mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51754 This API allows you to manage multiple python interpreters in a single process to deploy PyTorch models packaged with torch.package. torch/csrc/deploy/deploy.h contains the API definition torch/csrc/deploy/test_deploy.cpp has some examples. Notes: * mutex is added to PyTorchStreamReader to make it safe to use from multiple threads at once. * USE_DEPLOY is only true for the special libtorch_deployinterpreter.so library, when enabled we use a hash table to maintain PyObject <> at::Tensor mappping rather than the internal pointer in Tensor since >1 interpreter may have a reference to the tensor. * serialization.py has some additional functions for creating pickle objects but keeping storages in memory for use transfering tensors between interpreters Test Plan: Imported from OSS Reviewed By: wconstab Differential Revision: D26329468 Pulled By: zdevito fbshipit-source-id: d75f4ebb9a27f1d911179d9996041bcb3ca04a07
124 lines
3.4 KiB
C++
124 lines
3.4 KiB
C++
#include <gtest/gtest.h>
|
|
#include <torch/csrc/deploy/deploy.h>
|
|
#include <torch/script.h>
|
|
#include <torch/torch.h>
|
|
#include <future>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
int main(int argc, char* argv[]) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
int rc = RUN_ALL_TESTS();
|
|
return rc;
|
|
}
|
|
|
|
void compare_torchpy_jit(const char* model_filename, const char* jit_filename) {
|
|
// Test
|
|
torch::InterpreterManager m(1);
|
|
torch::Package p = m.load_package(model_filename);
|
|
auto model = p.load_pickle("model", "model.pkl");
|
|
at::IValue eg;
|
|
{
|
|
auto I = p.acquire_session();
|
|
eg = I.self.attr("load_pickle")({"model", "example.pkl"}).toIValue();
|
|
}
|
|
|
|
at::Tensor output = model(eg.toTuple()->elements()).toTensor();
|
|
|
|
// Reference
|
|
auto ref_model = torch::jit::load(jit_filename);
|
|
at::Tensor ref_output =
|
|
ref_model.forward(eg.toTuple()->elements()).toTensor();
|
|
|
|
ASSERT_TRUE(ref_output.allclose(output, 1e-03, 1e-05));
|
|
}
|
|
|
|
const char* simple = "torch/csrc/deploy/example/generated/simple";
|
|
const char* simple_jit = "torch/csrc/deploy/example/generated/simple_jit";
|
|
|
|
const char* path(const char* envname, const char* path) {
|
|
const char* e = getenv(envname);
|
|
return e ? e : path;
|
|
}
|
|
|
|
TEST(TorchpyTest, SimpleModel) {
|
|
compare_torchpy_jit(path("SIMPLE", simple), path("SIMPLE_JIT", simple_jit));
|
|
}
|
|
|
|
TEST(TorchpyTest, ResNet) {
|
|
compare_torchpy_jit(
|
|
path("RESNET", "torch/csrc/deploy/example/generated/resnet"),
|
|
path("RESNET_JIT", "torch/csrc/deploy/example/generated/resnet_jit"));
|
|
}
|
|
|
|
TEST(TorchpyTest, Movable) {
|
|
torch::InterpreterManager m(1);
|
|
torch::MovableObject obj;
|
|
{
|
|
auto I = m.acquire_one();
|
|
auto model =
|
|
I.global("torch.nn", "Module")(std::vector<torch::PythonObject>());
|
|
obj = I.create_movable(model);
|
|
}
|
|
obj.acquire_session();
|
|
}
|
|
|
|
TEST(TorchpyTest, MultiSerialSimpleModel) {
|
|
torch::InterpreterManager manager(3);
|
|
torch::Package p = manager.load_package(path("SIMPLE", simple));
|
|
auto model = p.load_pickle("model", "model.pkl");
|
|
auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
|
|
|
|
auto input = torch::ones({10, 20});
|
|
size_t ninterp = 3;
|
|
std::vector<at::Tensor> outputs;
|
|
|
|
for (size_t i = 0; i < ninterp; i++) {
|
|
outputs.push_back(model({input}).toTensor());
|
|
}
|
|
|
|
// Generate reference
|
|
auto ref_output = ref_model.forward({input}).toTensor();
|
|
|
|
// Compare all to reference
|
|
for (size_t i = 0; i < ninterp; i++) {
|
|
ASSERT_TRUE(ref_output.equal(outputs[i]));
|
|
}
|
|
}
|
|
|
|
TEST(TorchpyTest, ThreadedSimpleModel) {
|
|
size_t nthreads = 3;
|
|
torch::InterpreterManager manager(nthreads);
|
|
|
|
torch::Package p = manager.load_package(path("SIMPLE", simple));
|
|
auto model = p.load_pickle("model", "model.pkl");
|
|
auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
|
|
|
|
auto input = torch::ones({10, 20});
|
|
|
|
std::vector<at::Tensor> outputs;
|
|
|
|
std::vector<std::future<at::Tensor>> futures;
|
|
for (size_t i = 0; i < nthreads; i++) {
|
|
futures.push_back(std::async(std::launch::async, [&model]() {
|
|
auto input = torch::ones({10, 20});
|
|
for (int i = 0; i < 100; ++i) {
|
|
model({input}).toTensor();
|
|
}
|
|
auto result = model({input}).toTensor();
|
|
return result;
|
|
}));
|
|
}
|
|
for (size_t i = 0; i < nthreads; i++) {
|
|
outputs.push_back(futures[i].get());
|
|
}
|
|
|
|
// Generate reference
|
|
auto ref_output = ref_model.forward({input}).toTensor();
|
|
|
|
// Compare all to reference
|
|
for (size_t i = 0; i < nthreads; i++) {
|
|
ASSERT_TRUE(ref_output.equal(outputs[i]));
|
|
}
|
|
}
|