mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
See #127836 for details. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127841 Approved by: https://github.com/oulgen
40 lines
1.6 KiB
Python
40 lines
1.6 KiB
Python
# mypy: allow-untyped-defs
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.ao.quantization.experimental.observer import APoTObserver
|
|
from torch.ao.quantization.fake_quantize import FakeQuantizeBase
|
|
from torch.ao.quantization.experimental.fake_quantize_function import fake_quantize_function
|
|
|
|
class APoTFakeQuantize(FakeQuantizeBase):
|
|
alpha: Tensor
|
|
gamma: Tensor
|
|
quantization_levels: Tensor
|
|
level_indices: Tensor
|
|
|
|
def __init__(self, observer=APoTObserver, **observer_kwargs):
|
|
super().__init__()
|
|
self.activation_post_process = observer(**observer_kwargs)
|
|
self.dtype = self.activation_post_process.dtype
|
|
|
|
def calculate_qparams(self, signed=False): # type: ignore[override]
|
|
return self.activation_post_process.calculate_qparams(signed=signed)
|
|
|
|
def forward(self, X: torch.Tensor): # type: ignore[override]
|
|
if self.observer_enabled[0] == 1:
|
|
self.activation_post_process.forward(X)
|
|
result = self.activation_post_process.calculate_qparams(signed=False)
|
|
self.alpha = result[0]
|
|
self.gamma = result[1]
|
|
self.quantization_levels = result[2]
|
|
self.level_indices = result[3]
|
|
|
|
if self.fake_quant_enabled[0] == 1:
|
|
assert (self.alpha is not None
|
|
and self.gamma is not None
|
|
and self.quantization_levels is not None
|
|
and self.level_indices is not None), "Must set qparams for fake quant"
|
|
|
|
X = fake_quantize_function.apply(X, self.alpha, self.gamma, self.quantization_levels, self.level_indices)
|
|
|
|
return X
|