Files
pytorch/torch/csrc/jit/runtime/static/ops.cpp
Michael Andreas Dagitses 606b234336 turn on -Werror=unused-function in our Bazel CPU build
Summary:
We also fix any existing issues. Note that we only do this for the CPU
build because nvcc is considered a C++ toolchain but it does not have
the same flag support. Adding flags to the GPU build will cause nvcc
errors.

Test Plan: Built locally, rely on CI to confirm.

Reviewers: malfet

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79154

Approved by: https://github.com/seemethere, https://github.com/osalpekar, https://github.com/albanD
2022-06-10 22:11:54 +00:00

2775 lines
96 KiB
C++

#include <torch/csrc/jit/runtime/static/ops.h>
#include <ATen/CPUFunctions.h>
#include <ATen/InferSize.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Parallel.h>
#include <ATen/ScalarOps.h>
#include <ATen/TensorUtils.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/Fill.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/native/Resize.h>
#include <ATen/native/SharedReduceOps.h>
#include <ATen/native/TensorAdvancedIndexing.h>
#include <ATen/native/TensorConversions.h>
#include <ATen/native/cpu/SerialStackImpl.h>
#include <ATen/native/layer_norm.h>
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
#include <ATen/native/quantized/cpu/qembeddingbag.h>
#include <ATen/native/quantized/cpu/qembeddingbag_prepack.h>
#include <ATen/quantized/QTensorImpl.h>
#include <ATen/quantized/Quantizer.h>
#include <c10/core/ScalarType.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/symbolic_shape_runtime_fusion.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/csrc/jit/runtime/static/processed_node_wrapper.h>
#include <torch/csrc/jit/runtime/static/te_wrapper.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <iterator>
#include <mutex>
#include <unordered_map>
C10_DEFINE_bool(
static_runtime_enable_fast_math,
true,
"If on, static runtime may use use optimizations that cause accurary loss "
"vs the jit interpreter");
namespace at {
namespace native {
void repeat_out(at::Tensor& result, const Tensor& self, IntArrayRef repeats) {
TORCH_CHECK(
repeats.size() >= static_cast<size_t>(self.dim()),
"Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor");
// Add new leading dimensions to the tensor if the
// number of target dimensions is larger than the
// number of source dimensions.
int64_t num_new_dimensions = repeats.size() - self.dim();
DimVector padded_size(num_new_dimensions, 1);
padded_size.insert(
padded_size.end(), self.sizes().begin(), self.sizes().end());
DimVector target_size(repeats.size());
bool zero_tensor = false;
for (const auto idx : c10::irange(repeats.size())) {
if (repeats[idx] == 0) {
zero_tensor = true;
}
target_size[idx] = padded_size[idx] * repeats[idx];
}
// return an empty tensor if one of the repeat dimensions is zero
at::native::resize_(result, target_size, c10::nullopt);
if (zero_tensor) {
return;
}
Tensor xtensor = at::native::expand(self, padded_size);
Tensor urtensor = at::native::alias(result);
for (const auto i : c10::irange(xtensor.dim())) {
// can't unfold with step 0, so make sure step is at least 1
// (it doesn't matter what it is in that case, because the size is 0).
urtensor = urtensor.unfold(
i, xtensor.size(i), std::max<int64_t>(xtensor.size(i), 1));
}
at::native::copy_(urtensor, xtensor.expand_as(urtensor));
}
// copy version of view ops
at::Tensor& reshape_copy_out(
at::Tensor& out,
const at::Tensor& self,
const at::DimVector& proposed_shape,
bool infer_size) {
const auto& shape = infer_size
? at::infer_size_dv(proposed_shape, self.numel())
: proposed_shape;
at::native::resize_(out, shape, c10::nullopt);
auto self_contig = self.expect_contiguous();
size_t nbytes = self.nbytes();
if (nbytes == 0) {
return out;
}
const void* self_data = self_contig->data_ptr();
void* out_data = out.data_ptr();
memcpy(out_data, self_data, nbytes);
return out;
}
at::Tensor& flatten_copy_out(
at::Tensor& out,
const at::Tensor& self,
int64_t start_dim,
int64_t end_dim) {
start_dim =
start_dim < 0 ? c10::maybe_wrap_dim(start_dim, self.dim()) : start_dim;
end_dim = end_dim < 0 ? c10::maybe_wrap_dim(end_dim, self.dim()) : end_dim;
TORCH_CHECK(
start_dim <= end_dim,
"flatten() has invalid args: start_dim cannot come after end_dim");
if (self.dim() == 0) {
return reshape_copy_out(out, self, at::DimVector{1}, false);
}
if (start_dim == end_dim) {
auto shape = at::DimVector{self.sizes()};
return reshape_copy_out(out, self, shape, false);
}
// We don't want to infer_size on the entire shape, because that can give us
// an extra degree of freedom we don't want; for example, consider shape [0,
// 1, 3, 0], with start_dim=1, end_dim=2. It's clear we want result shape [0,
// 3, 0] but passing [0, -1, 0] to infer_size means the -1 can take on any
// value and satisfy the constraints.
auto iter = self.sizes().data();
auto slice_numel = std::accumulate(
iter + start_dim,
iter + end_dim + 1,
static_cast<int64_t>(1),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<int64_t>());
at::DimVector shape;
shape.reserve(self.dim() - end_dim + start_dim);
for (const auto i : c10::irange(start_dim)) {
shape.push_back(self.sizes()[i]);
}
shape.push_back(slice_numel);
for (int64_t i = end_dim + 1; i < self.dim(); i++) {
shape.push_back(self.sizes()[i]);
}
return reshape_copy_out(out, self, shape, false);
}
namespace {
// This is annoying and sily, but it's solving a real problem: the
// _MSC_VER version causes an ICE on our old clang5 builds. The
// non-_MSC_VER version is a syntax error according to MSVC. Use the
// appropriate version depending on if we're MSVC or not.
#define TO_COPY_OUT_FAST_PATH_LOGIC(out, self, self_t) \
do { \
const auto N = self.numel(); \
const auto self_data = self.data_ptr<self_t>(); \
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3( \
kHalf, \
kBFloat16, \
kBool, \
out.scalar_type(), \
"to_copy_out_inner_loop", \
[&]() { \
const auto out_data = out.data_ptr<scalar_t>(); \
for (const auto idx : c10::irange(N)) { \
/* NOLINTNEXTLINE(bugprone-signed-char-misuse) */ \
out_data[idx] = static_cast<scalar_t>(self_data[idx]); \
} \
}); \
} while (0)
#ifdef _MSC_VER
template <typename T>
void to_copy_out_fast_path(Tensor& out, const Tensor& self) {
TO_COPY_OUT_FAST_PATH_LOGIC(out, self, T);
}
#define TO_COPY_OUT_FAST_PATH_BODY(out, self) \
to_copy_out_fast_path<scalar_t>(out, self)
#else
#define TO_COPY_OUT_FAST_PATH_BODY(out, self) \
using self_t = scalar_t; \
TO_COPY_OUT_FAST_PATH_LOGIC(out, self, self_t)
#endif
} // namespace
at::Tensor& to_copy_out(
Tensor& out,
const Tensor& self,
bool non_blocking,
bool copy_strides,
c10::optional<MemoryFormat> memory_format) {
if (copy_strides) {
at::native::resize_impl_cpu_(
out.unsafeGetTensorImpl(), self.sizes(), self.strides());
} else {
at::native::resize_(out, self.sizes(), c10::nullopt);
}
auto is_unsupported_dtype = [](ScalarType t) {
#define TORCH_OPS_UNSUPPORTED_TYPE(_, type) \
case k##type: \
return true;
switch (t) {
AT_FORALL_QINT_TYPES(TORCH_OPS_UNSUPPORTED_TYPE)
AT_FORALL_COMPLEX_TYPES(TORCH_OPS_UNSUPPORTED_TYPE)
default:
return false;
}
#undef TORCH_OPS_UNSUPPORTED_TYPE
};
// Fast path: can we just copy the data ourselves? Avoids creating a
// TensorIterator in at::native::copy_, which is relatively
// expensive.
if (self.is_contiguous() && !non_blocking &&
// Did the user request us to make a copy that isn't contiguous?
(memory_format == c10::nullopt ||
memory_format == c10::MemoryFormat::Preserve ||
memory_format == c10::MemoryFormat::Contiguous) &&
// CopyKernel.cpp handles this case specially, so let's not mess
// with it.
!self.is_neg() && !is_unsupported_dtype(self.dtype().toScalarType()) &&
!is_unsupported_dtype(out.dtype().toScalarType()) &&
!(
// FBGEMM optimization might kick in, don't interfere with
// that.
(self.dtype() == kFloat && out.dtype() == kHalf) ||
(self.dtype() == kHalf && out.dtype() == kFloat))) {
AT_DISPATCH_ALL_TYPES_AND3(
kHalf, kBFloat16, kBool, self.scalar_type(), "to_copy_out", [&]() {
TO_COPY_OUT_FAST_PATH_BODY(out, self);
});
return out;
}
at::native::copy_(out, self, non_blocking);
return out;
}
Tensor& linear_out(
Tensor& output,
const Tensor& input,
const Tensor& weight,
const c10::optional<Tensor>& bias_opt) {
TORCH_CHECK(!input.is_mkldnn());
auto bias = bias_opt.has_value()
? c10::MaybeOwned<Tensor>::borrowed(*bias_opt)
: c10::MaybeOwned<Tensor>::owned(c10::in_place);
if (input.dim() == 2 && bias->defined()) {
// Fused op is marginally faster.
return at::cpu::addmm_out(output, *bias, input, weight.t());
}
at::native::matmul_out(input, weight.t(), output);
if (bias->defined()) {
at::cpu::add_(output, *bias);
}
return output;
}
Tensor& c2_argmin_out(
Tensor& output,
const Tensor& input,
const int64_t dim,
const bool keepdim) {
const auto ndim = input.dim();
int64_t dim_ = maybe_wrap_dim(dim, ndim);
TORCH_CHECK(dim_ >= 0 && dim_ < ndim);
const auto in_dims = input.sizes();
c10::SmallVector<int64_t, 5> out_dims;
out_dims.reserve(ndim);
int prev_size = 1;
int next_size = 1;
for (int i = 0; i < dim_; ++i) {
out_dims.push_back(in_dims[i]);
prev_size *= in_dims[i];
}
if (keepdim) {
out_dims.push_back(1);
}
for (auto i = dim_ + 1; i < ndim; ++i) {
out_dims.push_back(in_dims[i]);
next_size *= in_dims[i];
}
at::native::resize_(output, out_dims, c10::nullopt);
const auto n = in_dims[dim_];
if (next_size == 1) {
AT_DISPATCH_ALL_TYPES_AND2(
kHalf, kBFloat16, input.scalar_type(), "argmin_input", [&]() {
const auto in_ptr = input.data_ptr<scalar_t>();
const auto out_ptr = output.data_ptr<int64_t>();
// input is a [prev_size, n] tensor.
// output is a [prev_size,] tensor.
// Thus, access is contiguous/coalesced.
for (int i = 0; i < prev_size; ++i) {
auto v = std::min_element(
in_ptr + i * n,
in_ptr + (i + 1) * n,
[](scalar_t a, scalar_t b) {
// if a is nan, then a is *less* than b with LessOrNan
// semantics
if (at::_isnan(a)) {
return true;
}
// if a is not nan and b is nan, then a is not less than b
// with LessOrNan semantics otherwise, act normally. If `b` is
// NaN then a < b will always return false, so this is
// equivalent to the first snippet.
return a < b;
});
out_ptr[i] = std::distance(in_ptr + i * n, v);
}
});
} else {
AT_DISPATCH_ALL_TYPES_AND2(
kHalf, kBFloat16, input.scalar_type(), "argmin_input", [&]() {
const auto less_or_nan = native::detail::LessOrNan<scalar_t>{};
const auto in_ptr = input.data_ptr<scalar_t>();
const auto out_ptr = output.data_ptr<int64_t>();
std::memset(out_ptr, 0, prev_size * next_size * sizeof(int64_t));
for (int i = 0; i < prev_size; ++i) {
const scalar_t* cur_in_ptr = in_ptr + i * n * next_size + next_size;
for (int k = 1; k < n; ++k) {
for (int j = 0; j < next_size; ++j) {
int64_t* cur_out_ptr = out_ptr + i * next_size + j;
if (less_or_nan(
*cur_in_ptr,
in_ptr
[i * n * next_size + *cur_out_ptr * next_size + j],
*cur_out_ptr,
k)) {
*cur_out_ptr = k;
}
++cur_in_ptr;
}
}
}
});
}
return output;
}
at::Tensor& dequantize_copy_out(Tensor& out, const Tensor& self) {
if (C10_UNLIKELY(!self.is_quantized())) {
// fallback to dequantize_cpu equivalent case: make sure out is at::kFloat
DCHECK(out.scalar_type() == kFloat);
return at::native::to_copy_out(out, self, false, false, c10::nullopt);
}
return get_qtensorimpl(self)->quantizer()->dequantize_out(out, self);
}
} // namespace native
} // namespace at
namespace torch {
namespace jit {
C10_DEFINE_REGISTRY(SROperatorRegistry, SROperatorFunctor);
bool opIsRegistered(const c10::Symbol& op_name) {
const std::string name(op_name.toQualString());
return SROperatorRegistry()->Has(name);
}
bool disableUnsafeMathOp(const char* op_name) {
if (FLAGS_static_runtime_enable_fast_math) {
return false;
}
// This list contains ops that use caffe2 math library or use NNC that does
// not guarantee bit exactness vs the jit interpreter. Note aten::relu is not
// included even though it uses NNC because the results of relu should always
// match.
static const FastSet<std::string> fast_ops{
"aten::add", "aten::tanh", "aten::sigmoid", "aten::logit"};
return fast_ops.count(op_name) > 0;
}
SROperator getOutOfPlaceOperation(Node* n) {
auto op_name = n->kind().toQualString();
if (SROperatorRegistry()->Has(op_name) && !disableUnsafeMathOp(op_name)) {
return SROperatorRegistry()->Create(op_name)->Generate(n);
}
return nullptr;
}
// Returns true if the node represents an op with variadic arguments.
bool hasVarArgs(Node* n) {
if (n->kind() == prim::VarConcat || n->kind() == prim::VarStack) {
return true;
}
return false;
}
bool canReuseInputsOutputs(
Node* n,
const FastMap<Node*, bool>& node_has_out_variant) {
auto it = node_has_out_variant.find(n);
if (it != node_has_out_variant.end()) {
return it->second;
}
return getOutOfPlaceOperation(n) != nullptr;
}
// returns true if the producers of the inputs
// to this operations are out of place.
// This means the IValues will not change run to run
bool inputsCanRunOutOfPlace(
Node* n,
const FastMap<Node*, bool>& node_has_out_variant) {
for (auto* input : n->inputs()) {
if (!canReuseInputsOutputs(input->node(), node_has_out_variant)) {
return false;
}
}
return true;
}
bool isOptimizableContainerType(
Node* n,
const FastMap<Node*, bool>& node_has_out_variant) {
const auto& type = n->output()->type();
bool is_supported_type = false;
if (type->kind() == TypeKind::ListType) {
const auto& list_type = type->expectRef<ListType>();
is_supported_type =
list_type.getElementType()->kind() == TypeKind::TensorType;
} else if (type->kind() == TypeKind::TupleType) {
const auto& tuple_type = type->expectRef<TupleType>();
auto types = tuple_type.containedTypes();
const auto& iter =
std::find_if(types.begin(), types.end(), [](const TypePtr& elem) {
return elem->kind() == TypeKind::TensorType;
});
is_supported_type = iter != types.end();
}
return is_supported_type && inputsCanRunOutOfPlace(n, node_has_out_variant);
}
static inline void listConstructSlowPath(
const ListType& list_type,
const size_t size,
ProcessedNode* p_node) {
c10::List<IValue> vals(list_type.getElementType());
vals.reserve(size);
for (const auto i : c10::irange(size)) {
vals.push_back(p_node->Input(i));
}
p_node->Output(0) = vals;
}
REGISTER_OPERATOR_FUNCTOR(
prim::ListConstruct,
prim_ListConstruct,
[](Node* n) -> SROperator {
const bool can_optimize =
isOptimizableContainerType(n, FastMap<Node*, bool>());
const auto& type = n->output()->type()->expectRef<ListType>();
const size_t size = n->inputs().size();
if (!can_optimize) {
return [&type, size](ProcessedNode* p_node) {
DCHECK(p_node->num_inputs() == size);
listConstructSlowPath(type, size, p_node);
};
}
return [&type, size](ProcessedNode* p_node) {
DCHECK(p_node->num_inputs() == size);
const auto& out_l = p_node->Output(0);
if (!out_l.isNone()) {
return;
}
listConstructSlowPath(type, size, p_node);
};
});
static inline void tupleConstructSlowPath(
const size_t size,
ProcessedNode* p_node) {
// prepare inputs
switch (size) {
case 1:
p_node->Output(0) = c10::ivalue::Tuple::create(p_node->Input(0));
break;
case 2:
p_node->Output(0) =
c10::ivalue::Tuple::create(p_node->Input(0), p_node->Input(1));
break;
case 3:
p_node->Output(0) = c10::ivalue::Tuple::create(
p_node->Input(0), p_node->Input(1), p_node->Input(2));
break;
default: {
std::vector<IValue> vals;
vals.reserve(size);
for (const auto i : c10::irange(size)) {
vals.push_back(p_node->Input(i));
}
p_node->Output(0) = c10::ivalue::Tuple::create(std::move(vals));
break;
}
}
}
REGISTER_OPERATOR_FUNCTOR(
prim::TupleConstruct,
prim_TupleConstruct,
[](Node* n) -> SROperator {
const bool can_optimize =
isOptimizableContainerType(n, FastMap<Node*, bool>());
const size_t size = n->inputs().size();
if (!can_optimize) {
return [size](ProcessedNode* p_node) {
DCHECK(p_node->num_inputs() == size);
tupleConstructSlowPath(size, p_node);
};
}
return [size](ProcessedNode* p_node) {
DCHECK(p_node->num_inputs() == size);
const auto& out_l = p_node->Output(0);
if (!out_l.isNone()) {
return;
}
tupleConstructSlowPath(size, p_node);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::abs, aten_abs, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::abs(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::abs(in0_t);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::abs_out(in0_t, out_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::mul, aten_mul, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::mul.Tensor(Tensor self, Tensor other) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::mul(in0_t, in1_t);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::mul_out(out_t, in0_t, in1_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::addmm, aten_addmm, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
const auto& in2_t = p_node->Input(2).toTensor();
const auto in3_s = p_node->Input(3).toScalar();
const auto in4_s = p_node->Input(4).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::addmm(in0_t, in1_t, in2_t, in3_s, in4_s);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::addmm_out(out_t, in0_t, in1_t, in2_t, in3_s, in4_s);
};
});
#ifdef FBCODE_CAFFE2
// Disable externally to avoid MSVC errors in open-source CI
REGISTER_OPERATOR_FUNCTOR(
static_runtime::clamp_nan_to_num,
static_runtime_clamp_nan_to_num,
[](Node* n) -> SROperator {
auto clamp_min_ival_opt = toIValue(n->input(1));
auto clamp_max_ival_opt = toIValue(n->input(2));
TORCH_CHECK(
clamp_min_ival_opt.has_value() && clamp_max_ival_opt.has_value());
auto clamp_min_opt = clamp_min_ival_opt->toOptional<at::Scalar>();
auto clamp_max_opt = clamp_max_ival_opt->toOptional<at::Scalar>();
TORCH_CHECK(clamp_min_opt.has_value() && clamp_max_opt.has_value());
return [te = createClampNanToNum(),
clamp_min = clamp_min_opt->to<float>(),
clamp_max =
clamp_max_opt->to<float>()](ProcessedNode* p_node) mutable {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
auto in3_s = p_node->Input(3).toOptional<double>();
if (!te || !te->checkInput<float>(in0_t)) {
at::cpu::nan_to_num_out(
out_t,
at::cpu::clamp(in0_t, clamp_min, clamp_max),
in3_s,
c10::nullopt,
c10::nullopt);
return;
}
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
auto output_size = in0_t.numel();
// This might be UB if in3_s is absurdly large, but most implementations
// just turn it into `inf` in that case. The PyTorch core nan_to_num
// kernel just static_cast()s the limits to the destination type, so
// we'll ignore overflow issues here as well.
auto nan = in3_s.has_value() ? static_cast<float>(*in3_s) : 0.f;
te->call(
{out_t.data_ptr(),
in0_t.data_ptr(),
&clamp_min,
&clamp_max,
&nan,
&output_size});
};
});
#endif
REGISTER_OPERATOR_FUNCTOR(aten::clamp, aten_clamp, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor"))) {
return [te = createClamp()](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
auto in2_s = p_node->Input(2).toOptional<at::Scalar>();
if (!te->checkInput<float>(in0_t)) {
at::cpu::clamp_out(out_t, in0_t, in1_s, in2_s);
return;
}
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
auto output_size = in0_t.numel();
auto min = in1_s.has_value() ? in1_s->toFloat()
: -std::numeric_limits<float>::infinity();
auto max = in2_s.has_value() ? in2_s->toFloat()
: std::numeric_limits<float>::infinity();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &min, &max, &output_size});
};
}
if (n->matches(
"aten::clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor")) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
auto in1_t = p_node->Input(1).toOptional<at::Tensor>();
auto in2_t = p_node->Input(2).toOptional<at::Tensor>();
at::cpu::clamp_out(out_t, in0_t, in1_t, in2_t);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::bmm, aten_bmm, [](Node* n) -> SROperator {
if (!n->matches(
torch::schema("aten::bmm(Tensor self, Tensor mat2) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::bmm_out(out_t, in0_t, in1_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::nan_to_num, aten_nan_to_num, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::nan_to_num(Tensor self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_d = p_node->Input(1).toOptional<double>();
const auto in2_d = p_node->Input(2).toOptional<double>();
const auto in3_d = p_node->Input(3).toOptional<double>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::nan_to_num(in0_t, in1_d, in2_d, in3_d);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::nan_to_num_out(in0_t, in1_d, in2_d, in3_d, out_t);
};
});
namespace {
void varStackSerialOut(
at::Tensor& result,
int64_t dim,
const ProcessedNodeInputWrapper& inputs) {
auto result_sizes = inputs[0].sizes().vec();
result_sizes.insert(result_sizes.begin() + dim, inputs.size());
at::native::resize_(result, result_sizes);
AT_DISPATCH_FLOATING_TYPES(
result.scalar_type(), "varstack_serial_kernel", [&]() {
at::native::detail::
stack_serial_kernel_impl<scalar_t, ProcessedNodeInputWrapper>(
result, inputs, dim);
});
}
std::vector<at::Tensor> unsqueezeVarStackInputs(
const ProcessedNodeInputWrapper& inputs,
const int64_t dim) {
std::vector<at::Tensor> result;
result.reserve(inputs.size());
for (const auto i : c10::irange(inputs.size())) {
result.push_back(at::native::unsqueeze(inputs[i], dim));
}
return result;
}
void varstackNonserialOut(
at::Tensor& result,
const int64_t dim,
const ProcessedNodeInputWrapper& inputs) {
std::vector<at::Tensor> inputs_unsqueezed =
unsqueezeVarStackInputs(inputs, dim);
fastResizeToZero(result);
at::cpu::cat_outf(inputs_unsqueezed, dim, result);
}
void varStackFastOut(
at::Tensor& out,
int64_t dim,
const ProcessedNodeInputWrapper& inputs) {
DCHECK(out.is_contiguous());
const auto num_inputs = static_cast<int64_t>(inputs.size());
TORCH_CHECK(num_inputs > 0, "stack expects a non-empty list of tensors");
const auto first_tensor_shape = inputs[0].sizes();
for (const auto i : c10::irange(1, num_inputs)) {
const auto shape = inputs[i].sizes();
TORCH_CHECK(
shape == first_tensor_shape,
"Stack expects each tensor to be the same size, but got ",
first_tensor_shape,
" at position 0 and ",
shape,
" at position ",
i);
}
const std::array<int64_t, 2> output_size = (dim == 0 || dim == -2)
? std::array<int64_t, 2>{num_inputs, 1}
: std::array<int64_t, 2>{1, num_inputs};
at::native::resize_(out, output_size, c10::nullopt);
AT_DISPATCH_ALL_TYPES(out.scalar_type(), "varStackFastOut", [&]() {
auto* out_data = out.data_ptr<scalar_t>();
for (const auto i : c10::irange(num_inputs)) {
auto& tensor = inputs[i];
auto* input_ptr = tensor.data_ptr<scalar_t>();
out_data[i] = *input_ptr;
}
});
}
bool inputsAreScalars(const ProcessedNodeInputWrapper& inputs) {
// All stack inputs should have the same size, so we only check
// the first one. If this isn't true, an exception will be thrown
// in the VarStack implementation
const auto& first_tensor = inputs[0];
return first_tensor.sizes()[0] == 1 && first_tensor.dim() == 1;
}
void varStackOut(ProcessedNode& pnode, int64_t dim) {
const auto num_inputs = pnode.num_inputs();
TORCH_CHECK(num_inputs > 1, "stack expects a non-empty list of tensors");
dim = c10::maybe_wrap_dim(dim, pnode.Input(0).toTensor().dim() + 1);
auto inputs = ProcessedNodeInputWrapper(pnode);
auto& output = pnode.Output(0).toTensor();
if (output.is_contiguous() && inputsAreScalars(inputs)) {
varStackFastOut(output, dim, inputs);
return;
}
bool can_use_serial = at::native::detail::CanUseNativeSerialStack<
ProcessedNodeInputWrapper,
/*skip_overlap_check*/ true>::call(output, inputs, dim);
if (can_use_serial) {
varStackSerialOut(output, dim, inputs);
return;
}
varstackNonserialOut(output, dim, inputs);
}
} // namespace
// Split out into a function to appease MSVC's pre-processor
SROperator aten_stack(Node* n) {
if (!n->matches(torch::schema(
"aten::stack(Tensor[] tensors, int dim=0) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto inputs = p_node->Input(0).toTensorVector();
TORCH_CHECK(inputs.size() > 0, "stack expects non-empty tensor list");
const auto dim = p_node->Input(1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::_stack_cpu(inputs, dim);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::_stack_out_cpu(inputs, dim, out_t);
};
}
REGISTER_OPERATOR_FUNCTOR(aten::stack, aten_stack, aten_stack);
REGISTER_OPERATOR_FUNCTOR(
prim::VarStack,
prim_VarStack,
[](Node* n) -> SROperator {
return [](ProcessedNode* p_node) {
const size_t num_inputs = p_node->num_inputs();
const auto dim = p_node->Input(num_inputs - 1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(p_node->Input(0).toTensor());
}
varStackOut(*p_node, dim);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::leaky_relu, aten_leaky_relu, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_s = p_node->Input(1).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::leaky_relu(in0_t, in1_s);
return;
}
auto& out_t = p_node->Output(0).toTensor();
at::cpu::leaky_relu_out(out_t, in0_t, in1_s);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::relu, aten_relu, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::relu(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createRelu();
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te->checkInput<float>(in0_t)) {
fastResizeToZero(out_t);
at::cpu::threshold_out(out_t, in0_t, 0, 0);
return;
}
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
};
});
REGISTER_OPERATOR_FUNCTOR(aten::tanh, aten_tanh, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::tanh(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createTanh();
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te->checkInput<float>(in0_t)) {
fastResizeToZero(out_t);
at::cpu::tanh_out(out_t, in0_t);
return;
}
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
};
});
REGISTER_OPERATOR_FUNCTOR(
prim::TensorExprDynamicGroup,
prim_TensorExprDynamicGroup,
[](Node* n) -> SROperator {
auto graph = n->g(attr::Subgraph);
Code code(graph, "");
return [code](ProcessedNode* p_node) {
auto num_outputs = p_node->num_outputs();
Stack stack;
if (p_node->Output(0).isNone()) {
stack.reserve(p_node->num_inputs());
} else {
stack.reserve(p_node->num_inputs() + num_outputs);
for (const auto& o : p_node->outputs()) {
stack.emplace_back(o);
}
}
for (auto i : c10::irange(p_node->num_inputs())) {
stack.emplace_back(p_node->Input(i));
}
runTensorExprDynamicGroup(code, stack);
if (p_node->Output(0).isNone()) {
TORCH_INTERNAL_ASSERT(
stack.size() == num_outputs,
"Unexpected # of outputs on stack after executing TensorExprDynamicGroup");
for (auto i : c10::irange(num_outputs)) {
p_node->Output(i) = std::move(stack[i]);
}
}
};
});
REGISTER_OPERATOR_FUNCTOR(
aten::sigmoid,
aten_sigmoid,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::sigmoid(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createSigmoid();
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te->checkInput<float>(in0_t)) {
fastResizeToZero(out_t);
at::cpu::sigmoid_out(out_t, in0_t);
return;
}
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
};
});
REGISTER_OPERATOR_FUNCTOR(aten::logit, aten_logit, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::logit(Tensor self, float? eps=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
c10::optional<float> clamp = c10::nullopt;
if (n->inputs()[1]->node()->kind() == prim::Constant) {
auto clamp_d = toIValue(n->inputs()[1])->toOptional<double>();
clamp = clamp_d
? c10::make_optional<float>(static_cast<float>(clamp_d.value()))
: c10::nullopt;
}
auto te = clamp ? createLogit() : nullptr;
float clamp_value = clamp ? *clamp : 0.0f;
return [te, clamp_value](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te || !te->checkInput<float>(in0_t)) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_d = p_node->Input(1).toOptional<double>();
fastResizeToZero(out_t);
at::native::logit_out(in0_t, in1_d, out_t);
return;
}
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
float c = clamp_value;
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn, &c});
};
});
REGISTER_OPERATOR_FUNCTOR(aten::clone, aten_clone, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::clone(Tensor self, *, MemoryFormat? memory_format=None) ->Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& src = p_node->Input(0).toTensor();
const auto& optional_memory_format =
p_node->Input(1).toOptional<c10::MemoryFormat>();
auto memory_format =
optional_memory_format.value_or(c10::MemoryFormat::Preserve);
/*
disable out_variant of clone for case with stride = 0 and
memory formats other than preserve. Perform dynamic allocation
instead of memory reuse for simpler implementation. We could,
in principle, figure out copy of strides.
*/
if ((at::has_internal_overlap(src.unsafeGetTensorImpl()) ==
at::MemOverlap::YES) ||
(memory_format != c10::MemoryFormat::Preserve)) {
p_node->Output(0) = at::native::clone(src, memory_format);
return;
}
if (p_node->Output(0).isNone()) {
if (src.is_non_overlapping_and_dense()) {
// Copy all strides
p_node->Output(0) =
at::empty_strided(src.sizes(), src.strides(), src.options());
} else {
memory_format = src.suggest_memory_format();
p_node->Output(0) = create_empty_from(src, memory_format);
}
}
auto& out_t = p_node->Output(0).toTensor();
at::native::resize_impl_cpu_(
out_t.unsafeGetTensorImpl(), src.sizes(), src.strides());
at::native::copy_(out_t, src, false);
};
});
REGISTER_OPERATOR_FUNCTOR(
quantized::embedding_bag_byte_rowwise_offsets,
quantized_embedding_bag_byte_rowwise_offsets,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::embedding_bag_byte_rowwise_offsets(Tensor weight, Tensor indices, Tensor? offsets=None, bool scale_grad_by_freq=False, int mode=0, bool pruned_weights=False, Tensor? per_sample_weights=None, Tensor? compressed_indices_mapping=None, bool include_last_offset=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
const auto& indices = p_node->Input(1).toTensor();
const auto offsets = p_node->Input(2).toOptional<at::Tensor>();
const auto pruned_weights = p_node->Input(5).toBool();
const auto per_sample_weights =
p_node->Input(6).toOptional<at::Tensor>();
const auto compressed_indices_mapping =
p_node->Input(7).toOptional<at::Tensor>();
const auto include_last_offset = p_node->Input(8).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(weight, at::kFloat);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
return at::native::embedding_bag_byte_rowwise_offsets_out(
out_t,
weight,
indices,
offsets,
false, // unused scale_grad_by_freq
0, // unused mode
pruned_weights,
per_sample_weights,
compressed_indices_mapping,
include_last_offset);
};
});
REGISTER_OPERATOR_FUNCTOR(
quantized::embedding_bag_4bit_rowwise_offsets,
embedding_bag_4bit_rowwise_offsets,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::embedding_bag_4bit_rowwise_offsets(Tensor weight, Tensor indices, Tensor? offsets=None, bool scale_grad_by_freq=False, int mode=0, bool pruned_weights=False, Tensor? per_sample_weights=None, Tensor? compressed_indices_mapping=None, bool include_last_offset=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
const auto& indices = p_node->Input(1).toTensor();
const auto offsets = p_node->Input(2).toOptional<at::Tensor>();
const auto pruned_weights = p_node->Input(5).toBool();
const auto per_sample_weights =
p_node->Input(6).toOptional<at::Tensor>();
const auto compressed_indices_mapping =
p_node->Input(7).toOptional<at::Tensor>();
const auto include_last_offset = p_node->Input(8).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(weight, at::kFloat);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
return at::native::embedding_bag_4bit_rowwise_offsets_out(
out_t,
weight,
indices,
offsets,
false, // unused scale_grad_by_freq
0, // unused mode
pruned_weights,
per_sample_weights,
compressed_indices_mapping,
include_last_offset);
};
});
REGISTER_OPERATOR_FUNCTOR(
quantized::embedding_bag_byte_prepack,
embedding_bag_byte_prepack,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::embedding_bag_byte_prepack(Tensor weight) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::qembeddingbag_byte_prepack(weight);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::qembeddingbag_byte_prepack_out(out_t, weight);
};
});
// The out variant takes precedence over native
REGISTER_OPERATOR_FUNCTOR(aten::narrow_copy, aten_narrow_copy, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::narrow_copy(Tensor self, int dim, int start, int length) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor(); // self
const auto dim = p_node->Input(1).toInt(); // dim
int64_t start = 0;
if (p_node->Input(2).isScalar()) {
start = p_node->Input(2).toInt();
} else {
auto& t = p_node->Input(2).toTensor();
start = t.item<int64_t>();
}
auto length = p_node->Input(3).toInt(); // length
if (p_node->Output(0).isNone()) {
p_node->Output(0) =
at::native::narrow_copy_dense_cpu(self, dim, start, length);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::narrow_copy_dense_cpu_out(self, dim, start, length, output);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::index, aten_index, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::index.Tensor(Tensor self, Tensor?[] indices) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_l =
at::native::toListOfOptionalTensors(p_node->Input(1).toListRef());
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::index(in0_t, in1_l);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::index_out(out_t, in0_t, in1_l);
};
});
REGISTER_OPERATOR_FUNCTOR(
aten::index_select,
aten_index_select,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::index_select(Tensor self, int dim, Tensor index) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto dim = p_node->Input(1).toInt();
const auto& index = p_node->Input(2).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::index_select_cpu_(self, dim, index);
return;
}
auto& out = p_node->Output(0).toTensor();
fastResizeToZero(out);
at::native::index_select_out_cpu_(self, dim, index, out);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::pow, aten_pow, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor"))) {
return [](ProcessedNode* p_node) {
if (p_node->Output(0).isNone()) {
const auto& in0_t = p_node->Input(0).toTensor();
auto dtype =
at::native::result_type(in0_t, p_node->Input(1).toTensor());
p_node->Output(0) = create_empty_from(in0_t, dtype);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::pow_out(
out_t, p_node->Input(0).toTensor(), p_node->Input(1).toTensor());
};
}
if (n->matches(torch::schema(
"aten::pow.Scalar(Scalar self, Tensor exponent) -> Tensor"))) {
return [](ProcessedNode* p_node) {
if (p_node->Output(0).isNone()) {
const auto& in1_t = p_node->Input(1).toTensor();
auto dtype =
at::native::result_type(p_node->Input(0).toScalar(), in1_t);
p_node->Output(0) = at::native::empty_like(
in1_t,
dtype,
in1_t.options().layout_opt(),
in1_t.options().device_opt(),
in1_t.options().pinned_memory_opt(),
at::MemoryFormat::Preserve);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::pow_out(
out_t, p_node->Input(0).toScalar(), p_node->Input(1).toTensor());
};
}
if (n->matches(torch::schema(
"aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor"))) {
return [](ProcessedNode* p_node) {
if (p_node->Output(0).isNone()) {
const auto& in0_t = p_node->Input(0).toTensor();
auto dtype =
at::native::result_type(in0_t, p_node->Input(1).toScalar());
p_node->Output(0) = at::native::empty_like(
in0_t,
dtype,
in0_t.options().layout_opt(),
in0_t.options().device_opt(),
in0_t.options().pinned_memory_opt(),
at::MemoryFormat::Preserve);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::pow_out(
out_t, p_node->Input(0).toTensor(), p_node->Input(1).toScalar());
};
}
LogAndDumpSchema(n);
return nullptr;
});
namespace {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
struct ToArgs {
c10::optional<at::ScalarType> dtype;
c10::Layout layout;
bool know_to_will_alias = false;
c10::optional<c10::MemoryFormat> memory_format;
};
template <bool has_constant_non_tensor_dtype_and_flags, bool has_memory_format>
ToArgs extract_to_args(ProcessedNode* p_node) {
ToArgs result;
if (!has_constant_non_tensor_dtype_and_flags && p_node->Input(1).isTensor()) {
const auto& other = p_node->Input(1).toTensor();
result.dtype = other.scalar_type();
result.layout = other.layout();
DCHECK_EQ(other.device().type(), c10::DeviceType::CPU);
} else {
const auto& self = p_node->Input(0).toTensor();
result.dtype = p_node->Input(1).toOptional<at::ScalarType>();
result.layout = self.layout();
// Static runtime only works with CPU tensors; don't need to read this.
DCHECK_EQ(self.device().type(), c10::DeviceType::CPU);
result.know_to_will_alias = has_constant_non_tensor_dtype_and_flags &&
(!result.dtype.has_value() ||
result.dtype.value() == self.dtype().toScalarType());
}
if (has_memory_format) {
DCHECK_EQ(p_node->num_inputs(), 5);
result.memory_format = p_node->Input(4).toOptional<c10::MemoryFormat>();
result.know_to_will_alias = result.know_to_will_alias &&
(result.memory_format.value_or(c10::MemoryFormat::Preserve) ==
c10::MemoryFormat::Preserve);
}
return result;
}
template <bool has_constant_non_tensor_dtype_and_flags, bool has_memory_format>
struct CheckToWillAlias {
static bool call(
ProcessedNode* p_node,
const at::Tensor& self,
const ToArgs& to_args) {
// The to_maybe_copy_out operator functor should have detected a
// constant true `copy` argument and used to_copy instead.
bool copy = false;
if (has_constant_non_tensor_dtype_and_flags) {
DCHECK(!p_node->Input(3).toBool());
copy = false;
} else {
copy = p_node->Input(3).toBool();
}
return !copy &&
(to_args.know_to_will_alias ||
at::native::to_will_alias(
self,
to_args.dtype,
to_args.layout,
c10::Device{c10::DeviceType::CPU},
copy,
has_memory_format ? to_args.memory_format
: c10::MemoryFormat::Preserve));
}
};
template <>
struct CheckToWillAlias<true, false> {
// Special case! First, there is no memory format to check. Second,
// we know that the layout and device will match self, so we only
// need to check the dtype.
static bool call(ProcessedNode* p_node, const at::Tensor& self) {
DCHECK(!p_node->Input(3).toBool()); // !copy
const auto dtype_opt = p_node->Input(1).toOptional<at::ScalarType>();
return !dtype_opt.has_value() || *dtype_opt == self.dtype().toScalarType();
}
};
// Force inlining so we don't have to branch on whether args is null
// at runtime.
template <bool has_constant_non_tensor_dtype_and_flags, bool has_memory_format>
C10_ALWAYS_INLINE void to_copy_functor_impl(
ProcessedNode* p_node,
const ToArgs* args) {
const auto& self = p_node->Input(0).toTensor();
// ignore input 3 (copy)
auto non_blocking = p_node->Input(2).toBool(); // non_blocking
// handle memory format
bool copy_strides = false;
c10::optional<c10::MemoryFormat> memory_format = c10::MemoryFormat::Preserve;
c10::optional<ToArgs> my_args;
if (!args) {
my_args = extract_to_args<
has_constant_non_tensor_dtype_and_flags,
has_memory_format>(p_node);
args = &my_args.value();
}
if (has_memory_format) {
memory_format = args->memory_format.value_or(c10::MemoryFormat::Preserve);
}
if (memory_format == c10::MemoryFormat::Preserve) {
if (self.is_non_overlapping_and_dense()) {
memory_format = c10::nullopt;
copy_strides = true;
} else {
memory_format = self.suggest_memory_format();
}
}
bool need_to_allocate_output = true;
if (p_node->Output(0).isTensor()) {
const auto& existing_output = p_node->Output(0).toTensor();
if ((!has_constant_non_tensor_dtype_and_flags &&
(existing_output.dtype() != args->dtype ||
existing_output.layout() != args->layout ||
existing_output.device() != self.device())) ||
(has_memory_format &&
!existing_output.is_contiguous(
memory_format.value_or(c10::MemoryFormat::Contiguous)))) {
need_to_allocate_output = true;
} else {
need_to_allocate_output = false;
}
}
// See Note [Explicit nullopt MemoryFormat argument]
// Can't use size {0} if memory_format is ChannelLast
if (need_to_allocate_output) {
p_node->Output(0) = at::detail::empty_cpu(
self.sizes(),
args->dtype,
args->layout,
self.device(),
c10::nullopt,
memory_format);
} else {
if (has_memory_format) {
memory_format = p_node->Input(4).toOptional<c10::MemoryFormat>().value_or(
c10::MemoryFormat::Preserve);
} else {
memory_format = c10::MemoryFormat::Preserve;
}
}
copy_strides = copy_strides ||
(memory_format == c10::MemoryFormat::Preserve &&
self.is_non_overlapping_and_dense());
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::to_copy_out(
out_t, self, non_blocking, copy_strides, memory_format);
}
template <bool has_constant_non_tensor_dtype_and_flags, bool has_memory_format>
void to_copy_functor(ProcessedNode* p_node) {
to_copy_functor_impl<
has_constant_non_tensor_dtype_and_flags,
has_memory_format>(p_node, nullptr);
}
template <bool has_constant_non_tensor_dtype_and_flags, bool has_memory_format>
void to_maybe_copy_out_functor(ProcessedNode* p_node) {
// It would be great if we could avoid checking our arguments every
// time. However, we need to make account for the possibility that
// the dtype (and layout, memory format, etc.) of self changed
// between iterations.
ToArgs args = extract_to_args<
has_constant_non_tensor_dtype_and_flags,
has_memory_format>(p_node);
const auto& self = p_node->Input(0).toTensor();
if (CheckToWillAlias<
has_constant_non_tensor_dtype_and_flags,
has_memory_format>::call(p_node, self, args)) {
// Don't write our Tensor output. This leaves it None if it
// was never allocated (and there is a special case in the
// memory planner to not start managing in this case), but
// if we are oscillating between aliasing and needing to
// copy, we should just leave our output in place so as not
// to confuse the memory planner.
p_node->Output(1) = false;
} else {
p_node->Output(1) = true;
to_copy_functor_impl<
has_constant_non_tensor_dtype_and_flags,
has_memory_format>(p_node, &args);
}
}
// Take advantage of CheckToWillAlias not requiring the args in this
// case.
template <>
void to_maybe_copy_out_functor<true, false>(ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
if (CheckToWillAlias<true, false>::call(p_node, self)) {
p_node->Output(1) = false;
} else {
p_node->Output(1) = true;
auto args = extract_to_args<true, false>(p_node);
to_copy_functor_impl<true, false>(p_node, &args);
}
}
bool node_has_constant_non_tensor_dtype_and_flags(Node* n) {
const auto* input1 = n->inputs()[1];
return input1->type()->kind() != TypeKind::TensorType &&
input1->node()->kind() == prim::Constant &&
n->inputs()[2]->node()->kind() == prim::Constant &&
n->inputs()[3]->node()->kind() == prim::Constant;
}
auto get_to_copy_functor(
bool has_constant_non_tensor_dtype_and_flags,
bool has_memory_format) {
if (has_constant_non_tensor_dtype_and_flags) {
if (has_memory_format) {
return to_copy_functor<true, true>;
} else {
return to_copy_functor<true, false>;
}
} else {
if (has_memory_format) {
return to_copy_functor<false, true>;
} else {
return to_copy_functor<false, false>;
}
}
}
} // namespace
REGISTER_OPERATOR_FUNCTOR(
static_runtime::to_maybe_copy_out,
aten_to_maybe_copy,
[](Node* n) -> SROperator {
// support 4- or 5-arg for adindexer/adfinder models
// Keep TORCH_CHECK here because there is no alternative for fallback
TORCH_CHECK(n->inputs().size() == 4 || n->inputs().size() == 5);
const bool has_constant_non_tensor_dtype_and_flags =
node_has_constant_non_tensor_dtype_and_flags(n);
const bool has_memory_format = n->inputs().size() == 5;
// If we are going to copy always, just use the to_copy path so
// that the to_maybe_copy path can assume that won't happen.
if (has_constant_non_tensor_dtype_and_flags) {
const auto copyArg =
torch::jit::constant_as<bool>(n->inputs()[3]->node()->output());
DCHECK(copyArg.has_value());
if (*copyArg) {
return get_to_copy_functor(
has_constant_non_tensor_dtype_and_flags, has_memory_format);
}
}
if (has_constant_non_tensor_dtype_and_flags) {
if (has_memory_format) {
return to_maybe_copy_out_functor<true, true>;
} else {
return to_maybe_copy_out_functor<true, false>;
}
} else {
if (has_memory_format) {
return to_maybe_copy_out_functor<false, true>;
} else {
return to_maybe_copy_out_functor<false, false>;
}
}
});
// out variant takes precedence over native
// NB: This impl doesn't work for cpu->cuda copy/cast or vice versa.
REGISTER_OPERATOR_FUNCTOR(
static_runtime::to_copy,
static_runtime_to_copy,
[](Node* n) -> SROperator {
// support 4- or 5-arg for adindexer/adfinder models
// Keep TORCH_CHECK here because there is no alternative for fallback
TORCH_CHECK(n->inputs().size() == 4 || n->inputs().size() == 5);
const bool has_constant_non_tensor_dtype_and_flags =
node_has_constant_non_tensor_dtype_and_flags(n);
const bool has_memory_format = n->inputs().size() == 5;
return get_to_copy_functor(
has_constant_non_tensor_dtype_and_flags, has_memory_format);
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
static_runtime::dequantize_copy,
aten_dequantize_copy,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"static_runtime::dequantize_copy.self(Tensor self) -> Tensor"))) {
// please implement static runtime support for aten::dequantize with
// TensorList
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) =
create_empty_from(self, at::kFloat, self.suggest_memory_format());
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::dequantize_copy_out(out_t, self);
};
});
// Out variants for view ops are registered to a separate registry because
// their outputs (views) can't participate in memory reuse.
REGISTER_OPERATOR_FUNCTOR(
static_runtime::reshape_copy,
aten_reshape,
[](Node* n) -> SROperator {
TORCH_CHECK(n->inputs().size() == 2);
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor(); // self
const auto proposed_shape = p_node->Input(1).toDimVector(); // shape
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& out = p_node->Output(0).toTensor();
at::native::reshape_copy_out(out, self, proposed_shape, true);
};
});
REGISTER_OPERATOR_FUNCTOR(
static_runtime::flatten_copy,
aten_flatten,
[](Node* n) -> SROperator {
TORCH_CHECK(n->inputs().size() == 3);
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto start_dim = p_node->Input(1).toInt();
const auto end_dim = p_node->Input(2).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& out = p_node->Output(0).toTensor();
at::native::flatten_copy_out(out, self, start_dim, end_dim);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::sum, aten_sum, [](Node* n) -> SROperator {
if (n->inputs().size() != 2 && n->inputs().size() != 4) {
return nullptr;
}
if (n->matches(torch::schema(
"aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const at::Tensor& self = p_node->Input(0).toTensor();
auto dtype = p_node->Input(1).toOptional<at::ScalarType>();
std::vector<int64_t> dim = {};
bool keepdim = false;
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sum(self, dim, keepdim, dtype);
} else {
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::cpu::sum_out(output, self, dim, keepdim, dtype);
}
};
}
if (n->matches(torch::schema(
"aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const at::Tensor& self = p_node->Input(0).toTensor();
auto dim = p_node->Input(1).toIntList().vec();
auto keepdim = p_node->Input(2).toBool();
auto dtype = p_node->Input(3).toOptional<at::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sum(self, dim, keepdim, dtype);
} else {
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::cpu::sum_out(output, self, dim, keepdim, dtype);
}
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::mean, aten_mean, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto dim = p_node->Input(1).toDimVector();
const bool keepdim = p_node->Input(2).toBool();
const auto dtype = p_node->Input(3).toOptional<at::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(
self, dtype.value_or(self.dtype().toScalarType()));
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::cpu::mean_out(output, self, dim, keepdim, dtype);
};
}
if (n->matches(torch::schema(
"aten::mean(Tensor self, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto dtype = p_node->Input(1).toOptional<at::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(
self, dtype.value_or(self.dtype().toScalarType()));
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::cpu::mean_out(output, self, /*dim=*/{}, /*keepdim=*/false, dtype);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::repeat, aten_repeat, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::repeat(Tensor self, int[] repeats) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto repeats = p_node->Input(1).toDimVector();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::repeat(self, repeats);
return;
}
at::Tensor& output = p_node->Output(0).toTensor();
at::native::repeat_out(output, self, repeats);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::max, aten_max, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::max.other(Tensor self, Tensor other) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto& other = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::max(self, other);
return;
}
auto& out = p_node->Output(0).toTensor();
fastResizeToZero(out);
at::native::max_out(self, other, out);
};
}
if (n->matches(torch::schema(
"aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)"))) {
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
auto dim = p_node->Input(1).toInt();
const auto keepdim = p_node->Input(2).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
if (p_node->Output(1).isNone()) {
p_node->Output(1) = create_empty_from(self, at::kLong);
}
auto& values = p_node->Output(0).toTensor();
auto& indices = p_node->Output(1).toTensor();
fastResizeToZero(values);
fastResizeToZero(indices);
at::cpu::max_out(values, indices, self, dim, keepdim);
};
}
if (n->matches(torch::schema("aten::max(Tensor self) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& value = p_node->Output(0).toTensor();
fastResizeToZero(value);
at::cpu::amax_out(value, self);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::sign, aten_sign, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::sign.Tensor(Tensor input) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sign(in0_t);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::sign_out(out_t, in0_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::div, aten_div, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::div.Tensor(Tensor self, Tensor other) -> Tensor")) &&
!n->matches(torch::schema(
"aten::div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor")) &&
!n->matches(torch::schema(
"aten::div.Scalar(Tensor self, Scalar other) -> Tensor")) &&
!n->matches(torch::schema(
"aten::div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
c10::optional<c10::string_view> rounding_mode = c10::nullopt;
if (p_node->num_inputs() > 2) {
rounding_mode = p_node->Input(2).toOptional<c10::string_view>();
}
const auto& in1_t = p_node->Input(1).isTensor()
? p_node->Input(1).toTensor()
: at::native::wrapped_scalar_tensor(p_node->Input(1).toScalar());
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::div(in0_t, in1_t, rounding_mode);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::div_out(out_t, in0_t, in1_t, rounding_mode);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::log, aten_log, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::log.Tensor(Tensor input) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::log(in0_t);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::log_out(out_t, in0_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::sub, aten_sub, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
const auto alpha = p_node->Input(2).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sub(in0_t, in1_t, alpha);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::sub_out(out_t, in0_t, in1_t, alpha);
};
}
if (n->matches(torch::schema(
"aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t =
at::native::wrapped_scalar_tensor(p_node->Input(1).toScalar());
const auto alpha = p_node->Input(2).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::sub(in0_t, in1_t, alpha);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::sub_out(out_t, in0_t, in1_t, alpha);
};
}
LogAndDumpSchema(n);
return nullptr;
});
// TODO: support clamp_min.Tensor(Tensor self, Tensor min) -> Tensor
REGISTER_OPERATOR_FUNCTOR(
aten::clamp_min,
aten_clamp_min,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::clamp_min(Tensor self, Scalar min) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_s = p_node->Input(1).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::clamp_min(in0_t, in1_s);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::clamp_min_out(out_t, in0_t, in1_s);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::argmin, aten_argmin, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto dim = p_node->Input(1).toOptional<int64_t>();
const auto keepdim = p_node->Input(2).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::argmin(in0_t, dim, keepdim);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
if (in0_t.is_contiguous() && dim.has_value()) {
at::native::c2_argmin_out(out_t, in0_t, dim.value(), keepdim);
return;
}
at::cpu::argmin_out(out_t, in0_t, dim, keepdim);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::softmax, aten_softmax, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in_t = p_node->Input(0).toTensor();
const auto& dim = p_node->Input(1).toInt();
const auto& dtype = p_node->Input(2).toOptional<c10::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::softmax(in_t, dim, dtype);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
auto half_to_float = in_t.scalar_type() == at::ScalarType::Half &&
dtype == at::ScalarType::Float;
at::cpu::_softmax_out(out_t, in_t, dim, half_to_float);
};
});
namespace {
c10::MaybeOwned<at::Tensor> borrow_from_optional_tensor_ivalue(
const IValue& iv) {
if (iv.isNone()) {
return c10::MaybeOwned<at::Tensor>::owned(c10::in_place);
}
return c10::MaybeOwned<at::Tensor>::borrowed(iv.toTensor());
}
} // namespace
REGISTER_OPERATOR_FUNCTOR(
aten::layer_norm,
aten_layer_norm,
[](Node*) -> SROperator {
return [](ProcessedNode* p_node) {
// ignore Input(5): `bool cudnn_enable=True`
const auto& input = p_node->Input(0).toTensor();
const auto normalized_shape = p_node->Input(1).toDimVector();
float eps = p_node->Input(4).toDouble();
c10::MaybeOwned<at::Tensor> weight_maybe_owned =
borrow_from_optional_tensor_ivalue(p_node->Input(2));
const at::Tensor& weight = *weight_maybe_owned;
c10::MaybeOwned<at::Tensor> bias_maybe_owned =
borrow_from_optional_tensor_ivalue(p_node->Input(3));
const at::Tensor& bias = *bias_maybe_owned;
auto M_N = at::native::_check_layer_norm_inputs(
input, normalized_shape, weight, bias);
auto M = M_N.first;
auto N = M_N.second;
auto X = input.expect_contiguous();
auto gamma = weight.expect_contiguous();
auto beta = bias.expect_contiguous();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::empty_like(
*X,
c10::nullopt /* dtype */,
c10::nullopt /* layout */,
c10::nullopt /* device */,
c10::nullopt /* pin_memory */,
at::MemoryFormat::Contiguous);
} else {
at::native::resize_(
p_node->Output(0).toTensor(), X->sizes(), c10::nullopt);
}
at::Tensor& output = p_node->Output(0).toTensor();
at::native::layer_norm_cpu_out(output, input, *gamma, *beta, eps, M, N);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::norm, aten_norm, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, ScalarType dtype) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
const auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
at::cpu::norm_outf(
in0_t,
in1_s,
c10::IntArrayRef{},
false,
p_node->Input(2).toScalarType(),
out_t);
};
}
if (n->matches(torch::schema(
"aten::norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
const auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
at::cpu::norm_outf(
in0_t,
in1_s,
p_node->Input(2).toDimVector(), // dim
p_node->Input(3).toBool(), // keepdim
p_node->Input(4).toScalarType(), // dtype
out_t);
};
}
if (n->matches(torch::schema(
"aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
const auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
at::cpu::norm_outf(
in0_t,
in1_s,
p_node->Input(2).toDimVector(), // dim
p_node->Input(3).toBool(), // keepdim
out_t);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::matmul, aten_matmul, [](Node* n) -> SROperator {
if (!n->matches(
torch::schema("aten::matmul(Tensor self, Tensor other) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::matmul(in0_t, in1_t);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::matmul_out(in0_t, in1_t, out_t);
};
});
REGISTER_OPERATOR_FUNCTOR(quantized::linear, quantized_linear, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::linear(Tensor X, __torch__.torch.classes.quantized.LinearPackedParamsBase W_prepack, float Y_scale_i, int Y_zero_point_i) -> Tensor Y"))) {
LogAndDumpSchema(n);
return nullptr;
}
const auto w = toIValue(n->inputs()[1]);
c10::intrusive_ptr<LinearPackedParamsBase> packed_weight;
if (w) {
packed_weight = w->toCustomClass<LinearPackedParamsBase>();
}
return [packed_weight](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto output_scale = p_node->Input(2).toDouble();
const auto output_zero_point = p_node->Input(3).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::empty_affine_quantized(
{0},
c10::kQUInt8,
c10::nullopt,
c10::kCPU,
false,
output_scale,
output_zero_point,
c10::nullopt);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
if (packed_weight) {
packed_weight->apply_out(input, output_scale, output_zero_point, out_t);
} else {
// Weights could be quantized on the fly
auto packed_weight_tmp =
p_node->Input(1).toCustomClass<LinearPackedParamsBase>();
packed_weight_tmp->apply_out(
input, output_scale, output_zero_point, out_t);
}
};
});
REGISTER_OPERATOR_FUNCTOR(
fb::quantized_linear,
fb_quantized_linear,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"fb::quantized_linear(Tensor X, __torch__.torch.classes.quantized.LinearPackedParamsBase w_prepack, Tensor Y_scale_i, Tensor Y_zero_point_i) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
const auto w = toIValue(n->inputs()[1]);
c10::intrusive_ptr<LinearPackedParamsBase> packed_weight;
if (w) {
packed_weight = w->toCustomClass<LinearPackedParamsBase>();
}
return [packed_weight](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto output_scale = p_node->Input(2).toTensor().item().toFloat();
const auto output_zero_point =
p_node->Input(3).toTensor().item().toLong();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::empty_affine_quantized(
{0},
c10::kQUInt8,
c10::nullopt,
c10::kCPU,
false,
output_scale,
output_zero_point,
c10::nullopt);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
if (packed_weight) {
packed_weight->apply_out(
input, output_scale, output_zero_point, out_t);
} else {
// Weights could be quantized on the fly
auto packed_weight_tmp =
p_node->Input(1).toCustomClass<LinearPackedParamsBase>();
packed_weight_tmp->apply_out(
input, output_scale, output_zero_point, out_t);
}
};
});
namespace {
template <bool has_relu>
void apply_dynamic_out_functor(
c10::intrusive_ptr<LinearPackedParamsBase> packed_weight,
const at::Tensor& input,
at::Tensor& out,
bool reduce_range);
template <>
void apply_dynamic_out_functor<false>(
c10::intrusive_ptr<LinearPackedParamsBase> packed_weight,
const at::Tensor& input,
at::Tensor& out,
bool reduce_range) {
packed_weight->apply_dynamic_out(input, out, reduce_range);
}
template <>
void apply_dynamic_out_functor<true>(
c10::intrusive_ptr<LinearPackedParamsBase> packed_weight,
const at::Tensor& input,
at::Tensor& out,
bool reduce_range) {
// The implementation of PackedLinearWeightFp16::apply_dynamic_impl does not
// handle relu. Currently, it ignores the `ReluFused` template parameter.
// So, we explicitly do the relu here.
packed_weight->apply_dynamic_out(input, out, reduce_range);
out.relu_();
}
template <bool has_relu>
SROperator quantized_linear_dynamic_fp16_impl(Node* n) {
const auto weight = toIValue(n->inputs()[1]);
c10::intrusive_ptr<LinearPackedParamsBase> packed_weight;
if (weight) {
packed_weight = weight->toCustomClass<LinearPackedParamsBase>();
}
if (packed_weight) {
return [packed_weight](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(input, at::kFloat);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
apply_dynamic_out_functor<has_relu>(packed_weight, input, out_t, false);
};
} else {
return [](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(input, at::kFloat);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
// Weights could be quantized on the fly
auto packed_weight_tmp =
p_node->Input(1).toCustomClass<LinearPackedParamsBase>();
apply_dynamic_out_functor<has_relu>(
packed_weight_tmp, input, out_t, false);
};
}
}
} // namespace
REGISTER_OPERATOR_FUNCTOR(
quantized::linear_dynamic_fp16,
quantized_linear_dynamic_fp16,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::linear_dynamic_fp16(Tensor X, __torch__.torch.classes."
"quantized.LinearPackedParamsBase W_prepack) -> Tensor Y"))) {
LogAndDumpSchema(n);
return nullptr;
}
return quantized_linear_dynamic_fp16_impl<false>(n);
});
REGISTER_OPERATOR_FUNCTOR(
quantized::linear_relu_dynamic_fp16,
quantized_linear_relu_dynamic_fp16,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::linear_relu_dynamic_fp16(Tensor X, __torch__.torch.classes."
"quantized.LinearPackedParamsBase W_prepack) -> Tensor Y"))) {
LogAndDumpSchema(n);
return nullptr;
}
return quantized_linear_dynamic_fp16_impl<true>(n);
});
// device & pin_memory matter only when CUDA is enabled.
static bool hasTensorWithOptions(
const IValue& ivalue,
c10::optional<c10::ScalarType> dtype,
c10::optional<c10::Layout> layout) {
if (!ivalue.isTensor()) {
return false;
}
const auto& tensor = ivalue.toTensor();
if (dtype == tensor.dtype().toScalarType() &&
layout == tensor.options().layout_opt()) {
return true;
}
VLOG(1) << "tensor exists, but tensor options were different";
return false;
}
static bool hasTensorWithOptions(
const IValue& ivalue,
c10::optional<c10::ScalarType> dtype,
c10::optional<c10::Layout> layout,
c10::optional<c10::MemoryFormat> memory_format) {
return hasTensorWithOptions(ivalue, dtype, layout) &&
(memory_format == ivalue.toTensor().options().memory_format_opt());
}
REGISTER_OPERATOR_FUNCTOR(aten::full, aten_full, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::full(int[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& size = p_node->Input(0).toDimVector();
const auto fill_value = p_node->Input(1).toScalar();
const auto dtype = p_node->Input(2).toOptional<c10::ScalarType>();
const auto layout = p_node->Input(3).toOptional<c10::Layout>();
if (!hasTensorWithOptions(p_node->Output(0), dtype, layout)) {
const auto device = p_node->Input(4).toOptional<c10::Device>();
const auto pin_memory = p_node->Input(5).toOptional<bool>();
p_node->Output(0) =
at::native::full(size, fill_value, dtype, layout, device, pin_memory);
return;
}
p_node->Output(0) =
at::native::full_out(size, fill_value, p_node->Output(0).toTensor());
};
});
REGISTER_OPERATOR_FUNCTOR(aten::full_like, aten_full_like, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::full_like(Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto in1_s = p_node->Input(1).toScalar();
const auto& in0_t = p_node->Input(0).toTensor();
const auto dtype = p_node->Input(2).toOptional<c10::ScalarType>();
const auto layout = p_node->Input(3).toOptional<c10::Layout>();
if (!hasTensorWithOptions(p_node->Output(0), dtype, layout)) {
const auto device = p_node->Input(4).toOptional<c10::Device>();
const auto pin_memory = p_node->Input(5).toOptional<bool>();
const auto memory_format =
p_node->Input(6).toOptional<c10::MemoryFormat>();
p_node->Output(0) = at::native::empty_like(
in0_t, dtype, layout, device, pin_memory, memory_format);
}
auto& out_t = p_node->Output(0).toTensor();
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
at::native::fill_out(out_t, in1_s);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::ones, aten_ones, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::ones(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto size = p_node->Input(0).toDimVector();
if (p_node->Output(0).isNone()) {
const auto dtype = p_node->Input(1).toOptional<c10::ScalarType>();
const auto layout = p_node->Input(2).toOptional<c10::Layout>();
const auto device = p_node->Input(3).toOptional<c10::Device>();
const auto pin_memory = p_node->Input(4).toOptional<bool>();
p_node->Output(0) =
at::native::ones(size, dtype, layout, device, pin_memory);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::ones_out(size, out_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::ones_like, aten_ones_like, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::ones_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto dtype = p_node->Input(1).toOptional<c10::ScalarType>();
const auto layout = p_node->Input(2).toOptional<c10::Layout>();
const auto device = p_node->Input(3).toOptional<c10::Device>();
const auto pin_memory = p_node->Input(4).toOptional<bool>();
const auto memory_format = p_node->Input(5).toOptional<c10::MemoryFormat>();
if (!hasTensorWithOptions(
p_node->Output(0), dtype, layout, memory_format)) {
p_node->Output(0) = at::native::ones_like(
self, dtype, layout, device, pin_memory, memory_format);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::ones_out(self.sizes(), out_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::zeros, aten_zeros, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::zeros(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto size = p_node->Input(0).toDimVector();
const auto dtype = p_node->Input(1).toOptional<c10::ScalarType>();
const auto layout = p_node->Input(2).toOptional<c10::Layout>();
if (!hasTensorWithOptions(p_node->Output(0), dtype, layout)) {
p_node->Output(0) = at::native::zeros(size, dtype, layout);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::zeros_out(size, out_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::linear, aten_linear, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
auto in2_t = p_node->Input(2).toOptional<at::Tensor>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::linear(in0_t, in1_t, in2_t);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::linear_out(out_t, in0_t, in1_t, in2_t);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::linalg_norm, aten_linalg_norm, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::linalg_norm(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto dim = p_node->Input(2).toDimVector();
const auto keepdim = p_node->Input(3).toBool();
const auto dtype = p_node->Input(4).toOptional<c10::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::linalg_norm(
input,
p_node->Input(1).toOptional<at::Scalar>(),
dim,
keepdim,
dtype);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::linalg_norm_out(
input,
p_node->Input(1).toOptional<at::Scalar>(),
dim,
keepdim,
dtype,
output);
};
}
if (n->matches(torch::schema(
"aten::linalg_norm.ord_str(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto dim = p_node->Input(2).toDimVector();
const auto keepdim = p_node->Input(3).toBool();
const auto dtype = p_node->Input(4).toOptional<c10::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::linalg_norm(
input, p_node->Input(1).toStringView(), dim, keepdim, dtype);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::linalg_norm_out(
input, p_node->Input(1).toStringRef(), dim, keepdim, dtype, output);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::cat, aten_cat, [](Node* n) -> SROperator {
if (!n->matches(
torch::schema("aten::cat(Tensor[] tensors, int dim=0) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto inputs = p_node->Input(0).toTensorVector();
TORCH_CHECK(inputs.size() > 0, "concat expects non-empty tensor list");
const auto dim = p_node->Input(1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::cat(inputs, dim);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::cpu::cat_outf(inputs, dim, output);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::cumsum, aten_cumsum, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::cumsum(Tensor self, int dim, ScalarType? dtype=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto dim = p_node->Input(1).toInt();
const auto dtype = p_node->Input(2).toOptional<c10::ScalarType>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::cumsum(input, dim, dtype);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::cpu::cumsum_out(output, input, dim, dtype);
};
});
REGISTER_OPERATOR_FUNCTOR(
aten::nonzero,
aten_nonzero,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::nonzero(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::nonzero_cpu(input);
return;
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::nonzero_out_cpu(input, output);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
prim::VarConcat,
prim_VarConcat,
[](Node* n) -> SROperator {
return [](ProcessedNode* p_node) {
const size_t num_inputs = p_node->num_inputs();
std::vector<at::Tensor> inputs(num_inputs - 1);
for (const auto i : c10::irange(num_inputs - 1)) {
inputs[i] = p_node->Input(i).toTensor();
}
auto dim = p_node->Input(num_inputs - 1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::cpu::cat(inputs, dim);
return;
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::cat_outf(inputs, dim, out_t);
};
});
namespace {
// This template and its specialization help us avoid compiler warnings
// about taking the absolute value of an unsigned type in signed_log1p
template <class T>
T abs_if_signed(T val) {
return std::abs(val);
}
template <>
unsigned char abs_if_signed<unsigned char>(unsigned char val) {
return val;
}
// Computes f(x) = sign(x) * ln(|1 + x|) for each x in the input tensor
void signed_log1p_out(at::Tensor& out, const at::Tensor& input) {
at::native::resize_(out, input.sizes(), c10::nullopt);
const auto input_contig = input.expect_contiguous();
auto output_contig = out.expect_contiguous();
AT_DISPATCH_ALL_TYPES(input.scalar_type(), "signed_log1p_kernel", [&]() {
const auto input_data = input_contig->data_ptr<scalar_t>();
auto output_data = output_contig->data_ptr<float>();
const auto N = input.numel();
for (const auto i : c10::irange(N)) {
const int sign = input_data[i] < 0 ? -1 : 1;
output_data[i] = std::log1p(abs_if_signed(input_data[i])) * sign;
}
});
}
} // namespace
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
static_runtime::signed_log1p,
static_runtime_signed_log1p,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"static_runtime::signed_log1p(Tensor x) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createSignedLog1p();
return [te](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(input);
}
auto& out = p_node->Output(0).toTensor();
if (!te || !te->checkInput<float>(input)) {
fastResizeToZero(out);
signed_log1p_out(out, input);
return;
}
at::native::resize_(out, input.sizes(), c10::nullopt);
int64_t nn = input.numel();
te->call({out.data_ptr(), input.data_ptr(), &nn});
};
});
REGISTER_OPERATOR_FUNCTOR(
aten::remainder,
aten_remainder,
[](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::remainder.Tensor(Tensor self, Tensor other) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) =
at::cpu::remainder(self, p_node->Input(1).toTensor());
return;
}
auto& out = p_node->Output(0).toTensor();
fastResizeToZero(out);
at::cpu::remainder_out(out, self, p_node->Input(1).toTensor());
};
}
if (n->matches(torch::schema(
"aten::remainder.Scalar(Tensor self, Scalar other) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) =
at::native::remainder(self, p_node->Input(1).toScalar());
return;
}
auto& out = p_node->Output(0).toTensor();
fastResizeToZero(out);
at::native::remainder_out(self, p_node->Input(1).toScalar(), out);
};
}
// Unrecognized overload
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(aten::where, aten_where, [](Node* n) -> SROperator {
if (n->matches(torch::schema(
"aten::where.self(Tensor condition, Tensor self, Tensor other) -> Tensor"))) {
return [](ProcessedNode* p_node) {
const auto& cond = p_node->Input(0).toTensor();
const auto& self = p_node->Input(1).toTensor();
const auto& other = p_node->Input(2).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& out = p_node->Output(0).toTensor();
fastResizeToZero(out);
at::native::where_self_out(cond, self, other, out);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(
prim::NumToTensor,
prim_NumToTensor,
[](Node* n) -> SROperator {
if (n->matches(
torch::schema("prim::NumToTensor.Scalar(Scalar s) -> Tensor")) ||
n->matches(
torch::schema("prim::NumToTensor.bool(bool a) -> Tensor"))) {
return [](ProcessedNode* pnode) {
const auto scalar = pnode->Input(0).toScalar();
if (pnode->Output(0).isNone()) {
pnode->Output(0) = at::scalar_to_tensor(scalar);
return;
}
auto& out = pnode->Output(0).toTensor();
at::detail::scalar_fill(out, scalar);
};
}
LogAndDumpSchema(n);
return nullptr;
});
REGISTER_OPERATOR_FUNCTOR(
quantized::embedding_bag_byte_unpack,
quantized_embedding_bag_byte_unpack,
[](Node*) -> SROperator {
return [](ProcessedNode* pnode) {
auto& weight = pnode->Input(0).toTensor();
if (pnode->Output(0).isNone()) {
pnode->Output(0) = at::empty(
{},
weight.options().dtype(at::kFloat),
weight.suggest_memory_format());
}
auto& out = pnode->Output(0).toTensor();
at::native::qembeddingbag_byte_unpack_out(out, weight);
};
});
} // namespace jit
} // namespace torch