mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-07 10:01:39 +08:00
Summary: This test case had been using the tensor ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ``` which is not an invertible tensor and causes the test case to fail, even if magma gets initialized just fine. This change uses a tensor that is invertible, and the inverse doesn't include any elements that are close to zero to avoid floating point rounding errors. Pull Request resolved: https://github.com/pytorch/pytorch/pull/32547 Differential Revision: D19572316 Pulled By: ngimel fbshipit-source-id: 1baf3f8601b2ba69fdd6678d7a3d86772d01edbe
128 lines
5.0 KiB
C++
128 lines
5.0 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <cmath>
|
|
|
|
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
|
|
ASSERT_TRUE( \
|
|
tensor.device().type() == at::Device((device_), (index_)).type()); \
|
|
ASSERT_TRUE( \
|
|
tensor.device().index() == at::Device((device_), (index_)).index()); \
|
|
ASSERT_EQ(tensor.dtype(), (type_)); \
|
|
ASSERT_TRUE(tensor.layout() == (layout_))
|
|
|
|
TEST(TensorTest, AllocatesTensorOnTheCorrectDevice_MultiCUDA) {
|
|
auto tensor = at::tensor({1, 2, 3}, at::device({at::kCUDA, 1}));
|
|
ASSERT_EQ(tensor.device().type(), at::Device::Type::CUDA);
|
|
ASSERT_EQ(tensor.device().index(), 1);
|
|
}
|
|
|
|
TEST(TensorTest, ToDevice_MultiCUDA) {
|
|
auto tensor = at::empty({3, 4});
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to({at::kCUDA, 1});
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to({at::kCUDA, 0});
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to({at::kCUDA, 1});
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to(at::Device(at::kCPU));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to(at::kCUDA);
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions({at::kCUDA, 1}));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions({at::kCUDA, 0}));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions(at::kDouble));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kDouble, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions({at::kCUDA, 1}));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kDouble, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions(at::kInt));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kInt, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions(at::Device(at::kCPU)));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions(at::kCUDA));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kInt, at::kStrided);
|
|
}
|
|
|
|
TEST(TensorTest, ToTensorAndTensorAttributes_MultiCUDA) {
|
|
auto tensor = at::empty({3, 4});
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
|
|
auto other = at::empty({3, 4}, at::kFloat);
|
|
tensor = tensor.to(other);
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
|
|
other = at::empty({3, 4}, at::TensorOptions(at::kCUDA).dtype(at::kDouble));
|
|
tensor = tensor.to(other.dtype());
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
|
|
tensor = tensor.to(other.device());
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kDouble, at::kStrided);
|
|
|
|
other = at::empty({3, 4}, at::TensorOptions({at::kCUDA, 1}).dtype(at::kLong));
|
|
tensor = tensor.to(other.device(), other.dtype());
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kLong, at::kStrided);
|
|
|
|
other = at::empty({3, 4}, at::kFloat);
|
|
tensor = tensor.to(other.options());
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
}
|
|
|
|
|
|
TEST(TensorTest, ToDoesNotCopyWhenOptionsAreAllTheSame_CUDA) {
|
|
auto tensor = at::empty({3, 4}, at::TensorOptions(at::kFloat).device(at::Device("cuda")));
|
|
auto hopefully_not_copy = tensor.to(tensor.options());
|
|
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
|
|
hopefully_not_copy = tensor.to(at::kFloat);
|
|
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
|
|
hopefully_not_copy = tensor.to("cuda");
|
|
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
|
|
hopefully_not_copy = tensor.to(at::TensorOptions("cuda"));
|
|
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
|
|
hopefully_not_copy = tensor.to(at::TensorOptions(at::kFloat));
|
|
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
|
|
}
|
|
|
|
TEST(TensorTest, ToDeviceAndDtype_MultiCUDA) {
|
|
auto tensor = at::empty({3, 4});
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to({at::kCUDA, 1}, at::kInt);
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kInt, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions({at::kCUDA, 0}).dtype(at::kLong));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kLong, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions({at::kCUDA, 1}).dtype(at::kDouble));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kDouble, at::kStrided);
|
|
|
|
tensor = tensor.to(at::kCPU, at::kInt);
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
|
|
}
|
|
|
|
TEST(TensorTest, MagmaInitializesCorrectly_CUDA) {
|
|
// Any tensor will work here as long as it's invertible
|
|
float data[] = { 1, 1, 1, 0,
|
|
0, 3, 1, 2,
|
|
2, 3, 1, 0,
|
|
1, 0, 2, 1 };
|
|
auto tensor = at::from_blob(data, {4, 4}, at::TensorOptions(at::kFloat)).cuda();
|
|
if (at::hasMAGMA()) {
|
|
at::inverse(tensor);
|
|
}
|
|
}
|