compile_command import (
|
|
rocm_compile_command,
|
|
rocm_compiler,
|
|
)
|
|
from torch._inductor.compile_worker.utils import in_toplevel_process
|
|
from torch._inductor.cpp_builder import (
|
|
_LINKER_SCRIPT,
|
|
_set_gpu_runtime_env,
|
|
_TORCH_PATH,
|
|
_transform_cuda_paths,
|
|
convert_cubin_to_obj,
|
|
CppBuilder,
|
|
CppOptions,
|
|
CppTorchDeviceOptions,
|
|
get_compiler_version_info,
|
|
get_ld_and_objcopy,
|
|
get_name_and_dir_from_output_file_path,
|
|
normalize_path_separator,
|
|
run_asm_build_object,
|
|
)
|
|
from torch._inductor.cpu_vec_isa import pick_vec_isa
|
|
from torch._inductor.custom_graph_pass import (
|
|
CustomGraphModulePass,
|
|
CustomGraphPass,
|
|
CustomGraphPassType,
|
|
)
|
|
from torch._inductor.freezing_utils import has_frozen_params, is_frozen_param
|
|
from torch._inductor.runtime.compile_tasks import _reload_python_module
|
|
from torch._inductor.runtime.runtime_utils import cache_dir, default_cache_dir
|
|
from torch._inductor.utils import (
|
|
ALIGN_BYTES,
|
|
clear_on_fresh_cache,
|
|
is_linux,
|
|
is_windows,
|
|
)
|
|
from torch._logging import trace_structured
|
|
from torch._subclasses.fake_tensor import (
|
|
extract_tensor_metadata,
|
|
FakeTensor,
|
|
TensorMetadata,
|
|
)
|
|
from torch._utils_internal import log_cache_bypass
|
|
from torch.compiler import config as cconfig
|
|
from torch.compiler._cache import (
|
|
CacheArtifact,
|
|
CacheArtifactFactory,
|
|
CacheArtifactManager,
|
|
)
|
|
from torch.export.pt2_archive._package_weights import TensorProperties, Weights
|
|
from torch.export.pt2_archive.constants import CUSTOM_OBJ_FILENAME_PREFIX
|
|
from torch.fx.experimental.symbolic_shapes import has_hint, hint_int, ShapeEnv
|
|
from torch.utils._ordered_set import OrderedSet
|
|
|
|
from .output_code import CompiledFxGraph
|
|
from .remote_cache import create_cache
|
|
from .runtime import autotune_cache
|
|
from .runtime.autotune_cache import AutotuneCacheBundler
|
|
from .triton_bundler import TritonBundler
|
|
from .virtualized import V
|
|
|
|
|
|
if config.is_fbcode():
|
|
from triton.fb.build import build_paths
|
|
|
|
|
|
T = TypeVar("T")
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import Generator, KeysView, Sequence
|
|
from concurrent.futures import Future
|
|
|
|
from .compile_fx import _CompileFxKwargs
|
|
from .cpp_builder import BuildOptionsBase
|
|
from .graph import GraphLowering
|
|
from .ir import ChoiceCaller
|
|
from .output_code import CompiledFxGraphConstants, OutputCode
|
|
from .remote_cache import JsonDataTy, RemoteCache
|
|
from .runtime.hints import HalideInputSpec, HalideMeta
|
|
from .runtime.triton_heuristics import CachingAutotuner
|
|
from .utils import InputType
|
|
|
|
|
|
_IS_WINDOWS = sys.platform == "win32"
|
|
LOCK_TIMEOUT = 600
|
|
|
|
output_code_log = torch._logging.getArtifactLogger(__name__, "output_code")
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def use_re_build() -> bool:
|
|
"""
|
|
Use for CUTLASS compilation only right now.
|
|
"""
|
|
if config.is_fbcode() and not cuda_env.nvcc_exist(_cuda_compiler()):
|
|
from triton.fb.re_build_helper import should_build_locally
|
|
|
|
return not should_build_locally()
|
|
return False
|
|
|
|
|
|
def get_cpp_wrapper_cubin_path_name() -> str:
|
|
return "cubin_path" if torch.version.hip is None else "hsaco_path"
|
|
|
|
|
|
def get_kernel_bin_format(device: str) -> str:
|
|
if device == "cuda":
|
|
return "cubin" if torch.version.hip is None else "hsaco"
|
|
elif device == "xpu":
|
|
return "spv"
|
|
else:
|
|
return ""
|
|
|
|
|
|
class CacheBase:
|
|
@staticmethod
|
|
@functools.cache
|
|
def get_system() -> dict[str, Any]:
|
|
from torch._inductor.runtime.triton_compat import HAS_TRITON, triton_key
|
|
|
|
if HAS_TRITON:
|
|
# Use triton_key instead of triton.__version__ as the version
|
|
# is not updated with each code change
|
|
triton_version = triton_key()
|
|
else:
|
|
triton_version = None
|
|
|
|
try:
|
|
system: dict[str, Any] = {
|
|
"device": {"name": None},
|
|
"version": {
|
|
"triton": triton_version,
|
|
},
|
|
}
|
|
device_properties = torch.cuda.get_device_properties(
|
|
torch.cuda.current_device()
|
|
)
|
|
if torch.version.cuda is not None:
|
|
system["device"]["name"] = device_properties.name
|
|
system["version"]["cuda"] = torch.version.cuda
|
|
else:
|
|
system["device"]["name"] = device_properties.gcnArchName
|
|
system["version"]["hip"] = torch.version.hip
|
|
except (AssertionError, RuntimeError):
|
|
# If cuda is not installed, none of the above config is relevant.
|
|
system = {}
|
|
|
|
system["hash"] = hashlib.sha256(
|
|
json.dumps(system, sort_keys=True).encode("utf-8")
|
|
).hexdigest()
|
|
|
|
return system
|
|
|
|
@staticmethod
|
|
@clear_on_fresh_cache
|
|
@functools.cache
|
|
def get_local_cache_path() -> Path:
|
|
return Path(os.path.join(cache_dir(), "cache", CacheBase.get_system()["hash"]))
|
|
|
|
def __init__(self) -> None:
|
|
self.system = CacheBase.get_system()
|
|
|
|
def get_local_cache(self) -> dict[str, Any]:
|
|
local_cache_path = self.get_local_cache_path()
|
|
if not local_cache_path.is_file():
|
|
return {}
|
|
with open(local_cache_path) as local_cache_fp:
|
|
local_cache = json.load(local_cache_fp)
|
|
return local_cache["cache"]
|
|
|
|
def update_local_cache(self, local_cache: dict[str, Any]) -> None:
|
|
local_cache_path = self.get_local_cache_path()
|
|
write_atomic(
|
|
str(local_cache_path),
|
|
json.dumps({"system": self.system, "cache": local_cache}, indent=4),
|
|
make_dirs=True,
|
|
)
|
|
|
|
|
|
class LocalCache(CacheBase):
|
|
def lookup(self, *keys: str) -> Optional[dict[str, Any]]:
|
|
cache = self.get_local_cache()
|
|
|
|
sub_cache = cache
|
|
for key in keys:
|
|
if key in cache:
|
|
sub_cache = cache[key]
|
|
else:
|
|
return None
|
|
|
|
return sub_cache
|
|
|
|
def set_value(self, *keys: str, value: Any) -> None:
|
|
cache = self.get_local_cache()
|
|
|
|
sub_cache = cache
|
|
for key in keys[0:-1]:
|
|
sub_cache.setdefault(key, {})
|
|
sub_cache = sub_cache[key]
|
|
sub_cache[keys[-1]] = value
|
|
|
|
self.update_local_cache(cache)
|
|
|
|
|
|
class PersistentCache(CacheBase):
|
|
def lookup(
|
|
self,
|
|
choices: list[ChoiceCaller],
|
|
op: str,
|
|
inputs: str,
|
|
benchmark: Optional[Callable[[Any], dict[ChoiceCaller, float]]],
|
|
hint_override: Optional[int] = None,
|
|
) -> dict[ChoiceCaller, float]:
|
|
"""
|
|
Check to see if we have benchmarked the given choice callers. For each
|
|
choice caller:
|
|
|
|
1. Check local_cache[op][inputs][choice][precision], return benchmark if cached.
|
|
2. If benchmark is not None:
|
|
a. `max_autotune_gemm=True`: benchmark the choice, update
|
|
local_cache[op][inputs][choice], and return the benchmark.
|
|
b. `max_autotune_gemm=False`: don't benchmark the choice, return nothing.
|
|
"""
|
|
precision = torch.get_float32_matmul_precision()
|
|
cache_key = f"{inputs}_{hint_override}" if hint_override is not None else inputs
|
|
|
|
timings = {}
|
|
|
|
def check_cache(cache: dict[str, Any]) -> bool:
|
|
"""Check if `cache` contains data for all the choices"""
|
|
hit = True
|
|
for choice in choices:
|
|
choice_hash = choice.hash_key()
|
|
if choice_hash in cache.get(op, {}).get(cache_key, {}).get(
|
|
precision, {}
|
|
):
|
|
# cache hit
|
|
timings[choice] = cache[op][cache_key][precision][choice_hash]
|
|
else:
|
|
# cache miss
|
|
hit = False
|
|
break
|
|
return hit
|
|
|
|
local_cache = self.get_local_cache() if config.autotune_local_cache else {}
|
|
if (not check_cache(local_cache)) and (benchmark is not None):
|
|
# re-benchmark everything to try to get consistent numbers from the same machine
|
|
timings = benchmark(choices)
|
|
assert all(choice in timings for choice in choices)
|
|
local_cache.setdefault(op, {})
|
|
local_cache[op].setdefault(cache_key, {}).setdefault(precision, {})
|
|
for choice, timing in timings.items():
|
|
local_cache[op][cache_key][precision][choice.hash_key()] = timing
|
|
|
|
self.update_local_cache(local_cache)
|
|
|
|
return timings
|
|
|
|
|
|
def get_lock_dir() -> str:
|
|
lock_dir = os.path.join(cache_dir(), "locks")
|
|
if not os.path.exists(lock_dir):
|
|
os.makedirs(lock_dir, exist_ok=True)
|
|
return lock_dir
|
|
|
|
|
|
def sha256_hash(data: bytes) -> str:
|
|
# [:51] to strip off the "Q====" suffix common to every hash value.
|
|
return base64.b32encode(hashlib.sha256(data).digest())[:51].decode("utf-8").lower()
|
|
|
|
|
|
def code_hash(code: Union[str, bytes], extra: Union[str, bytes] = "") -> str:
|
|
hashing_str = code if isinstance(code, bytes) else code.encode("utf-8")
|
|
if extra:
|
|
extra_b = extra if isinstance(extra, bytes) else extra.encode("utf-8")
|
|
hashing_str = hashing_str + b"||" + extra_b
|
|
return "c" + sha256_hash(hashing_str)
|
|
|
|
|
|
def get_path(
|
|
basename: str, extension: str, specified_dir: str = ""
|
|
) -> tuple[str, str, str]:
|
|
if specified_dir:
|
|
if os.path.isabs(specified_dir):
|
|
subdir = specified_dir
|
|
else:
|
|
subdir = os.path.join(cache_dir(), specified_dir)
|
|
else:
|
|
subdir = os.path.join(cache_dir(), basename[1:3])
|
|
path = os.path.join(subdir, f"{basename}.{extension}")
|
|
return basename, subdir, path
|
|
|
|
|
|
def get_hash(
|
|
content: Union[str, bytes], extra: str = "", hash_type: str = "code"
|
|
) -> str:
|
|
if hash_type in {"amdgcn", "code", "ptx", "spv"}:
|
|
return code_hash(content, extra)
|
|
if hash_type in {"cubin", "hsaco", "spv"}:
|
|
return code_hash(repr(content))
|
|
raise AssertionError(f"Unknown hash type {hash_type}")
|
|
|
|
|
|
class WritableTempFile:
|
|
"""
|
|
Avoid "Permission denied error" on Windows:
|
|
with tempfile.NamedTemporaryFile("w", suffix=".gv") as temp_file:
|
|
# Not writable on Windows:
|
|
# https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile
|
|
|
|
Example:
|
|
with WritableTempFile("w", suffix=".gv") as temp_file:
|
|
tree.to_dotfile(temp_file.name)
|
|
"""
|
|
|
|
def __init__(
|
|
self, mode: str = "w", *, encoding: Any = None, suffix: Any = None
|
|
) -> None:
|
|
self.mode = mode
|
|
self.encoding = encoding
|
|
self.suffix = suffix
|
|
|
|
def __enter__(self) -> _TemporaryFileWrapper[Any]:
|
|
self.temp_file = tempfile.NamedTemporaryFile(
|
|
self.mode, encoding=self.encoding, suffix=self.suffix, delete=False
|
|
)
|
|
return self.temp_file
|
|
|
|
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:
|
|
self.temp_file.close()
|
|
os.unlink(self.temp_file.name)
|
|
|
|
|
|
def write(
|
|
content: Union[str, bytes],
|
|
extension: str,
|
|
extra: str = "",
|
|
hash_type: str = "code",
|
|
specified_dir: str = "",
|
|
key: Optional[str] = None,
|
|
) -> tuple[str, str]:
|
|
if key is None:
|
|
# use striped content to compute hash so we don't end up with different
|
|
# hashes just because the content begins/ends with different number of
|
|
# spaces.
|
|
key = get_hash(content.strip(), extra, hash_type)
|
|
basename, _subdir, path = get_path(key, extension, specified_dir)
|
|
if not os.path.exists(path):
|
|
write_atomic(path, content, make_dirs=True)
|
|
return basename, path
|
|
|
|
|
|
def write_text(text: str) -> str:
|
|
"""
|
|
Write the `text` to a file and return the path computed based on the hash.
|
|
"""
|
|
return write(text, "txt")[1]
|
|
|
|
|
|
def write_atomic(
|
|
path_: str,
|
|
content: Union[str, bytes],
|
|
make_dirs: bool = False,
|
|
encode_utf_8: bool = False,
|
|
) -> None:
|
|
# Write into temporary file first to avoid conflicts between threads
|
|
# Avoid using a named temporary file, as those have restricted permissions
|
|
assert isinstance(content, (str, bytes)), (
|
|
"Only strings and byte arrays can be saved in the cache"
|
|
)
|
|
path = Path(path_)
|
|
if make_dirs:
|
|
path.parent.mkdir(parents=True, exist_ok=True)
|
|
tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp"
|
|
write_mode = "w" if isinstance(content, str) else "wb"
|
|
with tmp_path.open(write_mode, encoding="utf-8" if encode_utf_8 else None) as f:
|
|
f.write(content)
|
|
try:
|
|
tmp_path.rename(target=path)
|
|
except FileExistsError:
|
|
if not _IS_WINDOWS:
|
|
raise
|
|
# On Windows file exist is expected: https://docs.python.org/3/library/pathlib.html#pathlib.Path.rename
|
|
# Below two lines code is equal to `tmp_path.rename(path)` on non-Windows OS.
|
|
# 1. Copy tmp_file to Target(Dst) file.
|
|
shutil.copy2(src=tmp_path, dst=path)
|
|
# 2. Delete tmp_file.
|
|
os.remove(tmp_path)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TensorMetadataAndValues:
|
|
"""
|
|
TensorMetadata plus the elements as a list of raw values.
|
|
Used for hashing inlined constants.
|
|
"""
|
|
|
|
tensor_metadata: TensorMetadata
|
|
values: list[Any]
|
|
|
|
|
|
def _ident(x: T) -> T:
|
|
return x
|
|
|
|
|
|
def extract_tensor_metadata_for_cache_key(t: Tensor) -> TensorMetadata:
|
|
"""
|
|
Extracts the tensor metadata and removes fields of the TensorMetadata
|
|
that are not needed for caching
|
|
"""
|
|
meta = extract_tensor_metadata(t)
|
|
if not hasattr(t, "_is_inductor_static"):
|
|
meta = dataclasses.replace(meta, storage_offset=0, storage_bytes=None)
|
|
|
|
return meta
|
|
|
|
|
|
class FxGraphCachePickler(pickle.Pickler):
|
|
"""
|
|
Custom pickler to customize the pickling of some objects (Tensors), only for the
|
|
purpose of computing a hash for keying into the FxGraphCache. Tensors contain
|
|
objects that don't pickle and/or vary between runs, and we want to capture the
|
|
data that allow us to compute a stable, but safe hash.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
has_user_defined_triton_kernels: bool = False,
|
|
) -> None:
|
|
"""
|
|
Create an FX graph pickler. If include_non_inlined=True, then pickling will
|
|
include the _values_ for all Tensors. (Note that any tensors are constants
|
|
attached as attributes to the GraphModule). Otherwise, pickling will include
|
|
only the metadata for these tensors.
|
|
"""
|
|
self._stream = io.BytesIO()
|
|
super().__init__(self._stream)
|
|
|
|
self.dispatch_table = copyreg.dispatch_table.copy()
|
|
self.dispatch_table.update(
|
|
{
|
|
FakeTensor: functools.partial(self._reduce_fake_tensor),
|
|
torch.Tensor: functools.partial(self._reduce_tensor),
|
|
torch.nn.parameter.Parameter: functools.partial(self._reduce_tensor),
|
|
torch.SymInt: functools.partial(self._reduce_symint),
|
|
torch.fx.experimental._backward_state.BackwardState: functools.partial(
|
|
self._reduce_unsupported
|
|
),
|
|
}
|
|
)
|
|
if has_user_defined_triton_kernels:
|
|
# Need to use runtime type as GraphModule generates a singleton in __new__ function
|
|
self.dispatch_table[gm.__class__] = functools.partial(
|
|
self._reduce_graph_module
|
|
)
|
|
|
|
# Run with pickler.fast so it doesn't intern strings, making the hash result more predictable
|
|
# TODO: pickler.fast is technically deprecated. Will this work on new python versions?
|
|
self.fast = True
|
|
|
|
def _reduce_fake_tensor(
|
|
self, t: Tensor
|
|
) -> tuple[Callable[[T], T], tuple[TensorMetadata]]:
|
|
"""
|
|
Custom reducer to pickle FakeTensors.
|
|
"""
|
|
metadata = extract_tensor_metadata_for_cache_key(t)
|
|
return (_ident, (metadata,))
|
|
|
|
def _reduce_tensor(
|
|
self, t: Tensor
|
|
) -> tuple[Callable[[T], T], tuple[Union[TensorMetadata, TensorMetadataAndValues]]]:
|
|
"""
|
|
Custom reducer to pickle Tensors. If we see tensors, we know they're constants
|
|
stored as attributes on the GraphModule.
|
|
"""
|
|
from .graph import GraphLowering
|
|
|
|
if t.is_mkldnn:
|
|
# TODO: These tensors don't currently pickle, so we can't cache a compiled
|
|
# graph containing them. Just fail now. If mkldnn tensors get pickling
|
|
# support, we can remove this.
|
|
raise BypassFxGraphCache("mkldnn tensors unpickleable")
|
|
|
|
metadata = extract_tensor_metadata_for_cache_key(t)
|
|
|
|
# If this is a non-inlined frozen parameter, we consider the metadata only.
|
|
if is_frozen_param(t) and not GraphLowering.can_inline_constant(t):
|
|
return (_ident, (metadata,))
|
|
|
|
# Very large tensors will be expensive to copy to cpu and hash. Let's at least
|
|
# report any slowness.
|
|
start = time()
|
|
values = t.tolist()
|
|
elapsed = time() - start
|
|
if elapsed > 1.0:
|
|
warnings.warn(
|
|
f"FX graph cache copying of a large constant took {elapsed:.1}s. "
|
|
"Please file an issue."
|
|
)
|
|
|
|
return (_ident, (TensorMetadataAndValues(metadata, values),))
|
|
|
|
def _reduce_symint(self, s: SymInt) -> tuple[Callable[[T], T], tuple[str]]:
|
|
"""
|
|
Custom reducer to pickle SymInts.
|
|
"""
|
|
# For hashing purposes, we only care about the name of the symbol and not the
|
|
# backed value. We evaluate guards stored with a cached graph to ensure a cached
|
|
# entity with SymInt args is safe to reuse.
|
|
return (_ident, (str(s),))
|
|
|
|
def _reduce_unsupported(self, s: Any) -> NoReturn:
|
|
"""
|
|
Custom reducer to handle any objects that we don't support and therefore
|
|
raise to bypass caching.
|
|
"""
|
|
raise BypassFxGraphCache("Reduce unsupported")
|
|
|
|
def _reduce_graph_module(
|
|
self, gm: torch.fx.GraphModule
|
|
) -> tuple[Any, tuple[dict[str, Any], str]]:
|
|
"""
|
|
Custom reducer for graph module to handle irrelevant data for user
|
|
defined triton kernels
|
|
Essentially what we are doing here is a huge hack where user defined
|
|
triton kernel contain a dynamo time side table and the arguments to the
|
|
call_function are indices into this side table. These arguments are not
|
|
for hashing purposes since we included the source code into the cache
|
|
key and the numbers are prone to give false negatives due to ordering.
|
|
"""
|
|
fn, (data, imports) = gm.__reduce__()
|
|
code = data["_code"]
|
|
code = re.sub(r"kernel_idx = \d+", "", code)
|
|
code = re.sub(r"constant_args_idx = \d+", "", code)
|
|
data["_code"] = code
|
|
return fn, (data, imports)
|
|
|
|
def dumps(self, obj: Any) -> bytes:
|
|
"""
|
|
Pickle an object and return a byte string.
|
|
"""
|
|
try:
|
|
self.dump(obj)
|
|
return self._stream.getvalue()
|
|
except (TypeError, AttributeError) as e:
|
|
# Some configs options may not pickle.
|
|
log.warning("Failed to pickle cache key", exc_info=True)
|
|
raise BypassFxGraphCache("Failed to pickle cache key") from e
|
|
finally:
|
|
# Reset our stream for the next dump.
|
|
self._stream.seek(0)
|
|
self._stream.truncate(0)
|
|
|
|
def get_hash(self, obj: Any) -> str:
|
|
"""
|
|
Serialize an object and return a hash of the bytes.
|
|
"""
|
|
serialized_data = self.dumps(obj)
|
|
return sha256_hash(serialized_data)
|
|
|
|
def debug_lines(self, inp: FxGraphHashDetails) -> list[str]:
|
|
"""
|
|
Get a printable string describing in more detail all the attributes
|
|
comprising an object. Useful for debugging when one graph hashes
|
|
to a different value than another.
|
|
"""
|
|
|
|
def get_str(obj: Any) -> str:
|
|
if isinstance(obj, torch.Tensor):
|
|
return str(extract_tensor_metadata_for_cache_key(obj))
|
|
elif isinstance(obj, bytes):
|
|
return "<bytes>"
|
|
elif type(obj) in self.dispatch_table:
|
|
# Run the reducer on the object
|
|
return str(self.dispatch_table[type(obj)](obj)[1])
|
|
else:
|
|
return str(obj)
|
|
|
|
lines = []
|
|
for attr, obj in vars(inp).items():
|
|
if isinstance(obj, list):
|
|
for ii in range(len(obj)):
|
|
h = self.get_hash(obj[ii])
|
|
lines.append(f"[{h}] {attr}[{ii}]: {get_str(obj[ii])}")
|
|
elif isinstance(obj, dict):
|
|
for k, v in obj.items():
|
|
h = self.get_hash(v)
|
|
lines.append(f"[{h}] {attr}[{k}]: {get_str(v)}")
|
|
else:
|
|
h = self.get_hash(obj)
|
|
lines.append(f"[{h}] {attr}: {get_str(obj)}")
|
|
return lines
|
|
|
|
|
|
def build_code_hash(
|
|
roots: list[str] | None, prefix: str, hasher: hashlib._Hash
|
|
) -> None:
|
|
for lib in sorted(pkgutil.iter_modules(roots, prefix), key=lambda x: x.name):
|
|
spec = lib.module_finder.find_spec(lib.name, None)
|
|
assert spec is not None
|
|
module = spec.origin
|
|
assert module is not None
|
|
with open(module, "rb") as f:
|
|
hasher.update(spec.name.encode("utf-8"))
|
|
hasher.update(f.read())
|
|
if lib.ispkg:
|
|
# need to also hash submodules
|
|
build_code_hash(spec.submodule_search_locations, f"{spec.name}.", hasher)
|
|
|
|
|
|
def torch_key_cache(func: Callable[[], bytes]) -> Callable[[], bytes]:
|
|
"""
|
|
This function is a reimplementation of functools.lru_cache with a
|
|
set function that allows prepopulating the cache.
|
|
"""
|
|
# Use list for reference semantics
|
|
_cache: list[bytes] = []
|
|
|
|
def wrapper() -> bytes:
|
|
if len(_cache) == 0:
|
|
_cache.append(func())
|
|
return _cache[0]
|
|
|
|
def set_val(val: bytes) -> None:
|
|
assert len(_cache) == 0
|
|
_cache.append(val)
|
|
|
|
def clear() -> None:
|
|
_cache.clear()
|
|
|
|
wrapper.set = set_val # type: ignore[attr-defined]
|
|
wrapper.clear = clear # type: ignore[attr-defined]
|
|
return wrapper
|
|
|
|
|
|
@torch_key_cache
|
|
def torch_key() -> bytes:
|
|
"""
|
|
Compute a key that contains relevant information about torch source files
|
|
"""
|
|
with dynamo_timed("inductor_codecache_torch_key", log_pt2_compile_event=False):
|
|
if not config.is_fbcode():
|
|
|
|
def get_code_hash(root: str) -> bytes:
|
|
# This function isn't meant to be used outside of torch_key, just a
|
|
# helper for clarity. Instead, use torch_key() directly when you need
|
|
# a hash representing the state of the source code.
|
|
extra_files = (
|
|
"codegen/aoti_runtime/interface.cpp",
|
|
"script.ld",
|
|
)
|
|
inductor_root = os.path.dirname(__file__)
|
|
extra_files = [os.path.join(inductor_root, x) for x in extra_files]
|
|
hasher = hashlib.sha256()
|
|
hasher.update(torch.__version__.encode("utf-8"))
|
|
build_code_hash([root], "", hasher)
|
|
for path in extra_files:
|
|
if os.path.exists(path):
|
|
with open(path, "rb") as f:
|
|
hasher.update(f.read())
|
|
return hasher.digest()
|
|
|
|
return get_code_hash(_TORCH_PATH)
|
|
|
|
from libfb.py import parutil
|
|
|
|
return parutil.get_file_contents("torch/src_hash.txt").rstrip().encode("ascii")
|
|
|
|
|
|
def get_inductor_root() -> str:
|
|
return os.path.dirname(__file__)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class OrderedSetHolder:
|
|
"""
|
|
See FxGraphHashDetails. Holds a sorted list to support stable hashing
|
|
of set kwargs.
|
|
"""
|
|
|
|
items: list[Any]
|
|
|
|
|
|
class BypassFxGraphCache(Exception):
|
|
"""
|
|
Exception to indicate that the FxGraphCache should be bypassed.
|
|
"""
|
|
|
|
|
|
class FxGraphHashDetails:
|
|
"""
|
|
Object to capture all the details for a compiled FX graph relevant to computing
|
|
a safe and stable cache key.
|
|
"""
|
|
|
|
# Excluded kwargs param that are not stable between runs
|
|
EXCLUDED_KWARGS = ["graph_id"]
|
|
|
|
def __init__(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: Sequence[InputType],
|
|
fx_kwargs: _CompileFxKwargs,
|
|
inputs_to_check: Sequence[int],
|
|
) -> None:
|
|
self.gm = gm
|
|
self.example_inputs = example_inputs
|
|
self.cache_key_tag = cconfig.cache_key_tag
|
|
|
|
# Order kwargs so hashing is stable to changes in kwarg order. Although
|
|
# it's technically a _CompileFxKwargs we don't actually need it typed as
|
|
# such since we're just using it to generate a hash.
|
|
self.fx_kwargs: dict[str, object] = {}
|
|
for k, v in sorted(fx_kwargs.items()):
|
|
if k not in self.EXCLUDED_KWARGS:
|
|
if type(v) in (set, OrderedSet): # noqa: set_linter
|
|
# Special case to handle set params. Python sets can't be
|
|
# ordered, so sort the elements and store them in a proxy.
|
|
self.fx_kwargs[k] = OrderedSetHolder(sorted(v)) # type: ignore[call-overload]
|
|
else:
|
|
self.fx_kwargs[k] = v
|
|
|
|
from torch._higher_order_ops.triton_kernel_wrap import (
|
|
kernel_side_table,
|
|
triton_kernel_wrapper_functional,
|
|
triton_kernel_wrapper_mutation,
|
|
)
|
|
from torch._inductor.codegen.wrapper import (
|
|
user_defined_triton_kernel_transitive_closure_source_code,
|
|
)
|
|
|
|
# Node meta will not be part of gm's reduce function, so lets remember
|
|
# the kernel source code separately
|
|
self.user_defined_triton_source: list[Any] = []
|
|
if gm is not None:
|
|
for module in gm.modules():
|
|
if not isinstance(module, torch.fx.GraphModule):
|
|
continue
|
|
for node in itertools.chain(
|
|
module.graph.find_nodes(
|
|
op="call_function", target=triton_kernel_wrapper_functional
|
|
),
|
|
module.graph.find_nodes(
|
|
op="call_function", target=triton_kernel_wrapper_mutation
|
|
),
|
|
):
|
|
from triton.runtime.autotuner import Autotuner
|
|
|
|
kernel = kernel_side_table.get_kernel(node.kwargs["kernel_idx"])
|
|
configs = None
|
|
if isinstance(kernel, Autotuner):
|
|
if kernel.configs:
|
|
configs = str(
|
|
sorted(
|
|
sorted(str(kv) for kv in c.all_kwargs().items())
|
|
for c in kernel.configs
|
|
)
|
|
)
|
|
kernel = kernel.fn
|
|
|
|
kernel_source = (
|
|
user_defined_triton_kernel_transitive_closure_source_code(
|
|
kernel
|
|
)
|
|
)
|
|
constant_args = kernel_side_table.get_constant_args(
|
|
node.kwargs["constant_args_idx"]
|
|
)
|
|
self.user_defined_triton_source.append(
|
|
(kernel_source, constant_args, configs)
|
|
)
|
|
|
|
# Alignment checks
|
|
self.inputs_to_check = inputs_to_check
|
|
|
|
no_tensor_inputs = not any(isinstance(x, torch.Tensor) for x in example_inputs)
|
|
# This device index is usually already encoded by the device of the inputs
|
|
# but fx graphs don't necessarily have tensor inputs. If there aren't any,
|
|
# we need to guard on the device index in case we allocate cuda tensors
|
|
if no_tensor_inputs and torch.accelerator.is_available():
|
|
self.default_cuda_device_index = torch.accelerator.current_device_index()
|
|
|
|
# 'Deterministic algorithms' can affect codegen via lowering to cuda kernels.
|
|
self.deterministic_algorithms_settings = (
|
|
torch.are_deterministic_algorithms_enabled(),
|
|
torch.is_deterministic_algorithms_warn_only_enabled(),
|
|
torch.utils.deterministic.fill_uninitialized_memory, # type: ignore[attr-defined]
|
|
)
|
|
|
|
# Global settings affecting matmul codegen.
|
|
self.cuda_matmul_settings = (
|
|
torch.backends.cuda.matmul.fp32_precision,
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction,
|
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction,
|
|
)
|
|
|
|
# Also hash on various system info (including the triton compiler version).
|
|
self.torch_version = torch_key()
|
|
self.system_info = CacheBase.get_system()
|
|
self.inductor_config = config.save_config_portable(ignore_private_configs=False)
|
|
# Custom post grad passes should provide an ID to hash.
|
|
self.post_grad_custom_pre_pass = self._get_custom_pass_detail(
|
|
config.post_grad_custom_pre_pass
|
|
)
|
|
# TODO: change to more holistic config rather than bundled_autograd_cache
|
|
self.precompile_enabled = torch._functorch.config.bundled_autograd_cache
|
|
self.post_grad_custom_post_pass = self._get_custom_pass_detail(
|
|
config.post_grad_custom_post_pass
|
|
)
|
|
self.joint_custom_pre_pass = self._get_custom_pass_detail(
|
|
config.joint_custom_pre_pass
|
|
)
|
|
self.joint_custom_post_pass = self._get_custom_pass_detail(
|
|
config.joint_custom_post_pass
|
|
)
|
|
self._pre_fusion_custom_pass = self._get_custom_pass_detail_unsafe(
|
|
config._pre_fusion_custom_pass
|
|
)
|
|
self._fuse_ddp_communication_passes = self._get_custom_pass_detail_unsafe(
|
|
config._fuse_ddp_communication_passes
|
|
)
|
|
|
|
# Register indcutor backends and custom passes and get their UUIDs.
|
|
init_backend_registration()
|
|
self.custom_backend_passes = tuple(
|
|
map(self._get_custom_pass_detail, custom_backend_passes.values())
|
|
)
|
|
|
|
# Save custom inductor codegen configs
|
|
self.custom_backend_codegen_configs = {
|
|
device: custom_config.save_config_portable(ignore_private_configs=False)
|
|
for device, custom_config in custom_backend_codegen_configs.items()
|
|
if custom_config is not None
|
|
}
|
|
|
|
# This is mainly added to handle these two inductor configs, which are (unfortunately)
|
|
# sometimes cache safe:
|
|
# - _pre_fusion_custom_pass
|
|
# - _fuse_ddp_communication_passes
|
|
# Their types can be found in `torch/_inductor/config.py`, but:
|
|
# - if they are string names, we can cache them safely (one is by default)
|
|
# - if any of them are set to custom callables, we will need to cache miss
|
|
# Future work is for someone to find any places where these functions are used
|
|
# and force them to be of type CustomGraphPass, so we can guarantee serialization.
|
|
def _get_custom_pass_detail_unsafe(self, custom_pass: Any) -> Optional[Any]:
|
|
if not custom_pass:
|
|
return None
|
|
if isinstance(custom_pass, list):
|
|
return [self._get_custom_pass_detail_unsafe(x) for x in custom_pass]
|
|
if isinstance(custom_pass, str):
|
|
return custom_pass
|
|
if isinstance(custom_pass, CustomGraphPass):
|
|
return custom_pass.uuid()
|
|
if callable(custom_pass):
|
|
# Returning None is safe here because we raise an explicit bypass error
|
|
# later if we detect these passes are set to callables
|
|
return None
|
|
raise AssertionError(f"unknown config type: {str(type(custom_pass))}")
|
|
|
|
def _get_custom_pass_detail(
|
|
self, custom_pass: Union[CustomGraphPassType, CustomGraphModulePass]
|
|
) -> Optional[Any]:
|
|
if not custom_pass:
|
|
return None
|
|
assert isinstance(custom_pass, (CustomGraphPass, CustomGraphModulePass))
|
|
return custom_pass.uuid()
|
|
|
|
|
|
def compiled_fx_graph_hash(
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: Sequence[InputType],
|
|
fx_kwargs: _CompileFxKwargs,
|
|
inputs_to_check: Sequence[int],
|
|
) -> tuple[str, list[str]]:
|
|
"""
|
|
Generate a unique hash of the FX graph for caching.
|
|
"""
|
|
details = FxGraphHashDetails(gm, example_inputs, fx_kwargs, inputs_to_check)
|
|
has_user_defined_triton_kernels = len(details.user_defined_triton_source) != 0
|
|
pickler = FxGraphCachePickler(gm, has_user_defined_triton_kernels)
|
|
|
|
# The prefix distinguishes among the other kinds of objects we
|
|
# cache in this module.
|
|
key = "f" + pickler.get_hash(details)
|
|
debug_lines = pickler.debug_lines(details)
|
|
debug_str = "\n".join(debug_lines)
|
|
log.debug(f"FX graph cache hash details for key {key}:\n{debug_str}") # noqa: G004
|
|
return key, debug_lines
|
|
|
|
|
|
def add_ephemeral_timeout_increase_for_distributed(time_saved_ns: int) -> int:
|
|
"""
|
|
Ephemerally increases the NCCL timeout when compiling for a distributed job
|
|
Returns amount of seconds increased
|
|
"""
|
|
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
|
|
return 0
|
|
|
|
increased_timeout_sec = int(time_saved_ns // 1e9) # convert to seconds
|
|
|
|
if config.is_fbcode():
|
|
fudge_factor = torch._utils_internal.justknobs_getval_int(
|
|
"pytorch/remote_cache:ephemeral_timeout_fudge_factor_percentage"
|
|
)
|
|
log.info(
|
|
"Ephemeral NCCL timeout increase fudge factor %d and original increase value %d",
|
|
fudge_factor,
|
|
increased_timeout_sec,
|
|
)
|
|
increased_timeout_sec += int(increased_timeout_sec * fudge_factor / 100)
|
|
|
|
log.info("Increasing NCCL timeout by %d", increased_timeout_sec)
|
|
dist.distributed_c10d._add_ephemeral_timeout_for_all_pgs(
|
|
timedelta(seconds=increased_timeout_sec)
|
|
)
|
|
return increased_timeout_sec
|
|
|
|
|
|
class GuardedCache(Generic[T]):
|
|
"""
|
|
Mixin for caches that have guards associated with their entries.
|
|
"""
|
|
|
|
@classmethod
|
|
def _get_tmp_dir_for_key(cls: type[GuardedCache[T]], _key: str) -> str:
|
|
raise NotImplementedError("Implement _get_tmp_dir_for_key on parent class")
|
|
|
|
@classmethod
|
|
def iterate_over_candidates(
|
|
cls: type[GuardedCache[T]],
|
|
local: bool,
|
|
remote_cache: Optional[RemoteCache[JsonDataTy]],
|
|
key: str,
|
|
) -> Generator[tuple[T, bytes], None, None]:
|
|
if local:
|
|
subdir = cls._get_tmp_dir_for_key(key)
|
|
if os.path.exists(subdir):
|
|
for path in sorted(os.listdir(subdir)):
|
|
try:
|
|
with open(os.path.join(subdir, path), "rb") as f:
|
|
content = f.read()
|
|
yield pickle.loads(content), content
|
|
except Exception:
|
|
log.warning(
|
|
"fx graph cache unable to load compiled graph",
|
|
exc_info=True,
|
|
)
|
|
|
|
if remote_cache:
|
|
try:
|
|
if (cache_data := remote_cache.get(key)) is not None:
|
|
assert isinstance(cache_data, dict)
|
|
data = cache_data["data"]
|
|
assert isinstance(data, (str, bytes))
|
|
content = base64.b64decode(data)
|
|
yield pickle.loads(content), content
|
|
except Exception:
|
|
log.warning(
|
|
"%s unable to load compiled graph", cls.__name__, exc_info=True
|
|
)
|
|
|
|
@classmethod
|
|
def find_guarded_entry(
|
|
cls: type[GuardedCache[T]],
|
|
key: str,
|
|
local: bool,
|
|
remote_cache: Optional[RemoteCache[JsonDataTy]],
|
|
evaluate_guards: Callable[[str, Union[list[int], list[torch.SymInt]]], bool],
|
|
hints: list[int],
|
|
) -> tuple[Optional[T], Optional[bytes], dict[str, str]]:
|
|
"""
|
|
Find the first cache entry in iterate_over_candidates that passes `evaluate_guards`.
|
|
|
|
Args:
|
|
key: The cache key to look up
|
|
local: Whether to check the local cache
|
|
remote_cache: The remote cache to check, if any
|
|
evaluate_guards: Function that evaluates whether a guard passes the check,
|
|
given a list of hint values and the guard expression.
|
|
hints: List of symint hints paired with evaluate_guards
|
|
|
|
Returns:
|
|
A tuple of (graph, pickled_content) if found, or (None, None) if not found
|
|
"""
|
|
graph = None
|
|
pickled_content = None
|
|
result_status = "full_miss"
|
|
sample_guards_expr = None
|
|
|
|
# Iterate over any entries in the subdir for this key and evaluate
|
|
# guards to determine whether there's a hit.
|
|
|
|
for candidate, content in cls.iterate_over_candidates(local, remote_cache, key):
|
|
assert hasattr(candidate, "guards_expr")
|
|
if not candidate.guards_expr: # type: ignore[attr-defined]
|
|
# No guards to evaluate, so this is a hit.
|
|
graph = candidate
|
|
pickled_content = content
|
|
result_status = "hit"
|
|
break
|
|
|
|
# Evaluate the guard expression in the current context.
|
|
# If there's not a cache hit, we don't want the evaluation to
|
|
# affect the current env, e.g., cause the creation of new guards,
|
|
# so we evaluate with the hints instead of the symbols.
|
|
hit = bool(evaluate_guards(candidate.guards_expr, hints)) # type: ignore[attr-defined]
|
|
if hit:
|
|
graph = candidate
|
|
pickled_content = content
|
|
result_status = "hit"
|
|
sample_guards_expr = candidate.guards_expr
|
|
break
|
|
else:
|
|
# At least one guard missed, log this
|
|
result_status = "guard_miss"
|
|
sample_guards_expr = candidate.guards_expr
|
|
|
|
info = {"cache_status_detailed": result_status}
|
|
if sample_guards_expr is not None:
|
|
info["cache_status_guard_expr"] = sample_guards_expr
|
|
return graph, pickled_content, info
|
|
|
|
@classmethod
|
|
def _filter_backed_symints(
|
|
cls: type[GuardedCache[T]], inputs: Sequence[InputType]
|
|
) -> list[torch.SymInt]:
|
|
"""
|
|
Get the backed SymInt objects from the input list. Note that we can never
|
|
have guards that depend on unbacked symint.
|
|
"""
|
|
return [s for s in inputs if isinstance(s, torch.SymInt) and has_hint(s)]
|
|
|
|
@classmethod
|
|
def _get_shape_env(cls: type[GuardedCache[T]]) -> Optional[ShapeEnv]:
|
|
"""
|
|
Helper to get the shape env from the tracing context.
|
|
"""
|
|
ctx = torch._guards.TracingContext.try_get()
|
|
if not ctx or not ctx.fake_mode:
|
|
return None
|
|
return ctx.fake_mode.shape_env
|
|
|
|
|
|
@CacheArtifactFactory.register
|
|
class InductorCacheArtifact(CacheArtifact):
|
|
@override
|
|
def populate_cache(self) -> None:
|
|
FxGraphCache._write_to_local_cache(self.key, self.content)
|
|
|
|
@override
|
|
@staticmethod
|
|
def type() -> str:
|
|
return "inductor"
|
|
|
|
|
|
class FxGraphCache(GuardedCache[CompiledFxGraph]):
|
|
"""
|
|
Supports caching and reusing compiled Fx graphs.
|
|
|
|
The overall strategy is as follows:
|
|
- This cache stores entries on disk. When saving an entry, we can't
|
|
serialize callables (that could be C++, Triton, etc.), so we serialize
|
|
their own disk cache location. We then recreate the compiled artifact
|
|
after fetching from disk.
|
|
- For indexing the cache, we gather the fields relevant to identifying an
|
|
FxGraph (the graph module, graph inputs, system settings etc.) into an
|
|
FxGraphCacheDetails object, pickle it, and compute a hash for the key.
|
|
See FxGraphCachePickler.
|
|
- Among the metadata we store, we also include a guards expression that's
|
|
appropriate for validating any symbols for Tensor arguments that have
|
|
symbolic bounds. On cache lookup then, we evaluate those guards in the
|
|
current context to validate that a cached entry can be served.
|
|
- A given graph could have multiple compiled versions, corresponding to
|
|
different sets of guards. Therefore, we store cache entries in the form:
|
|
<temp dir>/<fx graph hash>/<serialized metadata>
|
|
- On lookup, we compute the key from the graph details, iterate over all
|
|
leaf files in the corresponding subdirectory, deserialize the entry, and
|
|
evaluate its guards expression. If the evaluation succeeds, we have a
|
|
cache hit. If it fails, we compile the graph and store a new entry.
|
|
- Finally, on a cache hit, we need to make sure any guards that would
|
|
have been created during compilation are added to the current context.
|
|
"""
|
|
|
|
# TODO(masnesral): Investigate whether it's beneficial to store compiled graphs
|
|
# in an in-memory cache after loading from disk.
|
|
@staticmethod
|
|
def _get_tmp_dir() -> str:
|
|
"""
|
|
Get the toplevel temporary directory for storing compiled graphs.
|
|
"""
|
|
return os.path.join(cache_dir(), "fxgraph")
|
|
|
|
@classmethod
|
|
def _get_tmp_dir_for_key(cls: type[FxGraphCache], key: str) -> str:
|
|
"""
|
|
Return the disk location for a given cache key.
|
|
"""
|
|
return os.path.join(FxGraphCache._get_tmp_dir(), key[1:3], key)
|
|
|
|
@staticmethod
|
|
def cache_hit_post_compile(
|
|
graph: CompiledFxGraph,
|
|
cache_info: dict[str, Any],
|
|
constants: CompiledFxGraphConstants,
|
|
) -> tuple[Optional[CompiledFxGraph], dict[str, Any]]:
|
|
"""
|
|
Cache specific post compile steps that need to run if we find a graph in the cache
|
|
This includes putting bundled triton artifacts in the right place,
|
|
reloading the PyCodeCache artifact, etc.
|
|
|
|
These don't always happen (i.e. on a cache miss, so they are in a separate function from
|
|
CompiledFxGraph.post_compile)
|
|
"""
|
|
if bundle := graph._triton_bundle:
|
|
triton_bundler_meta = TritonBundler.read_and_emit(bundle)
|
|
if (meta := triton_bundler_meta) is not None:
|
|
cache_info["triton_bundler_meta"] = str(meta)
|
|
CompileEventLogger.try_add_pt2_compile(
|
|
"inductor_compile", cached_kernel_names=meta.cached_kernel_names
|
|
)
|
|
CompileEventLogger.try_add_pt2_compile(
|
|
"AOTAutogradCache.inductor_load",
|
|
cached_kernel_names=meta.cached_kernel_names,
|
|
)
|
|
if len(meta.cached_kernel_names) > 0:
|
|
CompileEventLogger.try_(
|
|
CompileEventLogger.increment_toplevel, "num_triton_bundles"
|
|
)
|
|
|
|
try:
|
|
artifact_path = graph.after_deserialization(constants)
|
|
|
|
from .graph import GraphLowering
|
|
|
|
# This is used by tests to check the output for specific details.
|
|
if GraphLowering.save_output_code is not None:
|
|
GraphLowering.save_output_code(graph.source_code)
|
|
|
|
except OSError:
|
|
# Not expected, but in case the PyCodeCache entry is removed from
|
|
# underneath us, treat it as a cache miss and recompile.
|
|
return None, cache_info
|
|
|
|
inductor_meta = autotune_cache.inductor_meta_from_config()
|
|
code = graph.source_code
|
|
AutotuneCacheBundler.begin_compile(inductor_meta, code=code)
|
|
|
|
# Increment the cached metrics/counters by the amounts recorded when the FX
|
|
# graph was compiled for this cache entry. Pretending these counters
|
|
# were incremented normally is useful for testing with the cache enabled.
|
|
metrics.CachedMetricsHelper.apply_deltas(graph.metrics_deltas)
|
|
counters["inductor"] += graph.counter_deltas
|
|
|
|
output_code_log.debug("Output code: \n%s", code)
|
|
output_code_log.debug("Output code written to: %s", artifact_path)
|
|
# On cache hit, use artifact path as filename
|
|
trace_structured(
|
|
"artifact",
|
|
metadata_fn=lambda: {
|
|
"name": "fx_graph_runnable",
|
|
"encoding": "string",
|
|
},
|
|
payload_fn=lambda: graph.runnable_graph_str,
|
|
)
|
|
trace_structured(
|
|
"inductor_post_grad_graph",
|
|
payload_fn=lambda: graph.inductor_post_grad_graph_str,
|
|
)
|
|
trace_structured(
|
|
"inductor_output_code",
|
|
lambda: {"filename": artifact_path},
|
|
payload_fn=lambda: code,
|
|
)
|
|
return graph, cache_info
|
|
|
|
@staticmethod
|
|
def _lookup_graph(
|
|
key: str,
|
|
example_inputs: Sequence[InputType],
|
|
local: bool,
|
|
remote_cache: Optional[RemoteCache[JsonDataTy]],
|
|
constants: CompiledFxGraphConstants,
|
|
evaluate_guards: Optional[
|
|
Callable[[str, Union[list[int], list[torch.SymInt]]], bool]
|
|
] = None,
|
|
) -> tuple[Optional[CompiledFxGraph], dict[str, Any]]:
|
|
"""
|
|
Lookup a compiled graph in the cache by key. On a hit, return the
|
|
deserialized CompiledFxGraph object. On a miss, return None.
|
|
`constants` tracks a list of constants, or a way to obtain the list of constants
|
|
associated with a given cache entry
|
|
`evaluate_guards` allows AOTAutogradCache and other callers to customize
|
|
what constitutes a guard success. Normally, a guard hit happens if
|
|
`shape_env.evaluate_guards_expression` returns True.
|
|
"""
|
|
shape_env = FxGraphCache._get_shape_env()
|
|
assert shape_env is not None
|
|
|
|
symints = FxGraphCache._filter_backed_symints(example_inputs)
|
|
hints = [hint_int(s) for s in symints]
|
|
|
|
# If this config is turned on, everything is a guard hit and we check nothing
|
|
if config.unsafe_skip_cache_dynamic_shape_guards:
|
|
# This also makes it so we don't add anything to the dynamic
|
|
# shape environment
|
|
evaluate_guards = lambda x, y: True # noqa: E731
|
|
|
|
if evaluate_guards is None:
|
|
evaluate_guards = shape_env.evaluate_guards_expression
|
|
|
|
cache_info: dict[str, Any] = dict()
|
|
|
|
# Use the find_graph_for_key method to find a graph for the given key
|
|
graph, pickled_content, guard_info = FxGraphCache.find_guarded_entry(
|
|
key, local, remote_cache, evaluate_guards, hints
|
|
)
|
|
cache_info.update(guard_info)
|
|
if graph is None:
|
|
return None, cache_info
|
|
|
|
if pickled_content is not None:
|
|
CacheArtifactManager.record_artifact(
|
|
InductorCacheArtifact.type(), key, pickled_content
|
|
)
|
|
|
|
# Now re-evaluate with the symints to add any guards to the current env.
|
|
if graph.guards_expr:
|
|
check = bool(evaluate_guards(graph.guards_expr, symints))
|
|
assert check is True
|
|
log.debug(
|
|
"fx graph cache key %s post-load guards: %s", key, shape_env.guards
|
|
)
|
|
|
|
return FxGraphCache.cache_hit_post_compile(graph, cache_info, constants)
|
|
|
|
@staticmethod
|
|
def _write_to_local_cache(key: str, content: bytes) -> None:
|
|
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
|
if not os.path.exists(subdir):
|
|
os.makedirs(subdir, exist_ok=True)
|
|
|
|
# Use a hash of the serialized CompiledFxGraph to get a unique file
|
|
# name. The specific name doesn't matter since a lookup involves
|
|
# iterating over all entries in the parent subdir.
|
|
path = os.path.join(subdir, sha256_hash(content))
|
|
write_atomic(path, content, make_dirs=True)
|
|
|
|
@staticmethod
|
|
def _save_graph(
|
|
key: str,
|
|
compiled_graph: OutputCode,
|
|
example_inputs: Sequence[InputType],
|
|
local: bool,
|
|
remote_cache: Optional[RemoteCache[JsonDataTy]],
|
|
) -> None:
|
|
"""
|
|
Store a serialized CompiledFxGraph on disk.
|
|
"""
|
|
from .compile_fx import CompiledFxGraph
|
|
|
|
assert isinstance(compiled_graph, CompiledFxGraph), (
|
|
f"serialization for {type(compiled_graph)} NYI"
|
|
)
|
|
|
|
# Before serializing, compute the guard expression that will be used to
|
|
# ensure that a CompiledFxGraph is valid when loaded from the cache. It's
|
|
# sufficient to consider only the SymInt args to the fx graph since the
|
|
# Tensor shapes are already captured in the hash for the cache key. Any
|
|
# Tensor arg with a symbolic shape will have a SymInt arg for the graph.
|
|
shape_env = FxGraphCache._get_shape_env()
|
|
assert shape_env is not None
|
|
symints = FxGraphCache._filter_backed_symints(example_inputs)
|
|
guards = shape_env.get_pruned_guards(symints)
|
|
compiled_graph.guards_expr = shape_env.produce_guards_expression(
|
|
placeholders=symints, guards=guards
|
|
)
|
|
disk_compiled_graph = copy(compiled_graph)
|
|
disk_compiled_graph.prepare_for_serialization()
|
|
|
|
try:
|
|
content = pickle.dumps(disk_compiled_graph)
|
|
except Exception:
|
|
log.warning(
|
|
"fx graph cache unable to serialize compiled graph", exc_info=True
|
|
)
|
|
counters["inductor"]["fxgraph_cache_pickle_error"] += 1
|
|
return
|
|
|
|
try:
|
|
CacheArtifactManager.record_artifact(
|
|
InductorCacheArtifact.type(), key, content
|
|
)
|
|
if local:
|
|
FxGraphCache._write_to_local_cache(key, content)
|
|
|
|
if remote_cache:
|
|
time_taken_ms = int((disk_compiled_graph._time_taken_ns or 0) // 1e6)
|
|
cache_data: JsonDataTy = {
|
|
"data": base64.b64encode(content).decode("ascii"),
|
|
"time_taken_ms": time_taken_ms,
|
|
}
|
|
remote_cache.put(key, cache_data)
|
|
except Exception:
|
|
log.warning("fx graph unable to write to cache", exc_info=True)
|
|
counters["inductor"]["fxgraph_cache_write_error"] += 1
|
|
|
|
@staticmethod
|
|
def _check_for_hop(gm: torch.fx.GraphModule) -> None:
|
|
for module in gm.modules():
|
|
if not isinstance(module, torch.fx.GraphModule):
|
|
continue
|
|
for node in module.graph.nodes:
|
|
if (
|
|
isinstance(node.target, torch._ops.HigherOrderOperator)
|
|
and not node.target.cacheable()
|
|
):
|
|
raise BypassFxGraphCache(
|
|
f"Can't cache HigherOrderOperator: {node.target.name()}"
|
|
)
|
|
if node.op == "getattr" and isinstance(
|
|
getattr(gm, node.target), torch._C.ScriptObject
|
|
):
|
|
raise BypassFxGraphCache("Can't cache torchbind objects")
|
|
|
|
@staticmethod
|
|
def _check_can_cache(gm: torch.fx.GraphModule) -> None:
|
|
"""
|
|
Check some conditions that would preclude caching and raise BypassFxGraphCache
|
|
to bypass in case caching is not possible.
|
|
"""
|
|
# Post grad custom passes must implement the CustomGraphPass or we don't
|
|
# know how to include them in the cache key calculation.
|
|
for p in (config.post_grad_custom_pre_pass, config.post_grad_custom_post_pass):
|
|
if p and (not isinstance(p, CustomGraphPass) or not p.uuid()):
|
|
raise BypassFxGraphCache("Unsupported post grad custom pass")
|
|
# Same with the joint custom passes
|
|
for p in (config.joint_custom_pre_pass, config.joint_custom_post_pass):
|
|
if p and (not isinstance(p, CustomGraphPass) or not p.uuid()):
|
|
raise BypassFxGraphCache("Unsupported joint custom pass")
|
|
# We should find any users of _pre_fusion_custom_pass and _fuse_ddp_communication_passes
|
|
# and ensure they are not passing us raw callables
|
|
if config._pre_fusion_custom_pass is not None:
|
|
if not isinstance(config._pre_fusion_custom_pass, CustomGraphPass):
|
|
raise BypassFxGraphCache("Unsupported _pre_fusion_custom_pass")
|
|
for p in config._fuse_ddp_communication_passes:
|
|
if callable(p) and not isinstance(p, CustomGraphPass):
|
|
raise BypassFxGraphCache("Unsupported _fuse_ddp_communication_pass")
|
|
|
|
# Freezing can embed constants that wouldn't be static across runs.
|
|
if has_frozen_params(gm) and not torch._utils_internal.justknobs_check(
|
|
"pytorch/inductor:allow_freezing_with_caching"
|
|
):
|
|
raise BypassFxGraphCache("Skipping graph with frozen constants")
|
|
|
|
if config.aot_inductor.use_runtime_constant_folding:
|
|
raise BypassFxGraphCache(
|
|
"Runtime constant folding can introduce constants that aren't "
|
|
"static across runs"
|
|
)
|
|
|
|
from torch._inductor.compiler_bisector import CompilerBisector
|
|
|
|
if CompilerBisector.bisection_enabled:
|
|
log.debug("dont cache graph when bisect enabled")
|
|
raise BypassFxGraphCache
|
|
|
|
# The treatment of guards in the caching implementation requires that
|
|
# we have a shape env.
|
|
if FxGraphCache._get_shape_env() is None:
|
|
log.debug("fx graph cache no shape env")
|
|
raise BypassFxGraphCache("No shape env")
|
|
|
|
# We skip caching if there are any HOPs or torchbind objects.
|
|
FxGraphCache._check_for_hop(gm)
|
|
|
|
@staticmethod
|
|
def prepare_key(
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: Sequence[InputType],
|
|
fx_kwargs: _CompileFxKwargs,
|
|
inputs_to_check: Sequence[int],
|
|
remote: bool,
|
|
) -> tuple[Optional[tuple[str, list[str]]], dict[str, Any]]:
|
|
"""
|
|
Checks that the inductor input is cacheable, then computes
|
|
and returns the cache key for the input.
|
|
Returns (key_info, cache_info) where:
|
|
- key_info is (hash_key, debug_lines), and
|
|
- cache_info will contain debug info in the event of BypassFxGraphCache.
|
|
|
|
NB: It is possible to have this function return a union instead. But
|
|
I personally believe it is more annoying/difficult to read in that format.
|
|
"""
|
|
try:
|
|
FxGraphCache._check_can_cache(gm)
|
|
key, debug_lines = compiled_fx_graph_hash(
|
|
gm, example_inputs, fx_kwargs, inputs_to_check
|
|
)
|
|
except BypassFxGraphCache as e:
|
|
counters["inductor"]["fxgraph_cache_bypass"] += 1
|
|
log.info("Bypassing FX Graph Cache because '%s'", e)
|
|
if remote:
|
|
log_cache_bypass("bypass_fx_graph", str(e))
|
|
cache_info = {
|
|
"cache_state": "bypass",
|
|
"cache_bypass_reason": str(e),
|
|
"cache_event_time": time_ns(),
|
|
}
|
|
return None, cache_info
|
|
# If key exists, then cache_info will come from load_with_key
|
|
return (key, debug_lines), {}
|
|
|
|
@staticmethod
|
|
def get_remote_cache() -> Optional[RemoteCache[JsonDataTy]]:
|
|
"""
|
|
Attempts to load the remote cache, returns None on error.
|
|
"""
|
|
cache_id = "fx-graph-v1"
|
|
return create_cache(
|
|
cache_id,
|
|
config.is_fbcode(),
|
|
"FbRemoteFxGraphCache",
|
|
"RemoteFxGraphCache",
|
|
)
|
|
|
|
@staticmethod
|
|
def load_with_key(
|
|
key: str,
|
|
debug_lines: list[str],
|
|
example_inputs: Sequence[InputType],
|
|
local: bool,
|
|
remote_cache: Optional[RemoteCache[JsonDataTy]],
|
|
is_backward: bool,
|
|
constants: CompiledFxGraphConstants,
|
|
evaluate_guards: Optional[
|
|
Callable[[str, Union[list[int], list[torch.SymInt]]], bool]
|
|
] = None,
|
|
) -> tuple[Optional[CompiledFxGraph], dict[str, Any]]:
|
|
"""
|
|
Lookup the graph with the given key, and return results and metadata.
|
|
Doesn't do any logging on its own, because AOTAutograd handles a cache miss
|
|
differently from FXGraphCache.
|
|
"""
|
|
compiled_graph, cache_info = FxGraphCache._lookup_graph(
|
|
key, example_inputs, local, remote_cache, constants, evaluate_guards
|
|
)
|
|
cache_info = {
|
|
**cache_info,
|
|
"key": key,
|
|
"components": debug_lines,
|
|
"cache_event_time": time_ns(),
|
|
}
|
|
if compiled_graph is not None:
|
|
log.info("fx graph cache hit for key %s", key)
|
|
counters["inductor"]["fxgraph_cache_hit"] += 1
|
|
cache_info["cache_state"] = "hit"
|
|
if remote_cache:
|
|
# Count remote cache hit stats
|
|
CompileEventLogger.try_(
|
|
CompileEventLogger.increment_toplevel,
|
|
"inductor_fx_remote_cache_hit_count",
|
|
)
|
|
CompileEventLogger.try_(
|
|
CompileEventLogger.add_to_set_toplevel,
|
|
"inductor_fx_remote_cache_hit_keys",
|
|
key,
|
|
)
|
|
|
|
if (time_saved_ns := compiled_graph._time_taken_ns) is not None:
|
|
cache_info["time_saved_ns"] = time_saved_ns
|
|
CompileEventLogger.try_(
|
|
CompileEventLogger.increment_toplevel,
|
|
"distributed_ephemeral_timeout_us",
|
|
time_saved_ns // 1000,
|
|
)
|
|
if (
|
|
ephemeral_increase
|
|
:= add_ephemeral_timeout_increase_for_distributed(time_saved_ns)
|
|
) != 0:
|
|
cache_info["ephemeral_timeout_increase"] = ephemeral_increase
|
|
else:
|
|
if remote_cache:
|
|
# Count remote cache miss stats
|
|
CompileEventLogger.try_(
|
|
CompileEventLogger.increment_toplevel,
|
|
"inductor_fx_remote_cache_miss_count",
|
|
)
|
|
CompileEventLogger.try_(
|
|
CompileEventLogger.add_to_set_toplevel,
|
|
"inductor_fx_remote_cache_miss_keys",
|
|
key,
|
|
)
|
|
log.info("fx graph cache miss for key %s", key)
|
|
counters["inductor"]["fxgraph_cache_miss"] += 1
|
|
cache_info["cache_state"] = "miss"
|
|
|
|
return compiled_graph, cache_info
|
|
|
|
@staticmethod
|
|
def clear() -> None:
|
|
"""
|
|
Clear out the on-disk cache.
|
|
"""
|
|
try:
|
|
shutil.rmtree(FxGraphCache._get_tmp_dir())
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
|
|
@functools.cache
|
|
def split_aot_inductor_output_path(path: str) -> tuple[str, str]:
|
|
"""Returns the path where the AOT Inductor compiled kernels are stored."""
|
|
if path.endswith(".so"):
|
|
return os.path.split(path)
|
|
elif path.endswith(".pt2"):
|
|
return os.path.split(path)
|
|
else:
|
|
return path, ""
|
|
|
|
|
|
@clear_on_fresh_cache
|
|
class CudaKernelParamCache:
|
|
cache: dict[str, dict[str, Any]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
|
|
@classmethod
|
|
def set(
|
|
cls,
|
|
key: str,
|
|
params: dict[str, Optional[str]],
|
|
cubin: str,
|
|
bin_type: str,
|
|
asm: Optional[str] = None,
|
|
asm_type: Optional[str] = None,
|
|
) -> None:
|
|
basename = None
|
|
if config.aot_inductor.package_cpp_only:
|
|
assert config.triton.unique_kernel_names, (
|
|
"package_cpp_only requires triton kernel names to be unique"
|
|
)
|
|
assert params["mangled_name"], "Missing kernel name"
|
|
basename = params["mangled_name"]
|
|
|
|
_, bin_path = write(
|
|
cubin,
|
|
bin_type,
|
|
hash_type=bin_type,
|
|
specified_dir=split_aot_inductor_output_path(
|
|
config.aot_inductor.output_path
|
|
)[0],
|
|
key=basename,
|
|
)
|
|
# Retrieve the basename again in case it is a generated hashcode
|
|
basename, _ = get_name_and_dir_from_output_file_path(bin_path)
|
|
|
|
if config.aot_inductor.emit_multi_arch_kernel:
|
|
bin_type_to_ext = {"cubin": ".fatbin", "spv": ".spv"}
|
|
assert bin_type in bin_type_to_ext.keys(), (
|
|
"multi_arch_kernel_binary only supported in CUDA/XPU"
|
|
)
|
|
base_path, _ = os.path.splitext(bin_path)
|
|
bin_path = base_path + bin_type_to_ext[bin_type]
|
|
|
|
asm_path: str = ""
|
|
if (
|
|
config.aot_inductor.emit_multi_arch_kernel
|
|
or config.aot_inductor.package_cpp_only
|
|
):
|
|
assert asm, "Missing kernel assembly code"
|
|
assert asm_type, "Missing kernel assembly type"
|
|
_, asm_path = write(
|
|
asm,
|
|
asm_type,
|
|
hash_type=asm_type,
|
|
specified_dir=split_aot_inductor_output_path(
|
|
config.aot_inductor.output_path
|
|
)[0],
|
|
# make sure asm file has the same basename
|
|
key=basename,
|
|
)
|
|
|
|
params[get_cpp_wrapper_cubin_path_name()] = bin_path
|
|
params["asm"] = asm_path
|
|
cls.cache[key] = params
|
|
|
|
@classmethod
|
|
def get(cls, key: str) -> Optional[dict[str, Any]]:
|
|
return cls.cache.get(key, None)
|
|
|
|
@classmethod
|
|
def get_keys(cls) -> KeysView[str]:
|
|
return cls.cache.keys()
|
|
|
|
|
|
class AotCodeCompiler:
|
|
"""
|
|
Compile AOT Inductor generated code.
|
|
"""
|
|
|
|
@classmethod
|
|
def compile(
|
|
cls,
|
|
graph: GraphLowering,
|
|
wrapper_code: str,
|
|
kernel_code: str,
|
|
serialized_extern_kernel_nodes: Optional[str],
|
|
*,
|
|
device_type: str,
|
|
additional_files: list[str],
|
|
) -> Union[list[Union[str, Weights]], str]:
|
|
"""
|
|
Returns the .so path, or returns a list of files that were generated if
|
|
config.aot_inductor.package=True.
|
|
"""
|
|
generated_files: list[Union[str, Weights]] = additional_files # type: ignore[assignment]
|
|
|
|
_set_gpu_runtime_env() # cpp_extension consults the env
|
|
|
|
picked_vec_isa = pick_vec_isa()
|
|
vec_isa_cmd_gen = CppBuilder(
|
|
name="o",
|
|
sources="i",
|
|
BuildOption=CppTorchDeviceOptions(
|
|
vec_isa=picked_vec_isa,
|
|
device_type=device_type,
|
|
aot_mode=graph.aot_mode,
|
|
),
|
|
)
|
|
# write function will calc source_code hash, the same source code with different
|
|
# ISA level should be generate different hash.
|
|
# So we need get a command_line which contains isa related parameter as a part of hash key.
|
|
# And then pass the command_line to below write function as extra parameter to
|
|
# guarantee the source code hash contains ISA difference.
|
|
cpp_command = repr(vec_isa_cmd_gen.get_command_line())
|
|
|
|
# Meta internal AOTInductor CPU
|
|
use_relative_path = (
|
|
config.is_fbcode() and device_type == "cpu" and graph.aot_mode
|
|
)
|
|
|
|
(
|
|
specified_output_path,
|
|
specified_artifact_name,
|
|
) = split_aot_inductor_output_path(config.aot_inductor.output_path)
|
|
|
|
# TODO (benjaminglass1): the CMake packaging path doesn't support linking files
|
|
# built with different flags. Until that's implemented, append the kernel code
|
|
# to the wrapper and build everything at max optimization.
|
|
if config.aot_inductor.package_cpp_only:
|
|
wrapper_code = "\n".join((wrapper_code, kernel_code))
|
|
kernel_code = ""
|
|
|
|
wrapper_key, wrapper_path = write(
|
|
wrapper_code,
|
|
"wrapper.cpp",
|
|
extra=cpp_command,
|
|
specified_dir=specified_output_path,
|
|
key=config.aot_inductor.model_name_for_generated_files,
|
|
)
|
|
kernel_code = (
|
|
f"// Triton kernels are embedded as comments in {wrapper_path}\n"
|
|
+ kernel_code
|
|
)
|
|
_, kernel_path = write(
|
|
kernel_code,
|
|
"kernel.cpp",
|
|
extra=cpp_command,
|
|
specified_dir=specified_output_path,
|
|
key=config.aot_inductor.model_name_for_generated_files,
|
|
)
|
|
|
|
header_code = ""
|
|
header_path = ""
|
|
if config.aot_inductor.compile_standalone:
|
|
# to link statically, we also need a header file
|
|
with open(
|
|
os.path.join(
|
|
os.path.dirname(os.path.dirname(__file__)),
|
|
"csrc",
|
|
"inductor",
|
|
"aoti_runtime",
|
|
"model.h",
|
|
)
|
|
) as f:
|
|
# model_name_for_generated_files is guaranteed to be non-empty when compile_standalone
|
|
model_class_name = config.aot_inductor.model_name_for_generated_files
|
|
class_name = f"AOTInductorModel{model_class_name}"
|
|
header_code = f.read()
|
|
|
|
# we replace like this to avoid replacing
|
|
# AOTInductorModelBase and AOTInductorModelKernelsBase
|
|
header_code = (
|
|
header_code.replace("<AOTInductorModel>", f"<{class_name}>")
|
|
.replace("AOTInductorModel(", f"{class_name}(")
|
|
.replace("AOTInductorModel :", f"{class_name} :")
|
|
)
|
|
_, header_path = write(
|
|
header_code,
|
|
"h",
|
|
specified_dir=specified_output_path,
|
|
key=model_class_name,
|
|
)
|
|
|
|
# Log the AOTInductor wrapper and kernel code, if needed.
|
|
with WritableTempFile("w+") as t:
|
|
"""
|
|
Avoid "Permission denied error" on Windows:
|
|
with tempfile.NamedTemporaryFile("w", suffix=".gv") as temp_file:
|
|
# Not writable on Windows:
|
|
# https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile
|
|
|
|
Example:
|
|
with WritableTempFile("w", suffix=".gv") as temp_file:
|
|
tree.to_dotfile(temp_file.name)
|
|
"""
|
|
t.writelines((wrapper_code, "\n", kernel_code, "\n"))
|
|
t.flush()
|
|
V.debug.output_code(t.name, extension="cpp")
|
|
|
|
if config.aot_inductor.package:
|
|
generated_files.append(wrapper_path)
|
|
if not config.aot_inductor.package_cpp_only:
|
|
generated_files.append(kernel_path)
|
|
if config.aot_inductor.compile_standalone:
|
|
generated_files.append(header_path)
|
|
|
|
output_code_log.info("Wrapper code written to: %s", wrapper_path)
|
|
output_code_log.info("Kernel code written to: %s", kernel_path)
|
|
trace_structured(
|
|
"graph_dump",
|
|
lambda: {
|
|
"name": "inductor_aot_wrapper_code",
|
|
"type": "cpp",
|
|
"filename": wrapper_path,
|
|
},
|
|
payload_fn=lambda: wrapper_code,
|
|
)
|
|
trace_structured(
|
|
"graph_dump",
|
|
lambda: {
|
|
"name": "inductor_aot_kernel_code",
|
|
"type": "cpp",
|
|
"filename": kernel_path,
|
|
},
|
|
payload_fn=lambda: kernel_code,
|
|
)
|
|
if config.aot_inductor.compile_standalone:
|
|
output_code_log.info("Header code written to: %s", header_path)
|
|
trace_structured(
|
|
"graph_dump",
|
|
lambda: {
|
|
"name": "inductor_aot_header_code",
|
|
"type": "cpp",
|
|
"filename": header_path,
|
|
},
|
|
payload_fn=lambda: header_code,
|
|
)
|
|
|
|
# We use a file lock below to protect FS operations. The lock file
|
|
# is scoped to the 'key', so make sure the consts_s is protected
|
|
# by the same lock:
|
|
wrapper_path_operator = Path(wrapper_path)
|
|
kernel_path_operator = Path(kernel_path)
|
|
specified_sub_dir = wrapper_path_operator.parent / wrapper_key
|
|
if not specified_sub_dir.exists():
|
|
specified_sub_dir.mkdir(exist_ok=True)
|
|
cmake_path = str(Path(specified_sub_dir) / "CMakeLists.txt")
|
|
|
|
def _compile_consts(consts: bytes, platform: str) -> str:
|
|
# Load from aot_inductor, and update the value on demand.
|
|
use_asm_build: bool = config.aot_inductor.use_consts_asm_build
|
|
|
|
if platform == "linux":
|
|
if graph.mutated_buffers & OrderedSet(graph.constants.keys()):
|
|
# .data section is between .text and .bss. When the size of .data is large,
|
|
# during the linking, the relocation of .text against .bss may overflow.
|
|
# Rename it to .ldata so that it won't be in between the .text and .bss section
|
|
if len(consts) > 2_000_000_000:
|
|
raise ValueError(
|
|
"Models with buffer mutation included doesn't support constants greater than 2GB!"
|
|
)
|
|
section_attr = '.ldata, "aw"'
|
|
else:
|
|
section_attr = '.lrodata, "a"'
|
|
symbol_prefix = ""
|
|
elif platform == "darwin":
|
|
section_attr = "__DATA,__data"
|
|
symbol_prefix = "_"
|
|
elif platform == "win32":
|
|
symbol_prefix = ""
|
|
# ASM build is not supported on Windows, force use CPP build.
|
|
use_asm_build = False
|
|
else:
|
|
raise RuntimeError(f"Unsupported platform: {platform}")
|
|
|
|
# Intel compiler failed to compile this manually constructed assembly file.
|
|
# Switch XPU to use consts cpp build.
|
|
if device_type == "xpu":
|
|
use_asm_build = False
|
|
|
|
is_large_consts = len(consts) > 1024
|
|
is_zero_size_consts = len(consts) == 0
|
|
|
|
def format_consts_to_gnu_asm(
|
|
consts: bytes,
|
|
align_bytes: int,
|
|
symbol_prefix: str,
|
|
is_large_consts: bool,
|
|
) -> tuple[str, str]:
|
|
consts_asm = f"\t.section\t{section_attr}\n"
|
|
consts_asm += f"\t.balign {align_bytes}\n"
|
|
consts_asm += f"\t.globl\t{symbol_prefix}_binary_constants_bin_start\n"
|
|
consts_asm += f"{symbol_prefix}_binary_constants_bin_start:\n"
|
|
if not is_large_consts:
|
|
for c in consts:
|
|
consts_asm += f"\t.byte {c}\n"
|
|
# Add one element even if constants are empty
|
|
# Otherwise assembler will not put them in data section
|
|
if not consts:
|
|
consts_asm += "\t.space 1\n"
|
|
else:
|
|
consts_asm += "\t.quad 0x1234567899abcdef\n"
|
|
consts_asm += f"\t.space {len(consts) - 8}\n"
|
|
consts_asm += f".globl\t{symbol_prefix}_binary_constants_bin_end\n"
|
|
consts_asm += f"{symbol_prefix}_binary_constants_bin_end:\n"
|
|
return consts_asm, "weights.S"
|
|
|
|
# Use c++ to convert consts to object file can support more compilers, such as msvc and icx.
|
|
def format_consts_to_cpp(
|
|
consts: bytes, align_bytes: int, symbol_prefix: str
|
|
) -> tuple[str, str]:
|
|
consts_size = len(consts)
|
|
asan_attr = """#if defined(__clang__) || defined (__GNUC__)\t\n\
|
|
#define ATTRIBUTE_NO_SANITIZE_ADDRESS __attribute__((no_sanitize("address")))\t\n\
|
|
#else\t\n\
|
|
#define ATTRIBUTE_NO_SANITIZE_ADDRESS\t\n\
|
|
#endif\t\n\
|
|
\t\n\
|
|
ATTRIBUTE_NO_SANITIZE_ADDRESS\t\n"""
|
|
const_cpp = asan_attr
|
|
const_cpp += f"alignas({align_bytes}) extern "
|
|
const_cpp += f"unsigned char {symbol_prefix}_binary_constants_bin_start[{consts_size}] = {{\t\n"
|
|
count_bytes = 0
|
|
for c in consts:
|
|
const_cpp += f"{c}, "
|
|
count_bytes = count_bytes + 1
|
|
if count_bytes % 16 == 0:
|
|
const_cpp += "\t\n"
|
|
const_cpp += "};\t\n"
|
|
const_cpp += f"alignas({align_bytes}) extern unsigned char * {symbol_prefix}_binary_constants_bin_end;\t\n"
|
|
return const_cpp, "weights.cpp"
|
|
|
|
def get_zero_consts_asm_code(
|
|
align_bytes: int,
|
|
symbol_prefix: str,
|
|
) -> tuple[str, str]:
|
|
"""
|
|
This function handles zero-sized constants because the C++ standard prohibits zero-length arrays:
|
|
https://stackoverflow.com/questions/9722632/what-happens-if-i-define-a-0-size-array-in-c-c
|
|
|
|
On Windows (MSVC):
|
|
The compiler reports error C2466 for zero-sized arrays:
|
|
https://learn.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2466
|
|
Solution: Use assembly compilation to handle this case.
|
|
|
|
Why not use Win32 assembly for all paths?
|
|
ml64 only supports alignment up to 16 bytes, which isn't optimal for performance.
|
|
|
|
Cross-platform implementation:
|
|
Linux: Added '-pedantic' to disable zero-sized arrays in C++ compiler
|
|
Windows: MSVC naturally rejects zero-sized arrays by default
|
|
"""
|
|
if _IS_WINDOWS:
|
|
# Windows ml64 is max support align to 16, but it is no effect to zero size data.
|
|
asm_code = """
|
|
option casemap:none
|
|
.data
|
|
?_binary_constants_bin_start@@3PAEA:
|
|
align 16
|
|
?_binary_constants_bin_end@@3PAEA:
|
|
align 16
|
|
public ?_binary_constants_bin_start@@3PAEA
|
|
public ?_binary_constants_bin_end@@3PAEA
|
|
end
|
|
"""
|
|
asm_ext = "asm"
|
|
else:
|
|
asm_code = f"\t.section\t{section_attr}\n"
|
|
asm_code += f"\t.balign {align_bytes}\n"
|
|
asm_code += (
|
|
f"\t.globl\t{symbol_prefix}_binary_constants_bin_start\n"
|
|
)
|
|
asm_code += f"{symbol_prefix}_binary_constants_bin_start:\n"
|
|
asm_code += f".globl\t{symbol_prefix}_binary_constants_bin_end\n"
|
|
asm_code += f"{symbol_prefix}_binary_constants_bin_end:\n"
|
|
asm_ext = "S"
|
|
return asm_code, asm_ext
|
|
|
|
if use_asm_build:
|
|
consts_code, code_ext = format_consts_to_gnu_asm(
|
|
consts, ALIGN_BYTES, symbol_prefix, is_large_consts
|
|
)
|
|
else:
|
|
if is_zero_size_consts:
|
|
consts_code, code_ext = get_zero_consts_asm_code(
|
|
ALIGN_BYTES, symbol_prefix
|
|
)
|
|
else:
|
|
consts_code, code_ext = format_consts_to_cpp(
|
|
consts, ALIGN_BYTES, symbol_prefix
|
|
)
|
|
|
|
_, consts_s = write(
|
|
consts_code,
|
|
code_ext,
|
|
specified_dir=str(specified_sub_dir),
|
|
key=config.aot_inductor.model_name_for_generated_files,
|
|
)
|
|
consts_s = Path(consts_s)
|
|
object_build_options = CppTorchDeviceOptions(
|
|
device_type=device_type,
|
|
aot_mode=graph.aot_mode,
|
|
compile_only=True,
|
|
use_relative_path=use_relative_path,
|
|
)
|
|
object_builder = CppBuilder(
|
|
name=str(consts_s.stem),
|
|
sources=str(consts_s),
|
|
output_dir=str(consts_s.parent),
|
|
BuildOption=object_build_options,
|
|
)
|
|
consts_o = object_builder.get_target_file_path()
|
|
if use_asm_build is False and is_zero_size_consts:
|
|
run_asm_build_object(str(consts_s), consts_o, str(consts_s.parent))
|
|
else:
|
|
object_builder.build()
|
|
|
|
if is_large_consts and use_asm_build:
|
|
with open(consts_o, "r+b") as f:
|
|
f.seek(0)
|
|
hdr = f.read(1024)
|
|
# Search for magic number and write the actual data over it
|
|
start_idx = (
|
|
hdr.find(b"\xef\xcd\xab\x99\x78\x56\x34\x12")
|
|
if sys.byteorder == "little"
|
|
else hdr.find(b"\x12\x34\x56\x78\x99\xab\xcd\xef")
|
|
)
|
|
assert start_idx != -1
|
|
f.seek(start_idx)
|
|
pos = 0
|
|
while pos < len(consts):
|
|
rc = f.write(consts[pos:])
|
|
pos += rc
|
|
|
|
# Remove the .S file to save space
|
|
os.remove(consts_s)
|
|
|
|
return consts_o
|
|
|
|
from torch.utils._filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(
|
|
os.path.join(lock_dir, wrapper_key + ".lock"), timeout=LOCK_TIMEOUT
|
|
)
|
|
with lock:
|
|
if serialized_extern_kernel_nodes:
|
|
extern_kernel_nodes_json = str(
|
|
wrapper_path_operator.with_suffix(".json")
|
|
)
|
|
with open(extern_kernel_nodes_json, "w") as f:
|
|
f.write(serialized_extern_kernel_nodes)
|
|
|
|
if config.aot_inductor.package:
|
|
generated_files.append(extern_kernel_nodes_json)
|
|
|
|
metadata = config.aot_inductor.metadata
|
|
metadata["AOTI_DEVICE_KEY"] = device_type
|
|
|
|
# Save user provided metadata
|
|
meta_json = str(
|
|
wrapper_path_operator.with_name(
|
|
f"{wrapper_path_operator.stem}_metadata.json"
|
|
)
|
|
)
|
|
for k, v in config.aot_inductor.metadata.items():
|
|
assert isinstance(k, str) and isinstance(v, (str)), (
|
|
"Metadata must only contain strings"
|
|
)
|
|
|
|
with open(meta_json, "w") as f:
|
|
f.write(json.dumps(config.aot_inductor.metadata))
|
|
|
|
kernel_meta_json = str(
|
|
kernel_path_operator.with_name(
|
|
f"{kernel_path_operator.stem}_metadata.json"
|
|
)
|
|
)
|
|
shutil.copy(meta_json, kernel_meta_json)
|
|
|
|
if config.aot_inductor.package:
|
|
generated_files.append(meta_json)
|
|
if not config.aot_inductor.package_cpp_only:
|
|
generated_files.append(kernel_meta_json)
|
|
|
|
output_so = (
|
|
config.aot_inductor.output_path
|
|
if specified_artifact_name
|
|
else str(wrapper_path_operator.with_suffix(".so"))
|
|
)
|
|
all_cuda = all(
|
|
graph.get_original_value_of_constant(name).is_cuda
|
|
for name in graph.constants.keys()
|
|
if name not in graph.folded_constants
|
|
)
|
|
|
|
def _to_bytes(t: torch.Tensor, all_cuda: bool) -> bytes:
|
|
def _pad_to_alignment(raw_bytes: bytes) -> bytes:
|
|
padded_bytes = raw_bytes.ljust(
|
|
(len(raw_bytes) + ALIGN_BYTES - 1) // ALIGN_BYTES * ALIGN_BYTES,
|
|
b"\x00",
|
|
)
|
|
return padded_bytes
|
|
|
|
# This serializes the tensor's untyped_storage to bytes by accessing
|
|
# the raw data of the underlying structure.
|
|
import ctypes
|
|
|
|
if t.numel() == 0:
|
|
return b""
|
|
|
|
if t.is_mkldnn:
|
|
data_ptr = torch.ops.mkldnn.data_ptr(t)
|
|
nbytes = torch.ops.mkldnn._nbytes(t)
|
|
else:
|
|
t_cpu = t.untyped_storage().cpu()
|
|
data_ptr = t_cpu.data_ptr()
|
|
nbytes = t_cpu.nbytes()
|
|
|
|
raw_array = ctypes.cast(
|
|
data_ptr,
|
|
ctypes.POINTER(ctypes.c_ubyte * nbytes),
|
|
)
|
|
raw_bytes = bytes(raw_array.contents)
|
|
return raw_bytes if all_cuda else _pad_to_alignment(raw_bytes)
|
|
|
|
if config.aot_inductor.package_constants_in_so:
|
|
serialized_weights = b"".join(
|
|
_to_bytes(graph.get_original_value_of_constant(name), all_cuda)
|
|
for name in graph.constants.keys()
|
|
if name not in graph.folded_constants
|
|
)
|
|
else:
|
|
serialized_weights = b""
|
|
|
|
if config.aot_inductor.package_constants_on_disk:
|
|
# We need to return a storage key here because the original value tensor might be a clone
|
|
weights_dict = Weights(
|
|
{
|
|
graph.allocated_constant_name[name]: (
|
|
graph.get_original_value_of_constant(name),
|
|
TensorProperties(graph.constants[name]),
|
|
)
|
|
for name in graph.constants.keys()
|
|
if name not in graph.folded_constants
|
|
}
|
|
)
|
|
generated_files.append(weights_dict)
|
|
|
|
consts_size = len(serialized_weights)
|
|
|
|
# TODO: Fix mmap weights with cuda
|
|
use_mmap_weights = not config.is_fbcode() and consts_size > 2_000_000_000
|
|
if config.aot_inductor.force_mmap_weights:
|
|
use_mmap_weights = True
|
|
|
|
compile_command: dict[str, Any] = {
|
|
"aot_mode": graph.aot_mode,
|
|
"device_type": device_type,
|
|
"use_mmap_weights": use_mmap_weights,
|
|
"use_relative_path": use_relative_path,
|
|
"vec_isa": picked_vec_isa,
|
|
}
|
|
# If we're packaging via CMake, we build the whole code at max optimization.
|
|
wrapper_build_options = CppTorchDeviceOptions(
|
|
compile_only=True,
|
|
min_optimize=not config.aot_inductor.package_cpp_only,
|
|
**compile_command,
|
|
)
|
|
kernel_build_options = CppTorchDeviceOptions(
|
|
compile_only=True,
|
|
**compile_command,
|
|
)
|
|
|
|
# potentially, precompile the AOT header for this device
|
|
if config.aot_inductor.precompile_headers and not _IS_WINDOWS:
|
|
header_file = _get_cpp_wrapper_header(
|
|
device_type, aot_mode=graph.aot_mode
|
|
)
|
|
wrapper_build_options.precompiled_header = _precompile_header(
|
|
header_file,
|
|
cpp_command,
|
|
min_optimize=not config.aot_inductor.package_cpp_only,
|
|
**compile_command,
|
|
)
|
|
if cpp_prefix := _get_cpp_prefix_header(device_type):
|
|
kernel_build_options.precompiled_header = _precompile_header(
|
|
cpp_prefix,
|
|
cpp_command,
|
|
**compile_command,
|
|
)
|
|
|
|
wrapper_builder = CppBuilder(
|
|
name=str(wrapper_path_operator.stem),
|
|
sources=wrapper_path,
|
|
output_dir=str(wrapper_path_operator.parent),
|
|
BuildOption=wrapper_build_options,
|
|
)
|
|
wrapper_compile_cmd = wrapper_builder.get_command_line()
|
|
wrapper_o = wrapper_builder.get_target_file_path()
|
|
|
|
kernel_builder = CppBuilder(
|
|
name=str(kernel_path_operator.stem),
|
|
sources=kernel_path,
|
|
output_dir=str(wrapper_path_operator.parent),
|
|
BuildOption=kernel_build_options,
|
|
)
|
|
kernel_compile_cmd = kernel_builder.get_command_line()
|
|
kernel_o = kernel_builder.get_target_file_path()
|
|
|
|
log.debug("aot wrapper compilation command: %s", wrapper_compile_cmd)
|
|
log.debug("aot kernel compilation command: %s", kernel_compile_cmd)
|
|
if config.aot_inductor.package_cpp_only:
|
|
# Not doing the actual compilation here
|
|
compile_flags = str(
|
|
wrapper_path_operator.with_name(
|
|
f"{wrapper_path_operator.stem}_compile_flags.json"
|
|
)
|
|
)
|
|
wrapper_build_options.save_flags_to_json(compile_flags)
|
|
generated_files.append(compile_flags)
|
|
wrapper_builder.save_compile_cmd_to_cmake(cmake_path, device_type)
|
|
wrapper_builder.save_src_to_cmake(cmake_path, wrapper_path)
|
|
generated_files.append(cmake_path)
|
|
else:
|
|
try:
|
|
wrapper_builder.build()
|
|
except (exc.CppCompileError, SkipFrame) as e:
|
|
if " is too big to optimize" in str(e):
|
|
raise RuntimeError(
|
|
"Please use torch._inductor.config.aot_inductor.compile_wrapper_opt_level = 'O0' flag."
|
|
) from e
|
|
raise e
|
|
kernel_builder.build()
|
|
|
|
if not use_mmap_weights:
|
|
aot_constants = serialized_weights
|
|
magic_number = 0
|
|
else:
|
|
magic_number = cast(
|
|
int, torch.randint(0, torch.iinfo(torch.int64).max, (1,)).item()
|
|
)
|
|
aot_constants = struct.pack("qq", consts_size + 8, magic_number)
|
|
|
|
consts_o = _compile_consts(aot_constants, sys.platform)
|
|
custom_obj_idx = 0
|
|
# Note that custom_objs_config.json file is different from the model_constants_config.json file produced
|
|
# in package_sigmoid(). The keys in custom_objs_config.json directly correspond to the arg name in extern
|
|
# nodes json. The key in model_constants_config.json produced by package_sigmoid is the attribute name in the
|
|
# user model code.
|
|
|
|
qual_name_to_id = {} # Map from constant name to its name in constants folder
|
|
for custom_obj_idx, (name, constant) in enumerate(
|
|
graph.torchbind_constants.items()
|
|
):
|
|
if isinstance(
|
|
constant, torch._library.fake_class_registry.FakeScriptObject
|
|
):
|
|
constant = constant.real_obj
|
|
assert isinstance(constant, torch._C.ScriptObject)
|
|
custom_obj_name = f"{CUSTOM_OBJ_FILENAME_PREFIX}{custom_obj_idx}"
|
|
|
|
log.debug("saving script object %s as %s", name, custom_obj_name)
|
|
|
|
qual_name_to_id[name] = custom_obj_name
|
|
custom_obj_bytes = torch._C._pickle_save(constant)
|
|
custom_obj_path = os.path.join(
|
|
wrapper_path_operator.parent, custom_obj_name
|
|
)
|
|
|
|
write_atomic(custom_obj_path, custom_obj_bytes, True)
|
|
generated_files.append(custom_obj_path)
|
|
|
|
if qual_name_to_id:
|
|
constants_config_json = os.path.join(
|
|
wrapper_path_operator.parent, "custom_objs_config.json"
|
|
)
|
|
with open(constants_config_json, "w") as f:
|
|
f.write(json.dumps(qual_name_to_id))
|
|
generated_files.append(constants_config_json)
|
|
|
|
gpu_codecache: Union[ROCmCodeCache, CUDACodeCache] = (
|
|
ROCmCodeCache() if torch.version.hip else CUDACodeCache()
|
|
)
|
|
gpu_kernels_o = gpu_codecache.aot_kernels_o.copy()
|
|
# clear the list of aot kernels after each linking
|
|
gpu_codecache.aot_kernels_o.clear()
|
|
|
|
if gpu_kernels_o:
|
|
assert not config.aot_inductor.emit_multi_arch_kernel, (
|
|
"TODO: add emit_multi_arch_kernel support for cutlass kernels"
|
|
)
|
|
|
|
cubins_o = []
|
|
asm_files = []
|
|
if not _IS_WINDOWS:
|
|
ld, objcopy = get_ld_and_objcopy(use_relative_path)
|
|
kernels = getattr(V.graph.wrapper_code, "_kernel_name_to_body", {})
|
|
for kernel_name, value in CudaKernelParamCache.cache.items():
|
|
if kernel_name not in kernels:
|
|
# It is possible that CudaKernelParamCache contains more Triton kernels
|
|
# than what the current graph uses
|
|
continue
|
|
|
|
if asm_file := value["asm"]:
|
|
asm_files.append(asm_file)
|
|
|
|
cubin_file = value[get_cpp_wrapper_cubin_path_name()]
|
|
if (
|
|
config.aot_inductor.emit_multi_arch_kernel
|
|
and device_type == "cuda"
|
|
):
|
|
current_arch = _nvcc_arch_as_compile_option()
|
|
cmd = (
|
|
f"{_cuda_compiler()} -fatbin {asm_file} -o {cubin_file} "
|
|
# Triton only allows generating PTX version as same as the current arch
|
|
f"-gencode arch=compute_{current_arch},code=compute_{current_arch} "
|
|
# Include SASS for the current specific arch
|
|
f"-gencode arch=compute_{current_arch},code=sm_{current_arch} "
|
|
)
|
|
try:
|
|
subprocess.run(
|
|
cmd.split(),
|
|
capture_output=True,
|
|
text=True,
|
|
check=True,
|
|
)
|
|
except subprocess.CalledProcessError as e:
|
|
print(
|
|
f"{cmd} failed with:\nstdout:\n{e.stdout}\nstderr:\n{e.stderr}",
|
|
file=sys.stderr,
|
|
)
|
|
raise
|
|
|
|
if config.aot_inductor.embed_kernel_binary:
|
|
# Embed cubin files into model.so using objcopy
|
|
cubins_o.append(
|
|
convert_cubin_to_obj(cubin_file, kernel_name, ld, objcopy)
|
|
)
|
|
|
|
output_name, output_dir = get_name_and_dir_from_output_file_path(output_so)
|
|
so_build_options = CppTorchDeviceOptions(
|
|
vec_isa=picked_vec_isa,
|
|
device_type=device_type,
|
|
aot_mode=graph.aot_mode,
|
|
use_relative_path=use_relative_path,
|
|
)
|
|
|
|
obj_srcs = [wrapper_o, kernel_o, consts_o, *gpu_kernels_o, *cubins_o]
|
|
so_builder = CppBuilder(
|
|
name=output_name,
|
|
sources=obj_srcs,
|
|
output_dir=output_dir,
|
|
BuildOption=so_build_options,
|
|
)
|
|
link_cmd = so_builder.get_command_line()
|
|
output_so = so_builder.get_target_file_path()
|
|
|
|
log.debug("aot linkage command: %s", link_cmd)
|
|
|
|
# Append cmds to the end of codegen-ed wrapper file
|
|
with open(wrapper_path, "a") as f:
|
|
f.write("\n")
|
|
f.write(f"// Compile cmd\n// {wrapper_compile_cmd}\n")
|
|
f.write(f"// Link cmd\n// {link_cmd}\n")
|
|
|
|
with open(kernel_path, "a") as f:
|
|
f.write("\n")
|
|
f.write(f"// Compile cmd\n// {kernel_compile_cmd}\n")
|
|
f.write(f"// Link cmd\n// {link_cmd}\n")
|
|
|
|
if config.aot_inductor.package_cpp_only:
|
|
linker_flags = str(
|
|
wrapper_path_operator.with_name(
|
|
f"{wrapper_path_operator.stem}_linker_flags.json"
|
|
)
|
|
)
|
|
so_build_options.save_flags_to_json(linker_flags)
|
|
generated_files.append(linker_flags)
|
|
generated_files.append(_LINKER_SCRIPT)
|
|
|
|
# If we only want to package the cpp, then we need to save the
|
|
# weights separately into a bin, and we also need to prevent compiling the so
|
|
if use_mmap_weights:
|
|
weight_file = str(
|
|
wrapper_path_operator.with_name(
|
|
f"{wrapper_path_operator.stem}_serialized_weights.bin"
|
|
)
|
|
)
|
|
with open(weight_file, "wb") as f_weights:
|
|
f_weights.write(serialized_weights)
|
|
f_weights.write(struct.pack("q", magic_number))
|
|
|
|
generated_files.append(weight_file)
|
|
else:
|
|
# TODO: unify to always use mmap_weights
|
|
generated_files.append(consts_o)
|
|
so_builder.save_src_to_cmake(cmake_path, consts_o)
|
|
|
|
if config.aot_inductor.emit_multi_arch_kernel:
|
|
so_builder.save_kernel_asm_to_cmake(cmake_path, asm_files)
|
|
generated_files.extend(asm_files)
|
|
else:
|
|
obj_srcs = [*gpu_kernels_o, *cubins_o]
|
|
generated_files.extend(obj_srcs)
|
|
for obj in obj_srcs:
|
|
so_builder.save_src_to_cmake(cmake_path, obj)
|
|
|
|
so_builder.save_link_cmd_to_cmake(cmake_path)
|
|
else:
|
|
so_builder.build()
|
|
for o_file in obj_srcs:
|
|
if o_file in gpu_kernels_o:
|
|
continue
|
|
# Remove these as they are not needed anymore
|
|
os.remove(o_file)
|
|
|
|
if use_mmap_weights:
|
|
import resource
|
|
|
|
page_size_ = resource.getpagesize()
|
|
page_size = max(16384, page_size_)
|
|
|
|
with open(output_so, "a+b") as f_so:
|
|
so_size = f_so.tell()
|
|
# Page align the weights
|
|
f_so.write(b" " * (page_size - so_size % page_size))
|
|
f_so.write(serialized_weights)
|
|
f_so.write(struct.pack("q", magic_number))
|
|
|
|
if config.aot_inductor.package:
|
|
generated_files.append(output_so)
|
|
|
|
if config.aot_inductor.package:
|
|
# We want to return the directory that contains all the AOTI
|
|
# generated files, not just the so
|
|
# return os.path.split(output_so)[0]
|
|
return generated_files
|
|
|
|
return output_so
|
|
|
|
|
|
_libgomp: Optional[CDLL] = None
|
|
|
|
|
|
def custom_op_wrapper(op: str, *args: Any) -> Union[list[c_void_p], c_void_p, None]:
|
|
# This function will be called from generated cpp wrapper code in the JIT mode.
|
|
# Because tensors will be passed in as AtenTensorHandle, we need to explicitly convert them.
|
|
def convert_arg(arg: Any) -> Any:
|
|
if str(type(arg)) == "<class 'PyCapsule'>":
|
|
# No easy way to do isinstance check on PyCapsule
|
|
return torch._C._aoti.alloc_tensor_by_stealing_from_void_ptr(arg)
|
|
elif isinstance(arg, (list, tuple)):
|
|
return type(arg)(convert_arg(a) for a in arg)
|
|
else:
|
|
return arg
|
|
|
|
converted_args = [convert_arg(arg) for arg in args]
|
|
|
|
assert op.startswith("torch.ops."), (
|
|
op + " can not be called through custom_op_wrapper"
|
|
)
|
|
func = None
|
|
for i, s in enumerate(op.split(".")):
|
|
if i == 0:
|
|
func = importlib.import_module(s)
|
|
func = getattr(func, s)
|
|
|
|
assert callable(func), op + " can not be loaded through custom_op_wrapper"
|
|
|
|
# convert any kwarg-only arguments to kwargs
|
|
kwargs = dict()
|
|
for func_arg, conv_arg in zip(func._schema.arguments, converted_args):
|
|
if func_arg.kwarg_only:
|
|
kwargs[func_arg.name] = conv_arg
|
|
if kwargs:
|
|
del converted_args[-len(kwargs) :]
|
|
|
|
result = func(*converted_args, **kwargs)
|
|
if result is None:
|
|
return None
|
|
|
|
if isinstance(result, (list, tuple)):
|
|
# unsafe_alloc_void_ptrs_from_tensors expects result contains tensor only
|
|
result = [torch.tensor([]) if r is None else r for r in result]
|
|
for i, r in enumerate(result):
|
|
assert isinstance(r, torch.Tensor), op + " returns a list of non-tensors"
|
|
return torch._C._aoti.unsafe_alloc_void_ptrs_from_tensors(result) # type: ignore[arg-type]
|
|
|
|
assert isinstance(result, torch.Tensor), op + " returns a non-tensor"
|
|
return torch._C._aoti.unsafe_alloc_void_ptr_from_tensor(result)
|
|
|
|
|
|
# Precompiled headers are persistent past program runtime, but associated with one
|
|
# specific compiler version and set of flags. We explicitly use default_cache_dir here
|
|
# because these headers need to be global, rather than ignored by fresh_cache.
|
|
_HEADER_DIR = os.path.join(default_cache_dir(), "precompiled_headers")
|
|
_HEADER_LOCK_DIR = os.path.join(_HEADER_DIR, "locks")
|
|
|
|
|
|
@functools.cache
|
|
def _precompile_header(
|
|
header: str,
|
|
hashable_cmd_line: str,
|
|
**compile_command: Any,
|
|
) -> str:
|
|
assert not _IS_WINDOWS, (
|
|
"CppBuilder does not currently support precompiling on Windows!"
|
|
)
|
|
|
|
# Get the preprocessed output from the header file to be precompiled. This allows
|
|
# us to properly invalidate the file cache when any header dependency changes. This
|
|
# is thread-safe, as each thread will get its own temporary directory.
|
|
#
|
|
# N.B. we can't use NamedTemporaryFile here because Windows errors out on attempts
|
|
# to read from a file with an open write handle.
|
|
with tempfile.TemporaryDirectory() as preprocessing_dir:
|
|
preprocessing_header = Path(preprocessing_dir) / "header.hpp"
|
|
preprocessing_header.write_text(f"#include <{header}>\n")
|
|
preprocessor = CppBuilder(
|
|
name=str(preprocessing_header)[:-4], # strip off the .hpp extension
|
|
sources=str(preprocessing_header),
|
|
BuildOption=CppTorchDeviceOptions(**compile_command, preprocessing=True),
|
|
)
|
|
preprocessor.build()
|
|
|
|
def _get_file_checksum(filename: str) -> str:
|
|
"""Reading the whole preprocessed header in for hashing is very expensive,
|
|
but calling a fast hashing utility in a subprocess is cheap."""
|
|
# If Windows support needs to be added here, use certutil -hashfile.
|
|
cmd_output = subprocess.run(
|
|
("openssl", "sha512", filename), capture_output=True, text=True
|
|
)
|
|
return cmd_output.stdout.split()[-1]
|
|
|
|
preprocessor_hash = _get_file_checksum(preprocessor.get_target_file_path())
|
|
|
|
header_build_option = CppTorchDeviceOptions(**compile_command, precompiling=True)
|
|
header_hash, header_full_path = write(
|
|
content=f"#include <{header}>\n",
|
|
extension="h",
|
|
extra=(
|
|
hashable_cmd_line
|
|
+ preprocessor_hash
|
|
+ get_compiler_version_info(header_build_option.get_compiler())
|
|
),
|
|
specified_dir=_HEADER_DIR,
|
|
)
|
|
cpp_builder = CppBuilder(
|
|
name=header_full_path,
|
|
sources=header_full_path,
|
|
BuildOption=header_build_option,
|
|
)
|
|
# _worker_compile_cpp will automatically ignore any compilation whose result already
|
|
# exists, so this is always safe.
|
|
os.makedirs(_HEADER_LOCK_DIR, exist_ok=True)
|
|
_worker_compile_cpp(
|
|
os.path.join(_HEADER_LOCK_DIR, f"{header_hash}.lock"),
|
|
(cpp_builder,),
|
|
)
|
|
|
|
return header_full_path
|
|
|
|
|
|
def _get_cpp_prefix_header(device: str) -> Optional[str]:
|
|
if device.startswith("cpu"):
|
|
return "torch/csrc/inductor/cpp_prefix.h"
|
|
return None
|
|
|
|
|
|
def _get_cpp_wrapper_header(device: str, aot_mode: bool = False) -> str:
|
|
"""Given a device type (and optionally whether we're in AOT Inductor mode), returns
|
|
the path to the cpp_wrapper header file to be precompiled."""
|
|
base_device = device.split(":", maxsplit=1)[0]
|
|
is_array_ref = config.aot_inductor.allow_stack_allocation and base_device == "cpu"
|
|
return (
|
|
"torch/csrc/inductor/"
|
|
f"{'aoti_include' if aot_mode else 'cpp_wrapper'}/"
|
|
f"{'array_ref' if is_array_ref else base_device}.h"
|
|
)
|
|
|
|
|
|
@clear_on_fresh_cache
|
|
class CppCodeCache:
|
|
"""Compiles and caches C++ libraries. Users of this class supply the source code to
|
|
be compiled, while compilation flags are set by CppBuilder."""
|
|
|
|
cache: dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags: dict[str, Any] = {}
|
|
|
|
@staticmethod
|
|
def _load_library_inner(path: str, key: str) -> Union[CDLL, ModuleType]:
|
|
return cdll.LoadLibrary(path)
|
|
|
|
@classmethod
|
|
def _load_library(cls, path: str, key: str) -> Union[CDLL, ModuleType]:
|
|
try:
|
|
result = cls._load_library_inner(path, key)
|
|
result.key = key # type: ignore[union-attr]
|
|
return result
|
|
except (ImportError, OSError) as e:
|
|
if "gomp" in str(e) and os.path.exists("/usr/lib64/libgomp.so.1"):
|
|
# hacky workaround for fbcode/buck
|
|
global _libgomp
|
|
_libgomp = cdll.LoadLibrary("/usr/lib64/libgomp.so.1")
|
|
result = cls._load_library_inner(path, key)
|
|
result.key = key # type: ignore[union-attr]
|
|
return result
|
|
if "failed to map segment from shared object" in str(e):
|
|
raise OSError(
|
|
f"{e}. The most common reason this may occur is if the {tempfile.gettempdir()} folder "
|
|
"is mounted with noexec (e.g., by default Docker mounts tmp file systems "
|
|
f"as noexec). Please remount {tempfile.gettempdir()} with exec enabled, or set another "
|
|
"temporary directory with TORCHINDUCTOR_CACHE_DIR environment variable."
|
|
) from e
|
|
raise
|
|
|
|
@classmethod
|
|
def _get_uncompiled_header(cls, device: str) -> str | None:
|
|
"""
|
|
Given a device type, returns the path to a CPP header file to be precompiled.
|
|
"""
|
|
return None
|
|
|
|
@classmethod
|
|
def load_async(
|
|
cls,
|
|
main_code: str,
|
|
device_type: str = "cpu",
|
|
submit_fn: Any = None,
|
|
extra_flags: Sequence[str] = (),
|
|
optimized_code: Optional[str] = None,
|
|
) -> Any:
|
|
"""Compile and load a C++ library. Returns a callable that returns the loaded
|
|
library."""
|
|
compile_command = {
|
|
**cls.cpp_compile_command_flags,
|
|
"device_type": device_type,
|
|
"extra_flags": extra_flags,
|
|
"use_relative_path": config.is_fbcode(),
|
|
"vec_isa": pick_vec_isa(),
|
|
}
|
|
|
|
_set_gpu_runtime_env() # cpp_extension consults the env
|
|
|
|
# Note the distinction between the two booleans. We do minimal optimization if
|
|
# the optimized_code argument is present at all, since that's how the user of
|
|
# this function opts in, but we do compilation and linking in one step if the
|
|
# optimized_code argument is empty (as a micro-optimization).
|
|
main_build_option = CppTorchDeviceOptions(
|
|
compile_only=bool(optimized_code),
|
|
min_optimize=optimized_code is not None,
|
|
**compile_command,
|
|
)
|
|
optimized_build_option = CppTorchDeviceOptions(
|
|
compile_only=True, **compile_command
|
|
)
|
|
|
|
def get_hashable_command_line(build_option: BuildOptionsBase) -> str:
|
|
"""Writing the code to file will calculate a hash, which we need to vary if
|
|
the command line flags change. This implements a mostly-generic way of
|
|
validating that."""
|
|
return CppBuilder(
|
|
name="o", sources="i", BuildOption=build_option
|
|
).get_command_line()
|
|
|
|
main_cmd_line = get_hashable_command_line(main_build_option)
|
|
optimized_cmd_line = get_hashable_command_line(optimized_build_option)
|
|
|
|
key, main_path = write(
|
|
main_code, "main.cpp", extra=f"{optimized_code} {main_cmd_line}"
|
|
)
|
|
|
|
# Don't bother writing if the argument is empty.
|
|
if optimized_code:
|
|
_, optimized_path = write(
|
|
optimized_code, "optimized.cpp", extra=optimized_cmd_line
|
|
)
|
|
else:
|
|
# Unused, but makes type checkers happy.
|
|
optimized_path = os.devnull
|
|
|
|
if key not in cls.cache:
|
|
from torch.utils._filelock import FileLock
|
|
|
|
lock_path = os.path.join(get_lock_dir(), key + ".lock")
|
|
future: Optional[Future[Any]] = None
|
|
lib = None
|
|
|
|
# if requested, pre-compile any headers
|
|
if config.cpp_cache_precompile_headers and not _IS_WINDOWS:
|
|
if header := cls._get_uncompiled_header(device_type):
|
|
main_build_option.precompiled_header = _precompile_header(
|
|
header,
|
|
main_cmd_line,
|
|
min_optimize=optimized_code is not None,
|
|
**compile_command,
|
|
)
|
|
|
|
# Currently, the optimized_code field is only used for cpp kernel code,
|
|
# so go ahead and precompile the relevant header here. Revisit this
|
|
# decision if that ever changes.
|
|
if optimized_code and (header := _get_cpp_prefix_header(device_type)):
|
|
optimized_build_option.precompiled_header = _precompile_header(
|
|
header,
|
|
optimized_cmd_line,
|
|
**compile_command,
|
|
)
|
|
|
|
main_name, output_dir = get_name_and_dir_from_output_file_path(main_path)
|
|
main_builder = CppBuilder(
|
|
name=main_name,
|
|
sources=main_path,
|
|
BuildOption=main_build_option,
|
|
output_dir=output_dir,
|
|
)
|
|
|
|
if optimized_code:
|
|
optimized_name, _ = get_name_and_dir_from_output_file_path(
|
|
optimized_path
|
|
)
|
|
optimized_builder = CppBuilder(
|
|
name=optimized_name,
|
|
sources=optimized_path,
|
|
BuildOption=optimized_build_option,
|
|
output_dir=output_dir,
|
|
)
|
|
|
|
linker = CppBuilder(
|
|
name=main_name,
|
|
sources=[
|
|
main_builder.get_target_file_path(),
|
|
optimized_builder.get_target_file_path(),
|
|
],
|
|
BuildOption=CppTorchDeviceOptions(**compile_command),
|
|
output_dir=output_dir,
|
|
)
|
|
|
|
worker_fn = functools.partial(
|
|
_worker_compile_cpp,
|
|
lock_path,
|
|
(main_builder, optimized_builder, linker),
|
|
)
|
|
binary_path = normalize_path_separator(linker.get_target_file_path())
|
|
else:
|
|
worker_fn = functools.partial(
|
|
_worker_compile_cpp, lock_path, (main_builder,)
|
|
)
|
|
binary_path = normalize_path_separator(
|
|
main_builder.get_target_file_path()
|
|
)
|
|
|
|
def load_fn() -> Any:
|
|
nonlocal lib
|
|
if lib is None:
|
|
if future is not None:
|
|
future.result()
|
|
result = worker_fn()
|
|
assert result is None
|
|
lib = cls._load_library(binary_path, key)
|
|
assert lib is not None
|
|
return lib
|
|
|
|
if submit_fn is not None:
|
|
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
|
|
if not os.path.exists(binary_path):
|
|
future = submit_fn(worker_fn)
|
|
|
|
cls.cache[key] = load_fn
|
|
|
|
return cls.cache[key]
|
|
|
|
@classmethod
|
|
def load(cls, *args: Any, **kwargs: Any) -> Any:
|
|
return cls.load_async(*args, **kwargs)()
|
|
|
|
|
|
def _worker_compile_cpp(
|
|
lock_path: str,
|
|
cpp_builders: Sequence[CppBuilder],
|
|
) -> None:
|
|
from torch.utils._filelock import FileLock
|
|
|
|
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
|
|
for builder in cpp_builders:
|
|
if not os.path.exists(builder.get_target_file_path()):
|
|
builder.build()
|
|
|
|
|
|
# Customized Python binding for cpp kernels
|
|
@clear_on_fresh_cache
|
|
class CppPythonBindingsCodeCache(CppCodeCache):
|
|
cache: dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags = {
|
|
# kernels have no dependency on libtorch
|
|
"include_pytorch": False,
|
|
"shared": True,
|
|
}
|
|
entry_function = "kernel"
|
|
call_entry_function = "kernel({}); Py_RETURN_NONE;"
|
|
extra_parse_arg = ""
|
|
suffix_template = textwrap.dedent(
|
|
"""
|
|
// Python bindings to call {entry_func}():
|
|
#define PY_SSIZE_T_CLEAN
|
|
#include <Python.h>
|
|
#include <sstream>
|
|
#include <cstdlib>
|
|
|
|
#ifndef _MSC_VER
|
|
#if __cplusplus < 202002L
|
|
// C++20 (earlier) code
|
|
// https://en.cppreference.com/w/cpp/language/attributes/likely
|
|
#define likely(x) __builtin_expect(!!(x), 1)
|
|
#define unlikely(x) __builtin_expect(!!(x), 0)
|
|
#endif
|
|
#else
|
|
#define likely(x) (x)
|
|
#define unlikely(x) (x)
|
|
#endif
|
|
|
|
// This is defined in guards.cpp so we don't need to import PyTorch headers that are slooow.
|
|
// We manually link it below to workaround issues with fbcode build.
|
|
static void* (*_torchinductor_pyobject_tensor_data_ptr)(PyObject* obj);
|
|
|
|
template <typename T> static inline T parse_arg(PyObject* args, size_t n) {{
|
|
static_assert(std::is_pointer_v<T>, "arg type must be pointer or long");
|
|
return static_cast<T>(_torchinductor_pyobject_tensor_data_ptr(PyTuple_GET_ITEM(args, n)));
|
|
}}
|
|
template <> inline int64_t parse_arg<int64_t>(PyObject* args, size_t n) {{
|
|
auto result = PyLong_AsSsize_t(PyTuple_GET_ITEM(args, n));
|
|
if(unlikely(result == -1 && PyErr_Occurred()))
|
|
throw std::runtime_error("expected int arg");
|
|
return result;
|
|
}}
|
|
template <> inline uintptr_t parse_arg<uintptr_t>(PyObject* args, size_t n) {{
|
|
auto result = PyLong_AsVoidPtr(PyTuple_GET_ITEM(args, n));
|
|
if(unlikely(result == reinterpret_cast<void*>(-1) && PyErr_Occurred()))
|
|
throw std::runtime_error("expected int arg");
|
|
return reinterpret_cast<uintptr_t>(result);
|
|
}}
|
|
|
|
{extra_parse_arg}
|
|
|
|
static PyObject* {entry_func}_py(PyObject* self, PyObject* args) {{
|
|
try {{
|
|
if(unlikely(!PyTuple_CheckExact(args)))
|
|
throw std::runtime_error("tuple args required");
|
|
if(unlikely(PyTuple_GET_SIZE(args) != {arg_len}))
|
|
throw std::runtime_error("requires {arg_len} args");
|
|
{call_entry_func}
|
|
}} catch(std::exception const& e) {{
|
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
|
return nullptr;
|
|
}} catch(...) {{
|
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
|
return nullptr;
|
|
}}
|
|
}}
|
|
|
|
static PyMethodDef py_methods[] = {{
|
|
{{"{entry_func}", {entry_func}_py, METH_VARARGS, ""}},
|
|
{{NULL, NULL, 0, NULL}}}};
|
|
|
|
static struct PyModuleDef py_module =
|
|
{{PyModuleDef_HEAD_INIT, "{entry_func}", NULL, -1, py_methods}};
|
|
|
|
PyMODINIT_FUNC PyInit_{entry_func}(void) {{
|
|
const char* str_addr = std::getenv("_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR");
|
|
if(!str_addr) {{
|
|
PyErr_SetString(PyExc_RuntimeError, "_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR must be set");
|
|
return nullptr;
|
|
}}
|
|
std::istringstream iss(str_addr);
|
|
uintptr_t addr = 0;
|
|
iss >> addr;
|
|
_torchinductor_pyobject_tensor_data_ptr =
|
|
reinterpret_cast<decltype(_torchinductor_pyobject_tensor_data_ptr)>(addr);
|
|
PyObject* module = PyModule_Create(&py_module);
|
|
if (module == NULL) {{
|
|
return NULL;
|
|
}}
|
|
#ifdef Py_GIL_DISABLED
|
|
PyUnstable_Module_SetGIL(module, Py_MOD_GIL_NOT_USED);
|
|
#endif
|
|
return module;
|
|
}}
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _load_library_inner(cls, path: str, key: str) -> ModuleType:
|
|
os.environ["_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR"] = str(
|
|
torch._C._dynamo.guards._torchinductor_pyobject_tensor_data_ptr # type: ignore[attr-defined]
|
|
)
|
|
module_name = f"{key}.{cls.entry_function}"
|
|
try:
|
|
return sys.modules[module_name]
|
|
except KeyError:
|
|
pass
|
|
spec = importlib.util.spec_from_file_location(module_name, path)
|
|
assert spec is not None
|
|
module = importlib.util.module_from_spec(spec)
|
|
sys.modules[module_name] = module
|
|
assert spec.loader is not None
|
|
spec.loader.exec_module(module)
|
|
return module
|
|
|
|
@classmethod
|
|
def _get_uncompiled_header(cls, device: str) -> str | None:
|
|
return _get_cpp_prefix_header(device)
|
|
|
|
@classmethod
|
|
def load_pybinding_async(
|
|
cls,
|
|
argtypes: Sequence[str],
|
|
main_code: str,
|
|
device_type: str = "cpu",
|
|
num_outputs: int = -1,
|
|
submit_fn: Any = None,
|
|
extra_flags: Sequence[str] = (),
|
|
kernel_code: Optional[str] = None,
|
|
) -> Any:
|
|
"""
|
|
Wrap a C++ function in fast Python bindings.
|
|
|
|
Args:
|
|
argtypes: The types of args to ENTRY_FUNCTION(), e.g. ["float*", "long"]
|
|
main_code: C++ source code containing ENTRY_FUNCTION(). Will be built at
|
|
-O3 if kernel_code is None (to maximize performance in any kernels that
|
|
are present), or -O1 otherwise (to minimize compile time).
|
|
kernel_code: If present, C++ source code that will be built at -O3 and
|
|
linked to main_code.
|
|
|
|
Returns:
|
|
A python version of ENTRY_FUNCTION()
|
|
"""
|
|
parseargs = ", ".join(
|
|
f"parse_arg<{argtype.replace('const ', '')}>(args, {n})"
|
|
for n, argtype in enumerate(argtypes)
|
|
)
|
|
suffix = cls.suffix_template.format(
|
|
arg_len=len(argtypes),
|
|
call_entry_func=cls.call_entry_function.format(parseargs),
|
|
entry_func=cls.entry_function,
|
|
extra_parse_arg=cls.extra_parse_arg.format(array_len=num_outputs),
|
|
)
|
|
get_result = cls.load_async(
|
|
main_code + suffix,
|
|
device_type,
|
|
submit_fn=submit_fn,
|
|
extra_flags=extra_flags,
|
|
optimized_code=kernel_code,
|
|
)
|
|
result = None
|
|
|
|
def future() -> Any:
|
|
nonlocal result
|
|
if result is None:
|
|
result = get_result()
|
|
assert isinstance(result, ModuleType)
|
|
return getattr(result, cls.entry_function)
|
|
|
|
return future
|
|
|
|
@classmethod
|
|
def load_pybinding(cls, *args: Any, **kwargs: Any) -> Any:
|
|
return cls.load_pybinding_async(*args, **kwargs)()
|
|
|
|
|
|
@clear_on_fresh_cache
|
|
class CppWrapperCodeCache(CppPythonBindingsCodeCache):
|
|
cache: dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags = {
|
|
"include_pytorch": True,
|
|
"shared": True,
|
|
}
|
|
entry_function = "inductor_entry_cpp"
|
|
call_entry_function = "return inductor_entry_cpp({});"
|
|
extra_parse_arg = textwrap.dedent(
|
|
"""
|
|
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
|
|
|
|
static inline std::vector<AtenTensorHandle> unpack_tensor_handle_list(PyObject* pyvec) {{
|
|
std::vector<AtenTensorHandle> result;
|
|
size_t result_len = PyList_GET_SIZE(pyvec);
|
|
result.reserve(result_len);
|
|
for (size_t i = 0; i < result_len; i++) {{
|
|
// AtenTensorHandle is essentially a pointer
|
|
void* elem = PyCapsule_GetPointer(PyList_GET_ITEM(pyvec, i), NULL);
|
|
result.push_back(reinterpret_cast<AtenTensorHandle>(elem));
|
|
}}
|
|
return result;
|
|
}}
|
|
|
|
static inline PyObject* pack_tensor_handle_list(const std::array<AtenTensorHandle, {array_len}>& arr) {{
|
|
PyObject* result = PyList_New({array_len});
|
|
for (size_t i = 0; i < {array_len}; i++) {{
|
|
PyObject *elem =
|
|
arr[i] == nullptr
|
|
? Py_None
|
|
// Store AtenTensorHandle as PyCapsulate
|
|
: PyCapsule_New(reinterpret_cast<void*>(arr[i]), NULL, NULL);
|
|
PyList_SET_ITEM(result, i, elem);
|
|
}}
|
|
return result;
|
|
}}
|
|
|
|
template <> inline std::vector<AtenTensorHandle> parse_arg<std::vector<AtenTensorHandle>>(PyObject* args, size_t n) {{
|
|
return unpack_tensor_handle_list(PyTuple_GET_ITEM(args, n));
|
|
}}
|
|
|
|
PyObject* inductor_entry_cpp(std::vector<AtenTensorHandle>&& input_handles) {{
|
|
// For outputs, we only allocate an array to hold returned tensor handles,
|
|
// not the actual output tensor storage.
|
|
std::array<AtenTensorHandle, {array_len}> output_handles{{}};
|
|
try {{
|
|
inductor_entry_impl(input_handles.data(), output_handles.data());
|
|
if (PyErr_Occurred()) {{
|
|
return nullptr;
|
|
}}
|
|
return pack_tensor_handle_list(output_handles);
|
|
}} catch(std::exception const& e) {{
|
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
|
return nullptr;
|
|
}} catch(...) {{
|
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
|
return nullptr;
|
|
}}
|
|
}}
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _get_uncompiled_header(cls, device: str) -> str | None:
|
|
return _get_cpp_wrapper_header(device)
|
|
|
|
|
|
@clear_on_fresh_cache
|
|
class HalideCodeCache(CppPythonBindingsCodeCache):
|
|
cache: dict[str, Callable[[], Union[ModuleType, CDLL]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
_standalone_runtime_path: Optional[str] = None
|
|
prefix = textwrap.dedent(
|
|
"""
|
|
#include "{halideruntime_h}"
|
|
#include "{headerfile}"
|
|
#include <stdexcept>
|
|
#include <cmath>
|
|
|
|
namespace c10 {{
|
|
inline long div_floor_integer(long a, long b) {{
|
|
if ((a<0) != (b<0)) {{
|
|
const auto quot = a / b;
|
|
const auto rem = a % b;
|
|
return rem ? quot - 1 : quot;
|
|
}}
|
|
return a / b;
|
|
}}
|
|
}}
|
|
"""
|
|
)
|
|
glue_template_cpp = prefix + textwrap.dedent(
|
|
"""
|
|
void kernel({argdefs}) {{
|
|
{buffers}
|
|
int err = halide_kernel({buffer_names});
|
|
if(err != 0) throw std::runtime_error("halide_kernel failed");
|
|
}}
|
|
"""
|
|
)
|
|
glue_template_cuda = prefix + textwrap.dedent(
|
|
"""
|
|
#include <cuda.h>
|
|
static const halide_device_interface_t* cuda_interface = halide_cuda_device_interface();
|
|
|
|
void kernel({argdefs}, uintptr_t stream) {{
|
|
{buffers}
|
|
int err = halide_kernel(reinterpret_cast<void*>(stream), {buffer_names});
|
|
if(err != 0) throw std::runtime_error("halide_kernel failed");
|
|
}}
|
|
"""
|
|
)
|
|
standalone_runtime_cuda_init = textwrap.dedent(
|
|
"""
|
|
#include "{}"
|
|
#include <cuda.h>
|
|
|
|
static int acquire_context(void* user_context,
|
|
void** cuda_context_out,
|
|
bool create) {{
|
|
return cuCtxGetCurrent(reinterpret_cast<CUcontext*>(cuda_context_out));
|
|
}}
|
|
|
|
static int release_context(void* user_context) {{
|
|
return 0;
|
|
}}
|
|
|
|
static int get_stream(void* user_context,
|
|
void* cuda_context,
|
|
void** stream_out) {{
|
|
*stream_out = user_context;
|
|
return 0;
|
|
}}
|
|
|
|
static int register_halide_hooks() {{
|
|
halide_set_cuda_acquire_context(&acquire_context);
|
|
halide_set_cuda_release_context(&release_context);
|
|
halide_set_cuda_get_stream(&get_stream);
|
|
return 0;
|
|
}}
|
|
|
|
int inductor_register_halide_hooks_result = register_halide_hooks();
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _codegen_buffer(cls, name: str, arg: HalideInputSpec, cuda: bool) -> list[str]:
|
|
assert arg.shape is not None
|
|
assert arg.stride is not None and len(arg.shape) == len(arg.stride)
|
|
assert arg.offset is not None
|
|
data_ptr = f"{arg.alias_of or arg.name} + {arg.offset}"
|
|
if cuda:
|
|
device = f"reinterpret_cast<uint64_t>({data_ptr})"
|
|
device_interface = "cuda_interface"
|
|
host = "nullptr"
|
|
flags = "halide_buffer_flag_device_dirty"
|
|
else:
|
|
device = "0"
|
|
device_interface = "nullptr"
|
|
host = f"reinterpret_cast<uint8_t*>({data_ptr})"
|
|
flags = "halide_buffer_flag_host_dirty"
|
|
|
|
dims = []
|
|
for size, stride in zip(arg.shape, arg.stride):
|
|
dims.append(f"halide_dimension_t(0, {size}, {stride})")
|
|
|
|
return [
|
|
f"halide_buffer_t {name};",
|
|
f"halide_dimension_t {name}_dims[] = {{{', '.join(dims)}}};"
|
|
if len(dims) > 0
|
|
else f"halide_dimension_t * {name}_dims = nullptr;",
|
|
f"{name}.device = {device};",
|
|
f"{name}.device_interface = {device_interface};",
|
|
f"{name}.host = {host};",
|
|
f"{name}.flags = {flags};",
|
|
f"{name}.type = {arg.halide_type()};",
|
|
f"{name}.dimensions = {len(dims)};",
|
|
f"{name}.dim = {name}_dims;",
|
|
f"{name}.padding = nullptr;",
|
|
]
|
|
|
|
@classmethod
|
|
def _codegen_glue(cls, meta: HalideMeta, headerfile: object) -> str:
|
|
is_cuda = meta.is_cuda()
|
|
assert is_cuda is ("user_context" in meta.target)
|
|
assert "no_runtime" in meta.target
|
|
buffers = []
|
|
buffer_names = []
|
|
for i, arg in enumerate(meta.argtypes):
|
|
if arg.is_buffer():
|
|
buffer_names.append(f"&hl_buf_{i}")
|
|
buffers.extend(cls._codegen_buffer(f"hl_buf_{i}", arg, is_cuda))
|
|
else:
|
|
assert "*" not in arg.ctype
|
|
buffer_names.append(arg.name)
|
|
buffers = "\n".join([f" {line}" for line in buffers]).lstrip()
|
|
|
|
glue_template = cls.glue_template_cuda if is_cuda else cls.glue_template_cpp
|
|
glue_code = glue_template.format(
|
|
halideruntime_h=cls.find_header(
|
|
"HalideRuntimeCuda.h" if is_cuda else "HalideRuntime.h"
|
|
),
|
|
headerfile=headerfile,
|
|
argdefs=", ".join(
|
|
f"{a.bindings_type()} {a.name}"
|
|
for a in meta.argtypes
|
|
if a.alias_of is None
|
|
),
|
|
buffers=buffers,
|
|
buffer_names=", ".join(buffer_names),
|
|
)
|
|
return glue_code
|
|
|
|
@classmethod
|
|
@functools.cache
|
|
def config_hash(cls) -> str:
|
|
command_gen = CppBuilder(
|
|
name="O",
|
|
sources="I",
|
|
BuildOption=CppOptions(),
|
|
)
|
|
command_line = command_gen.get_command_line()
|
|
return sha256_hash(
|
|
"\n".join(
|
|
[
|
|
cls.glue_template_cpp,
|
|
cls.glue_template_cuda,
|
|
cls.standalone_runtime_cuda_init,
|
|
command_line,
|
|
]
|
|
).encode("utf-8")
|
|
)
|
|
|
|
@staticmethod
|
|
def _search_for_file(suffix: str, errmsg: str) -> str:
|
|
spec = importlib.machinery.PathFinder.find_spec("halide")
|
|
if spec is None or not spec.submodule_search_locations:
|
|
raise RuntimeError("halide python bindings not installed")
|
|
try:
|
|
search = spec.submodule_search_locations[0]
|
|
for file in os.listdir(search):
|
|
if file.endswith(".so"):
|
|
try:
|
|
out = subprocess.check_output(
|
|
["ldd", os.path.join(search, file)]
|
|
)
|
|
except subprocess.SubprocessError:
|
|
continue
|
|
m = re.search(r"(/.*)/libHalide.so", out.decode("utf-8"))
|
|
if m:
|
|
path = os.path.join(os.path.abspath(m.group(1)), suffix)
|
|
if os.path.exists(path):
|
|
return os.path.abspath(path)
|
|
except Exception as e:
|
|
raise RuntimeError(errmsg) from e
|
|
raise RuntimeError(errmsg)
|
|
|
|
@staticmethod
|
|
@functools.cache
|
|
def find_libautoschedule(name: str) -> str:
|
|
sofile = f"libautoschedule_{name.lower()}.so"
|
|
if "HALIDE_LIB" in os.environ:
|
|
path = os.path.join(os.environ["HALIDE_LIB"], sofile)
|
|
if os.path.exists(path):
|
|
return path
|
|
errmsg = (
|
|
f"Can't find {sofile}, set env HALIDE_LIB to the directory containing it"
|
|
)
|
|
return HalideCodeCache._search_for_file(sofile, errmsg)
|
|
|
|
@staticmethod
|
|
@functools.cache
|
|
def find_header(name: str) -> str:
|
|
if "HALIDE_INCLUDE" in os.environ:
|
|
path = os.path.join(os.environ["HALIDE_INCLUDE"], name)
|
|
if os.path.exists(path):
|
|
return path
|
|
if "HALIDE_LIB" in os.environ:
|
|
path = os.path.abspath(
|
|
os.path.join(os.environ["HALIDE_LIB"], f"../include/{name}")
|
|
)
|
|
if os.path.exists(path):
|
|
return path
|
|
errmsg = (
|
|
f"Can't find {name}, set env HALIDE_INCLUDE to the directory containing it"
|
|
)
|
|
return HalideCodeCache._search_for_file(f"../include/{name}", errmsg)
|
|
|
|
@classmethod
|
|
def generate_halide_async(
|
|
cls, meta: HalideMeta, source_code: str, submit_fn: Any = None
|
|
) -> Callable[[], Any]:
|
|
dirpath = Path(
|
|
get_path(
|
|
code_hash(
|
|
source_code,
|
|
extra=repr((cls.config_hash(), meta)),
|
|
),
|
|
"halide",
|
|
)[2]
|
|
)
|
|
os.makedirs(dirpath, exist_ok=True)
|
|
wait_for_compile = None
|
|
genfile = str(dirpath / "generate_kernel.py")
|
|
libfile = str(dirpath / "halide_kernel.a")
|
|
headerfile = str(dirpath / "halide_kernel.h")
|
|
donefile = str(dirpath / "done")
|
|
lockfile = str(dirpath / "lock")
|
|
need_compile = not os.path.exists(donefile)
|
|
jobs: list[Any] = []
|
|
if need_compile:
|
|
write_atomic(genfile, source_code)
|
|
cmd = [
|
|
sys.executable,
|
|
genfile,
|
|
"-g",
|
|
"kernel",
|
|
"-o",
|
|
f"{dirpath}",
|
|
"-f",
|
|
"halide_kernel",
|
|
"-e",
|
|
"static_library,h,schedule",
|
|
]
|
|
if meta.scheduler:
|
|
cmd.extend(["-p", cls.find_libautoschedule(meta.scheduler)])
|
|
cmd.extend(meta.args())
|
|
jobs.append(functools.partial(subprocess.check_call, cmd))
|
|
|
|
binding_types = [
|
|
arg.bindings_type() for arg in meta.argtypes if arg.alias_of is None
|
|
]
|
|
if meta.is_cuda():
|
|
binding_types.append("uintptr_t") # stream
|
|
bindings_future = cls.load_pybinding_async(
|
|
binding_types,
|
|
cls._codegen_glue(meta, headerfile),
|
|
extra_flags=(libfile, cls.build_standalone_runtime()),
|
|
submit_fn=jobs.append if need_compile else None,
|
|
device_type="cuda" if meta.is_cuda() else "cpu",
|
|
)
|
|
|
|
if need_compile:
|
|
jobs.append(functools.partial(touch, donefile))
|
|
task = functools.partial(_worker_task_halide, lockfile, jobs)
|
|
if submit_fn:
|
|
wait_for_compile = submit_fn(task).result
|
|
else:
|
|
task()
|
|
|
|
def load() -> Callable[[], Any]:
|
|
if wait_for_compile:
|
|
wait_for_compile()
|
|
return bindings_future()
|
|
|
|
return load
|
|
|
|
@classmethod
|
|
def generate_halide(cls, *args: Any, **kwargs: Any) -> Callable[[], Any]:
|
|
return cls.generate_halide_async(*args, **kwargs)()
|
|
|
|
@classmethod
|
|
def build_standalone_runtime(cls) -> str:
|
|
if cls._standalone_runtime_path and os.path.exists(
|
|
cls._standalone_runtime_path
|
|
):
|
|
return cls._standalone_runtime_path
|
|
device_type = "cuda" if torch.cuda.is_available() else "cpu"
|
|
libname = "libStandaloneHalideRuntime.so"
|
|
target = "host-cuda" if device_type == "cuda" else "host"
|
|
if cls._standalone_runtime_path:
|
|
assert not os.path.exists(cls._standalone_runtime_path)
|
|
# We hit this case in unittests when we run with fresh_cache()
|
|
# Generating a fresh runtime over and over causes errors because we initialize
|
|
# cuda hundreds of times in the same process and run out of file descriptors.
|
|
# Workaround by jail breaking the current fresh_cache().
|
|
base = default_cache_dir()
|
|
else:
|
|
base = cache_dir()
|
|
dirpath = Path(base) / f"halide-runtime-{target}-{cls.config_hash()}"
|
|
os.makedirs(dirpath, exist_ok=True)
|
|
done_file = str(dirpath / "done")
|
|
lock_file = str(dirpath / "lock")
|
|
hook_file = str(dirpath / "hooks.cpp")
|
|
a_file = str(dirpath / "standalone_halide_runtime.a")
|
|
so_file = str(dirpath / libname)
|
|
if not os.path.exists(done_file):
|
|
import halide as hl # type: ignore[import-untyped,import-not-found]
|
|
|
|
from torch.utils._filelock import FileLock
|
|
|
|
with FileLock(lock_file, LOCK_TIMEOUT):
|
|
if not os.path.exists(done_file):
|
|
with open(hook_file, "w") as f:
|
|
if device_type == "cuda":
|
|
f.write(
|
|
cls.standalone_runtime_cuda_init.format(
|
|
cls.find_header("HalideRuntimeCuda.h")
|
|
)
|
|
)
|
|
hl.compile_standalone_runtime(a_file, hl.Target(target))
|
|
|
|
name, output_dir = get_name_and_dir_from_output_file_path(so_file)
|
|
halide_cmd_gen = CppBuilder(
|
|
name=name,
|
|
sources=[hook_file, a_file],
|
|
output_dir=output_dir,
|
|
BuildOption=CppTorchDeviceOptions(
|
|
device_type=device_type,
|
|
),
|
|
)
|
|
|
|
subprocess.check_call(
|
|
shlex.split(halide_cmd_gen.get_command_line())
|
|
)
|
|
touch(done_file)
|
|
assert os.path.exists(so_file)
|
|
cls._standalone_runtime_path = so_file
|
|
return so_file
|
|
|
|
@classmethod
|
|
def _get_uncompiled_header(cls, device: str) -> str | None:
|
|
"""Header precompiling is currently disabled for halide."""
|
|
return None
|
|
|
|
|
|
def _worker_task_halide(lockfile: str, jobs: list[partial[Any]]) -> None:
|
|
from torch.utils._filelock import FileLock
|
|
|
|
try:
|
|
with FileLock(lockfile, LOCK_TIMEOUT):
|
|
for job in jobs:
|
|
job()
|
|
except subprocess.SubprocessError as e:
|
|
if os.environ.get("HALIDE_REPRO") == "1":
|
|
cmd: list[Any]
|
|
python, script, *cmd = getattr(e, "cmd", ("", "", ""))
|
|
if os.path.basename(python).startswith("python"):
|
|
code = open(script).read()
|
|
main = " hl.main()"
|
|
assert code.count(main) == 1
|
|
|
|
class Out:
|
|
def __repr__(self) -> str:
|
|
return "out"
|
|
|
|
ci = cmd.index("-o")
|
|
assert isinstance(ci, int)
|
|
cmd[ci + 1] = Out()
|
|
repl = textwrap.indent(
|
|
textwrap.dedent(
|
|
f"""\
|
|
import sys, tempfile
|
|
with tempfile.TemporaryDirectory() as out:
|
|
sys.argv = {["repro.py", *cmd]!r}
|
|
hl.main()
|
|
"""
|
|
),
|
|
" ",
|
|
)
|
|
code = code.replace(main, repl)
|
|
with open("repro.py", "w") as fd:
|
|
fd.write(code.lstrip())
|
|
raise RuntimeError(f"wrote repro.py: {e}") from e
|
|
raise
|
|
|
|
|
|
def touch(filename: str) -> None:
|
|
open(filename, "a").close()
|
|
|
|
|
|
@clear_on_fresh_cache
|
|
class PyCodeCache:
|
|
# Track the loaded modules so we can remove the on-disk artifacts when
|
|
# clearing the cache. Note also that we may load the same path more
|
|
# than once, but attach different attributes, i.e., due to different
|
|
# constant values.
|
|
modules: list[ModuleType] = []
|
|
|
|
# Modules loaded without extra attributes are stored here, those do not
|
|
# need to be re-loaded.
|
|
modules_no_attr: dict[str, ModuleType] = {}
|
|
|
|
linemaps: dict[str, list[tuple[Any, ...]]] = {}
|
|
|
|
@classmethod
|
|
def write(cls, source_code: str, extra: str = "") -> tuple[str, str]:
|
|
return write(source_code, "py", extra=extra)
|
|
|
|
@classmethod
|
|
def load(cls, source_code: str, extra: str = "") -> ModuleType:
|
|
key, path = write(source_code, "py", extra=extra)
|
|
return cls.load_by_key_path(key, path)
|
|
|
|
@classmethod
|
|
def load_by_key_path(
|
|
cls,
|
|
key: str,
|
|
path: str,
|
|
linemap: Optional[list[tuple[int, str]]] = None,
|
|
attrs: Optional[dict[str, Any]] = None,
|
|
) -> ModuleType:
|
|
if linemap is None:
|
|
linemap = []
|
|
|
|
# we only cache when attrs is None
|
|
if attrs is None and path in cls.modules_no_attr:
|
|
return cls.modules_no_attr[path]
|
|
|
|
in_toplevel = in_toplevel_process()
|
|
mod = _reload_python_module(key, path, set_sys_modules=in_toplevel)
|
|
|
|
# unzip into separate lines/nodes lists
|
|
if in_toplevel:
|
|
cls.linemaps[path] = list(zip(*linemap))
|
|
|
|
if attrs is not None:
|
|
for k, v in attrs.items():
|
|
setattr(mod, k, v)
|
|
|
|
if in_toplevel:
|
|
# we only cache when attrs is None
|
|
if attrs is None:
|
|
cls.modules_no_attr[path] = mod
|
|
|
|
cls.modules.append(mod)
|
|
return mod
|
|
|
|
@classmethod
|
|
def cache_clear(cls, purge: bool = False) -> None:
|
|
"""
|
|
Clear the in-memory module cache. If purge=True, also delete all the
|
|
corresponding on-disk source files.
|
|
"""
|
|
if purge:
|
|
for mod in cls.modules:
|
|
try:
|
|
assert mod.__file__
|
|
os.remove(mod.__file__)
|
|
except FileNotFoundError:
|
|
pass
|
|
cls.modules.clear()
|
|
cls.modules_no_attr.clear()
|
|
|
|
@classmethod
|
|
@functools.cache
|
|
def stack_frames_for_code(
|
|
cls, path: str, lineno: int
|
|
) -> Optional[list[dict[str, Any]]]:
|
|
if path not in cls.linemaps:
|
|
return None
|
|
if len(cls.linemaps[path]) == 0:
|
|
return None
|
|
# [(starting_line, <fx node>), ...]
|
|
lines, nodes = cls.linemaps[path]
|
|
p = bisect_right(lines, lineno)
|
|
if p == 0:
|
|
return None
|
|
entry = nodes[p - 1]
|
|
if not entry:
|
|
return None
|
|
|
|
def parse_stack_trace(stack_trace: str) -> list[dict[str, Any]]:
|
|
# ideally fx stores stack traces as data rather than a string
|
|
# but this is not along a performance critical path
|
|
regex = r'File "(.+)", line (\d+), in (.+)\n'
|
|
matches = re.findall(regex, stack_trace)
|
|
return [
|
|
{"filename": f, "line": int(l), "name": n}
|
|
for f, l, n in reversed(matches)
|
|
]
|
|
|
|
return parse_stack_trace(entry)
|
|
|
|
|
|
def _load_triton_kernel_from_source(
|
|
kernel_name: str, source_code: str
|
|
) -> CachingAutotuner:
|
|
return getattr(PyCodeCache.load(source_code), kernel_name)
|
|
|
|
|
|
def _cuda_compiler() -> Optional[str]:
|
|
if cuda_env.nvcc_exist(config.cuda.cuda_cxx):
|
|
return config.cuda.cuda_cxx
|
|
if config.is_fbcode():
|
|
return os.path.join(build_paths.sdk_home, "bin", "nvcc")
|
|
if cuda_env.nvcc_exist(os.getenv("CUDACXX")):
|
|
return os.getenv("CUDACXX", "")
|
|
if cuda_env.nvcc_exist(os.getenv("CUDA_HOME")):
|
|
return os.path.realpath(os.path.join(os.getenv("CUDA_HOME", ""), "bin/nvcc"))
|
|
return "nvcc"
|
|
|
|
|
|
def _cutlass_path() -> str:
|
|
if config.is_fbcode():
|
|
from libfb.py import parutil
|
|
|
|
return parutil.get_dir_path("cutlass-4-headers")
|
|
else:
|
|
return config.cuda.cutlass_dir
|
|
|
|
|
|
def _cutlass_paths() -> list[str]:
|
|
return [
|
|
"include",
|
|
"tools/library/include",
|
|
"tools/library/src",
|
|
"tools/util/include",
|
|
]
|
|
|
|
|
|
def _clone_cutlass_paths(build_root: str) -> list[str]:
|
|
paths = _cutlass_paths()
|
|
cutlass_root = _cutlass_path()
|
|
for path in _cutlass_paths():
|
|
old_path = os.path.join(cutlass_root, path)
|
|
new_path = os.path.join(build_root, path)
|
|
shutil.copytree(old_path, new_path, dirs_exist_ok=True)
|
|
return paths
|
|
|
|
|
|
def _cutlass_include_paths() -> list[str]:
|
|
cutlass_path = _cutlass_path()
|
|
return [
|
|
# Use realpath to get canonical absolute paths, in order not to mess up cache keys
|
|
os.path.realpath(os.path.join(cutlass_path, path))
|
|
for path in _cutlass_paths()
|
|
]
|
|
|
|
|
|
@torch_key_cache
|
|
def cutlass_key() -> bytes:
|
|
"""
|
|
Compute a key representing the state of the CUTLASS library.
|
|
|
|
Note: OSS and fbcode will have different keys.
|
|
"""
|
|
if config.is_fbcode():
|
|
with importlib.resources.path(
|
|
"cutlass_library", "src_hash.txt"
|
|
) as resource_path:
|
|
with open(resource_path) as resource_file:
|
|
return resource_file.read().encode()
|
|
|
|
combined_hash = hashlib.sha256()
|
|
build_code_hash([config.cuda.cutlass_dir], "", combined_hash)
|
|
return combined_hash.digest()
|
|
|
|
|
|
def _cuda_lib_options() -> list[str]:
|
|
"""
|
|
Util function for CUTLASS backend to find the correct CUDA libraries.
|
|
"""
|
|
_set_gpu_runtime_env() # cpp_extension consults the env
|
|
from torch.utils import cpp_extension
|
|
|
|
lpaths = cpp_extension.library_paths(device_type="cuda")
|
|
if use_re_build():
|
|
lpaths += [
|
|
build_paths.sdk_lib,
|
|
os.path.join(build_paths.sdk_lib, "stubs"),
|
|
]
|
|
extra_ldflags: list[str] = []
|
|
if is_linux():
|
|
_transform_cuda_paths(lpaths)
|
|
for path in lpaths:
|
|
if "torch/lib" in path:
|
|
# don't want to depend on pytorch
|
|
continue
|
|
extra_ldflags.append(f"-L{path}")
|
|
# -rpath ensures the DLL can find its dependencies when loaded, even
|
|
# if the library path is non-standard.
|
|
# But do not add the stubs folder to rpath as the driver is expected to be found at runtime
|
|
if os.path.basename(path) != "stubs":
|
|
extra_ldflags.extend(["-Xlinker", f"-rpath={path}"])
|
|
extra_ldflags.append("-lcuda")
|
|
extra_ldflags.append("-lcudart")
|
|
else:
|
|
raise NotImplementedError(
|
|
"Unsupported env, failed to find cuda libs! Currently only Linux is supported."
|
|
)
|
|
return extra_ldflags
|
|
|
|
|
|
def _nvcc_host_compiler_options() -> list[str]:
|
|
return [
|
|
"-fPIC",
|
|
"-fno-strict-aliasing",
|
|
"-fvisibility=hidden",
|
|
"-Wconversion",
|
|
]
|
|
|
|
|
|
def _nvcc_arch_as_compile_option() -> str:
|
|
arch = cuda_env.get_cuda_arch()
|
|
if arch == "90":
|
|
# Required by cutlass compilation.
|
|
return "90a"
|
|
if arch == "100":
|
|
return "100a"
|
|
return arch
|
|
|
|
|
|
def _nvcc_compiler_options() -> list[str]:
|
|
arch = _nvcc_arch_as_compile_option()
|
|
code = [f"sm_{arch}", f"compute_{arch}"]
|
|
if config.cuda.enable_cuda_lto:
|
|
code += [f"lto_{arch}"]
|
|
options = [
|
|
"-t=0",
|
|
"-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1",
|
|
"-DCUTLASS_ENABLE_SM90_EXTENDED_MMA_SHAPES=1",
|
|
"-DCUTE_SM90_EXTENDED_MMA_SHAPES_ENABLED",
|
|
"-w",
|
|
f"-gencode=arch=compute_{arch},code=[{','.join(code)}]",
|
|
config.cuda.compile_opt_level,
|
|
"-std=c++17",
|
|
"--expt-relaxed-constexpr",
|
|
"-DNDEBUG",
|
|
]
|
|
if config.is_fbcode():
|
|
options.extend(["-ccbin", os.path.dirname(build_paths.gcc)])
|
|
if config.cuda.enable_debug_info:
|
|
options.extend(["-lineinfo", "-g", "-DCUTLASS_DEBUG_TRACE_LEVEL=1"])
|
|
if config.cuda.enable_ptxas_info:
|
|
options.extend(
|
|
[
|
|
"--keep", # Keep the intermediate files for debugging (including ptx, sass, cubin etc.)
|
|
"--ptxas-options=--warn-on-local-memory-usage", # warn us if local memory is used in CUDA Kernels
|
|
"--ptxas-options=--warn-on-spills", # warn us if register spilling happens in CUDA Kernels
|
|
"--resource-usage", # Report on CUDA resource usage (shared mem, registers etc.)
|
|
"--source-in-ptx",
|
|
]
|
|
) # Annotate the ptx file with source information
|
|
if config.cuda.use_fast_math:
|
|
options.extend(
|
|
[
|
|
"--use_fast_math",
|
|
"-DCUTLASS_USE_TANH_FOR_SIGMOID=1",
|
|
]
|
|
)
|
|
return options
|
|
|
|
|
|
def cuda_compile_command(
|
|
src_files: list[str],
|
|
dst_file: str,
|
|
dst_file_ext: str,
|
|
extra_args: Optional[list[str]] = None,
|
|
) -> str:
|
|
if extra_args is None:
|
|
extra_args = []
|
|
if use_re_build():
|
|
build_path = os.path.dirname(dst_file)
|
|
include_paths = _clone_cutlass_paths(build_path)
|
|
src_files = [os.path.basename(src_file) for src_file in src_files]
|
|
dst_file = os.path.basename(dst_file)
|
|
else:
|
|
include_paths = _cutlass_include_paths()
|
|
cuda_lib_options = _cuda_lib_options()
|
|
nvcc_host_compiler_options = _nvcc_host_compiler_options()
|
|
nvcc_compiler_options = _nvcc_compiler_options()
|
|
options = (
|
|
nvcc_compiler_options
|
|
+ extra_args
|
|
+ [
|
|
f"-Xcompiler {opt}" if "=" in opt else f"-Xcompiler={opt}"
|
|
for opt in nvcc_host_compiler_options
|
|
]
|
|
+ ["-I" + path for path in include_paths]
|
|
+ cuda_lib_options
|
|
)
|
|
src_file = " ".join(src_files)
|
|
res = ""
|
|
if dst_file_ext == "o":
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -c -o {dst_file} {src_file}"
|
|
elif dst_file_ext == "so":
|
|
options.append("-shared")
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
|
elif dst_file_ext == "exe":
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
|
else:
|
|
raise NotImplementedError(f"Unsupported output file suffix {dst_file_ext}!")
|
|
log.debug("CUDA command: %s", res)
|
|
return res
|
|
|
|
|
|
class DLLWrapper:
|
|
"""A wrapper for a dynamic library."""
|
|
|
|
def __init__(
|
|
self,
|
|
lib_path: str,
|
|
) -> None:
|
|
self.lib_path = lib_path
|
|
self.is_open = False
|
|
self.DLL = cdll.LoadLibrary(lib_path)
|
|
self.is_open = True
|
|
|
|
def close(self) -> None:
|
|
if self.is_open:
|
|
self._dlclose()
|
|
self.is_open = False
|
|
|
|
def _dlclose(self) -> None:
|
|
f_dlclose = None
|
|
|
|
if is_linux():
|
|
syms = CDLL(None)
|
|
if not hasattr(syms, "dlclose"):
|
|
# Apline Linux
|
|
syms = CDLL("libc.so")
|
|
|
|
if hasattr(syms, "dlclose"):
|
|
f_dlclose = syms.dlclose
|
|
elif is_windows():
|
|
import ctypes
|
|
|
|
kernel32 = ctypes.CDLL("kernel32", use_last_error=True)
|
|
|
|
f_dlclose = kernel32.FreeLibrary
|
|
else:
|
|
raise NotImplementedError("Unsupported env, failed to do dlclose!")
|
|
|
|
if f_dlclose is not None:
|
|
if is_linux():
|
|
f_dlclose.argtypes = [c_void_p]
|
|
f_dlclose(self.DLL._handle)
|
|
elif is_windows():
|
|
import ctypes
|
|
from ctypes import wintypes
|
|
|
|
f_dlclose.argtypes = [wintypes.HMODULE]
|
|
f_dlclose(self.DLL._handle)
|
|
else:
|
|
log.warning(
|
|
"dll unloading function was not found, library may not be unloaded properly!"
|
|
)
|
|
|
|
def __getattr__(self, name: str) -> Callable[..., None]:
|
|
if not self.is_open:
|
|
raise RuntimeError(f"Cannot use closed DLL library: {self.lib_path}")
|
|
|
|
method = getattr(self.DLL, name)
|
|
|
|
def _wrapped_func(*args: Any) -> None:
|
|
err = method(*args)
|
|
if err:
|
|
raise RuntimeError(f"Error in function: {method.__name__}")
|
|
|
|
return _wrapped_func
|
|
|
|
def __enter__(self) -> Self:
|
|
return self
|
|
|
|
def __exit__(self, *args: Any) -> None:
|
|
self.close()
|
|
|
|
def __del__(self) -> None:
|
|
self.close()
|
|
|
|
|
|
@lru_cache
|
|
def binary_error_path(output_path: str) -> str:
|
|
"""
|
|
standard format for the error path
|
|
"""
|
|
return output_path + ".error"
|
|
|
|
|
|
@clear_on_fresh_cache
|
|
class CUDACodeCache:
|
|
"""
|
|
A cache for managing the compilation and loading of CUDA source code specifically for CUTLASS.
|
|
This class handles writing source code to files, compiling them into shared objects, and caching
|
|
the results to avoid redundant compilations. It also manages error handling and logging for the
|
|
compilation process.
|
|
"""
|
|
|
|
@dataclasses.dataclass
|
|
class CacheEntry:
|
|
input_path: str
|
|
output_path: str
|
|
error_json: Optional[str] = None
|
|
|
|
cache: dict[str, CacheEntry] = {}
|
|
aot_kernels_o: list[str] = []
|
|
_SOURCE_CODE_SUFFIX = "cu"
|
|
|
|
@staticmethod
|
|
def cache_clear() -> None:
|
|
CUDACodeCache.cache.clear()
|
|
CUDACodeCache.aot_kernels_o.clear()
|
|
|
|
@staticmethod
|
|
@lru_cache(maxsize=4)
|
|
def get_kernel_binary_remote_cache(
|
|
caching_enabled: bool, caching_available: bool
|
|
) -> Optional[Any]:
|
|
"""
|
|
Get or create the class instance of the CUTLASSKernelBinaryRemoteCache.
|
|
|
|
Args:
|
|
caching_enabled: Whether binary remote caching is enabled
|
|
caching_available: Whether we're in fbcode environment
|
|
|
|
Returns:
|
|
CUTLASSKernelBinaryRemoteCache: The class instance of the kernel binary remote cache
|
|
"""
|
|
if not caching_enabled:
|
|
log.debug("CUTLASSKernelBinaryRemoteCache not requested, skipping")
|
|
return None
|
|
if not caching_available:
|
|
return None
|
|
|
|
try:
|
|
from torch._inductor.fb.kernel_binary_remote_cache import (
|
|
CUTLASSKernelBinaryRemoteCache,
|
|
)
|
|
|
|
return CUTLASSKernelBinaryRemoteCache()
|
|
except ImportError:
|
|
log.debug(
|
|
"CUTLASSKernelBinaryRemoteCache not available, remote caching disabled"
|
|
)
|
|
return None
|
|
|
|
@classmethod
|
|
@lru_cache(None)
|
|
def write(cls, source_code: str, dst_file_ext: str) -> tuple[str, str]:
|
|
"""
|
|
Writes source code into a file with dst_file_ext as the file extension.
|
|
Returns the hash key of source code, and the path to the file.
|
|
"""
|
|
|
|
if config.cuda.cutlass_hash_with_compile_cmd:
|
|
cuda_command = repr(
|
|
cuda_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
|
|
)
|
|
extra = cuda_command
|
|
else:
|
|
extra = repr(
|
|
[
|
|
# nvcc and cuda hash
|
|
_cuda_compiler(),
|
|
# cutlass flags and gcc hash
|
|
_nvcc_compiler_options(),
|
|
# flags
|
|
_nvcc_host_compiler_options(),
|
|
# cutlass key
|
|
cutlass_key(),
|
|
# hack to deal with AOTI .o compilation
|
|
]
|
|
)
|
|
key, input_path = write(source_code, cls._SOURCE_CODE_SUFFIX, extra=extra)
|
|
return key, input_path
|
|
|
|
@classmethod
|
|
def compile(
|
|
cls, source_code: str, dst_file_ext: str, extra_args: Optional[list[str]] = None
|
|
) -> tuple[str, str, str]:
|
|
"""
|
|
Compiles CUDA source_code into a file with dst_file_ext extension.
|
|
If dst_file_ext is "so", first compiles to ".o" and then links to ".so".
|
|
Returns a tuple of dst_file_path, hash_key, source_code_path
|
|
"""
|
|
if dst_file_ext == "so":
|
|
# Two-step compilation: first compile to .o, then link to .so
|
|
obj_path, _, _ = cls.compile(source_code, "o", extra_args)
|
|
key, input_path = cls.write(source_code, dst_file_ext)
|
|
src_files, operation_name = [obj_path], "Linking"
|
|
else:
|
|
# Regular compilation for non-.so files
|
|
key, input_path = cls.write(source_code, dst_file_ext)
|
|
src_files, operation_name = [input_path], "Compilation"
|
|
|
|
key_with_ext = key + dst_file_ext
|
|
if key_with_ext not in cls.cache:
|
|
from torch.utils._filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
|
|
error_path = binary_error_path(output_path)
|
|
binary_remote_cache = cls.get_kernel_binary_remote_cache(
|
|
caching_enabled=config.cuda.use_binary_remote_cache
|
|
and not config.force_disable_caches,
|
|
caching_available=config.is_fbcode(),
|
|
)
|
|
if binary_remote_cache is not None:
|
|
# The remote cache implementation will only download if the file does
|
|
# not already exist locally
|
|
binary_remote_cache.get(output_path, error_path)
|
|
|
|
if os.path.exists(error_path):
|
|
with open(error_path, encoding="utf-8") as fh:
|
|
error_json = fh.read()
|
|
cmd_parts, error_output = json.loads(error_json)
|
|
if (
|
|
binary_remote_cache is not None
|
|
and config.cuda.upload_to_binary_remote_cache
|
|
):
|
|
# This ensures that a local error is uploaded to the remote cache,
|
|
# as we make no assumptions about the remote cache having the same
|
|
# information as the local cache
|
|
binary_remote_cache.put(
|
|
error_path, config.cuda.binary_remote_cache_force_write
|
|
)
|
|
cls.cache[key_with_ext] = CUDACodeCache.CacheEntry(
|
|
input_path, output_path, error_json
|
|
)
|
|
raise exc.CUDACompileError(cmd_parts, error_output)
|
|
if not os.path.exists(output_path):
|
|
cmd = cuda_compile_command(
|
|
src_files, output_path, dst_file_ext, extra_args
|
|
)
|
|
with open(input_path, "a") as f:
|
|
f.write("\n")
|
|
f.write(f"// CUDA {operation_name} cmd\n// {cmd}\n")
|
|
start_time = time()
|
|
log.debug("CUDA %s: %s", operation_name, cmd)
|
|
cmd_parts = cmd.split(" ")
|
|
try:
|
|
if use_re_build():
|
|
from triton.fb.re_build_helper import run_build_command
|
|
|
|
run_build_command(
|
|
cmd_parts,
|
|
os.path.dirname(input_path),
|
|
os.path.basename(output_path),
|
|
)
|
|
else:
|
|
subprocess.check_output(
|
|
cmd_parts, stderr=subprocess.STDOUT, env=os.environ
|
|
)
|
|
except subprocess.CalledProcessError as error:
|
|
cls._record_cuda_compile_error(
|
|
error.output.decode("utf-8"),
|
|
key_with_ext,
|
|
cmd_parts,
|
|
input_path,
|
|
output_path,
|
|
binary_remote_cache,
|
|
)
|
|
raise exc.CUDACompileError(cmd_parts, error.output) from error
|
|
except Exception as error:
|
|
if "COMPILE FAILED WITH" in str(error):
|
|
cls._record_cuda_compile_error(
|
|
str(error),
|
|
key_with_ext,
|
|
cmd_parts,
|
|
input_path,
|
|
output_path,
|
|
binary_remote_cache,
|
|
)
|
|
raise exc.CUDACompileError(cmd_parts, str(error)) from error
|
|
raise error
|
|
end_time = time()
|
|
log_duration_msg = f"CUDA {operation_name} took {end_time - start_time} seconds. Command: {cmd}"
|
|
log.info(log_duration_msg)
|
|
|
|
else:
|
|
log.debug(
|
|
"CUDA %s skipped: %s since output already exists",
|
|
operation_name,
|
|
output_path,
|
|
)
|
|
# Upload to remote cache if enabled
|
|
if (
|
|
binary_remote_cache is not None
|
|
and config.cuda.upload_to_binary_remote_cache
|
|
):
|
|
# will log on errors, but not fail out
|
|
binary_remote_cache.put(
|
|
output_path, config.cuda.binary_remote_cache_force_write
|
|
)
|
|
cls.cache[key_with_ext] = CUDACodeCache.CacheEntry(
|
|
input_path, output_path, None
|
|
)
|
|
|
|
cache_entry: CUDACodeCache.CacheEntry = cls.cache[key_with_ext]
|
|
if cache_entry.error_json is not None:
|
|
# Restore cached Exception and raise it as if we had compiled
|
|
cmd_parts, error_output = json.loads(cache_entry.error_json)
|
|
raise exc.CUDACompileError(cmd_parts, error_output.encode("utf-8"))
|
|
return (cls.cache[key_with_ext].output_path, key, input_path)
|
|
|
|
@classmethod
|
|
def load(cls, source_code: str, dst_file_ext: str) -> tuple[DLLWrapper, str, str]:
|
|
"""
|
|
Compiles source code and loads the generated .so file.
|
|
Returns a tuple of DLLWrapper, hash_key, source_code_path
|
|
"""
|
|
|
|
if dst_file_ext != "so":
|
|
raise RuntimeError(
|
|
f"Only support loading a .so file for now. "
|
|
f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
|
|
)
|
|
dst_file_path, hash_key, source_code_path = cls.compile(
|
|
source_code, dst_file_ext
|
|
)
|
|
return (DLLWrapper(dst_file_path), hash_key, source_code_path)
|
|
|
|
@classmethod
|
|
def _record_cuda_compile_error(
|
|
cls,
|
|
error_str: str,
|
|
key_with_ext: str,
|
|
cmd_parts: list[str],
|
|
input_path: str,
|
|
output_path: str,
|
|
# Any here, as the import and type will only work in fbcode
|
|
# TODO: Make the typing hint strong here
|
|
binary_remote_cache: Any = None,
|
|
) -> None:
|
|
error_json = json.dumps([cmd_parts, error_str])
|
|
cls.cache[key_with_ext] = CUDACodeCache.CacheEntry(
|
|
input_path, output_path, error_json
|
|
)
|
|
error_path = binary_error_path(output_path)
|
|
with open(error_path, "w", encoding="utf-8") as fh:
|
|
fh.write(error_json)
|
|
|
|
# Upload to remote cache directly from memory if enabled
|
|
if (
|
|
binary_remote_cache is not None
|
|
and config.cuda.upload_to_binary_remote_cache
|
|
):
|
|
binary_remote_cache.put(
|
|
error_path, config.cuda.binary_remote_cache_force_write
|
|
)
|
|
|
|
|
|
@clear_on_fresh_cache
|
|
class ROCmCodeCache:
|
|
@dataclasses.dataclass
|
|
class CacheEntry:
|
|
input_path: str
|
|
output_path: str
|
|
|
|
cache: dict[str, CacheEntry] = {}
|
|
aot_kernels_o: list[str] = []
|
|
_SOURCE_CODE_SUFFIX = "cpp"
|
|
_logged_compiler_version = False
|
|
|
|
@staticmethod
|
|
def cache_clear() -> None:
|
|
ROCmCodeCache.cache.clear()
|
|
ROCmCodeCache.aot_kernels_o.clear()
|
|
|
|
@classmethod
|
|
def write(cls, source_code: str, dst_file_ext: str) -> tuple[str, str]:
|
|
"""
|
|
Writes source code into a file with dst_file_ext as the file extension.
|
|
Returns the hash key of source code, and the path to the file.
|
|
"""
|
|
|
|
cuda_command = repr(
|
|
rocm_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
|
|
)
|
|
key, input_path = write(
|
|
source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command
|
|
)
|
|
return key, input_path
|
|
|
|
@classmethod
|
|
def compile(
|
|
cls, source_code: str, dst_file_ext: str, extra_args: Optional[list[str]] = None
|
|
) -> tuple[str, str, str]:
|
|
"""
|
|
Compiles source_code into a file with dst_file_ext extension,
|
|
using the compile command specific for the ROCm platform.
|
|
Returns a tuple of dst_file_path, hash_key, source_code_path
|
|
"""
|
|
if not cls._logged_compiler_version:
|
|
cls._logged_compiler_version = True
|
|
log.debug(get_compiler_version_info(str(rocm_compiler())))
|
|
|
|
key, input_path = cls.write(source_code, dst_file_ext)
|
|
if key not in cls.cache:
|
|
from torch.utils._filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
|
|
if not os.path.exists(output_path):
|
|
cmd = rocm_compile_command(
|
|
[input_path], output_path, dst_file_ext, extra_args
|
|
)
|
|
start_time = time()
|
|
cmd_parts = cmd.split(" ")
|
|
try:
|
|
output = subprocess.check_output(
|
|
cmd_parts,
|
|
stderr=subprocess.STDOUT,
|
|
text=True,
|
|
env=os.environ,
|
|
)
|
|
log.debug("Compilation output: %s", output)
|
|
except subprocess.CalledProcessError as error:
|
|
raise exc.CUDACompileError(cmd_parts, error.output) from error
|
|
end_time = time()
|
|
log_duration_msg = f"Compilation took {end_time - start_time} seconds. Compile command: {cmd}"
|
|
log.info(log_duration_msg)
|
|
else:
|
|
log.debug(
|
|
"Skip compiling %s: output %s already exists",
|
|
input_path,
|
|
output_path,
|
|
)
|
|
cls.cache[key] = ROCmCodeCache.CacheEntry(input_path, output_path)
|
|
|
|
return (cls.cache[key].output_path, key, input_path)
|
|
|
|
@classmethod
|
|
def load(cls, source_code: str, dst_file_ext: str) -> tuple[DLLWrapper, str, str]:
|
|
"""
|
|
Compiles source code and loads the generated .so file.
|
|
Returns a tuple of DLLWrapper, hash_key, source_code_path
|
|
"""
|
|
|
|
if dst_file_ext != "so":
|
|
raise RuntimeError(
|
|
f"Only support loading a .so file for now. "
|
|
f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
|
|
)
|
|
dst_file_path, hash_key, source_code_path = cls.compile(
|
|
source_code, dst_file_ext
|
|
)
|
|
return (DLLWrapper(dst_file_path), hash_key, source_code_path)
|
|
|
|
|
|
class CodeCacheFuture:
|
|
def result(self) -> Callable[..., Any]:
|
|
raise NotImplementedError
|
|
|
|
|
|
class LambdaFuture(CodeCacheFuture):
|
|
def __init__(
|
|
self, result_fn: Callable[..., Any], future: Optional[Future[Any]] = None
|
|
) -> None:
|
|
self.result_fn = result_fn
|
|
self.future = future
|
|
|
|
def result(self) -> Callable[..., Any]:
|
|
return self.result_fn()
|
|
|
|
|
|
class StaticAutotunerFuture(CodeCacheFuture):
|
|
"""
|
|
A statically launchable CachingAutotuner, loaded from TritonBundler
|
|
"""
|
|
|
|
def __init__(
|
|
self, static_autotuner: CachingAutotuner, kernel_name: str, source_code: str
|
|
) -> None:
|
|
# Pickled version of CachingAutotuner
|
|
self.static_autotuner = static_autotuner
|
|
self.kernel_name = kernel_name
|
|
# The python source code of the kernel is relatively small and stored by StaticallyLaunchedAutotuner.
|
|
# We do not store the compiled cuda code here as it's very large,
|
|
# it's stored via the regular TritonBundler
|
|
self.source_code = source_code
|
|
|
|
def result(self) -> CachingAutotuner:
|
|
with dynamo_timed("StaticAutotunerFuture.warm_precompile"):
|
|
reload_kernel_from_src = functools.partial(
|
|
_load_triton_kernel_from_source, self.kernel_name, self.source_code
|
|
)
|
|
self.static_autotuner.recheck_autotune_cache(
|
|
reload_kernel_from_src=reload_kernel_from_src
|
|
)
|
|
self.static_autotuner.precompile( # type: ignore[union-attr]
|
|
warm_cache_only=False,
|
|
reload_kernel=reload_kernel_from_src,
|
|
source_code=None, # no need to save again
|
|
)
|
|
return self.static_autotuner
|