Files
pytorch/torch/csrc/deploy/test_deploy.cpp
Zachary DeVito 60518d10f6 [deploy] torch::deploy API (#51754)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51754

This API allows you to manage multiple python interpreters in a single
process to deploy PyTorch models packaged with torch.package.

torch/csrc/deploy/deploy.h contains the API definition
torch/csrc/deploy/test_deploy.cpp has some examples.

Notes:
* mutex is added to PyTorchStreamReader to make it safe to use from multiple threads at once.
* USE_DEPLOY is only true for the special libtorch_deployinterpreter.so library, when enabled
  we use a hash table to maintain PyObject <> at::Tensor mappping rather than the internal pointer
  in Tensor since >1 interpreter may have a reference to the tensor.
* serialization.py has some additional functions for creating pickle objects
  but keeping storages in memory for use transfering tensors between interpreters

Test Plan: Imported from OSS

Reviewed By: wconstab

Differential Revision: D26329468

Pulled By: zdevito

fbshipit-source-id: d75f4ebb9a27f1d911179d9996041bcb3ca04a07
2021-02-18 02:30:08 -08:00

124 lines
3.4 KiB
C++

#include <gtest/gtest.h>
#include <torch/csrc/deploy/deploy.h>
#include <torch/script.h>
#include <torch/torch.h>
#include <future>
#include <iostream>
#include <string>
int main(int argc, char* argv[]) {
::testing::InitGoogleTest(&argc, argv);
int rc = RUN_ALL_TESTS();
return rc;
}
void compare_torchpy_jit(const char* model_filename, const char* jit_filename) {
// Test
torch::InterpreterManager m(1);
torch::Package p = m.load_package(model_filename);
auto model = p.load_pickle("model", "model.pkl");
at::IValue eg;
{
auto I = p.acquire_session();
eg = I.self.attr("load_pickle")({"model", "example.pkl"}).toIValue();
}
at::Tensor output = model(eg.toTuple()->elements()).toTensor();
// Reference
auto ref_model = torch::jit::load(jit_filename);
at::Tensor ref_output =
ref_model.forward(eg.toTuple()->elements()).toTensor();
ASSERT_TRUE(ref_output.allclose(output, 1e-03, 1e-05));
}
const char* simple = "torch/csrc/deploy/example/generated/simple";
const char* simple_jit = "torch/csrc/deploy/example/generated/simple_jit";
const char* path(const char* envname, const char* path) {
const char* e = getenv(envname);
return e ? e : path;
}
TEST(TorchpyTest, SimpleModel) {
compare_torchpy_jit(path("SIMPLE", simple), path("SIMPLE_JIT", simple_jit));
}
TEST(TorchpyTest, ResNet) {
compare_torchpy_jit(
path("RESNET", "torch/csrc/deploy/example/generated/resnet"),
path("RESNET_JIT", "torch/csrc/deploy/example/generated/resnet_jit"));
}
TEST(TorchpyTest, Movable) {
torch::InterpreterManager m(1);
torch::MovableObject obj;
{
auto I = m.acquire_one();
auto model =
I.global("torch.nn", "Module")(std::vector<torch::PythonObject>());
obj = I.create_movable(model);
}
obj.acquire_session();
}
TEST(TorchpyTest, MultiSerialSimpleModel) {
torch::InterpreterManager manager(3);
torch::Package p = manager.load_package(path("SIMPLE", simple));
auto model = p.load_pickle("model", "model.pkl");
auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
auto input = torch::ones({10, 20});
size_t ninterp = 3;
std::vector<at::Tensor> outputs;
for (size_t i = 0; i < ninterp; i++) {
outputs.push_back(model({input}).toTensor());
}
// Generate reference
auto ref_output = ref_model.forward({input}).toTensor();
// Compare all to reference
for (size_t i = 0; i < ninterp; i++) {
ASSERT_TRUE(ref_output.equal(outputs[i]));
}
}
TEST(TorchpyTest, ThreadedSimpleModel) {
size_t nthreads = 3;
torch::InterpreterManager manager(nthreads);
torch::Package p = manager.load_package(path("SIMPLE", simple));
auto model = p.load_pickle("model", "model.pkl");
auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
auto input = torch::ones({10, 20});
std::vector<at::Tensor> outputs;
std::vector<std::future<at::Tensor>> futures;
for (size_t i = 0; i < nthreads; i++) {
futures.push_back(std::async(std::launch::async, [&model]() {
auto input = torch::ones({10, 20});
for (int i = 0; i < 100; ++i) {
model({input}).toTensor();
}
auto result = model({input}).toTensor();
return result;
}));
}
for (size_t i = 0; i < nthreads; i++) {
outputs.push_back(futures[i].get());
}
// Generate reference
auto ref_output = ref_model.forward({input}).toTensor();
// Compare all to reference
for (size_t i = 0; i < nthreads; i++) {
ASSERT_TRUE(ref_output.equal(outputs[i]));
}
}