mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
In preparation of adopting future rocblas library options, it is necessary to track when the backward pass of training is executing. The scope-based helper class `BackwardPassGuard` is provided to toggle state. Pull Request resolved: https://github.com/pytorch/pytorch/pull/71881 Approved by: https://github.com/albanD
1404 lines
55 KiB
C++
1404 lines
55 KiB
C++
#include <torch/csrc/autograd/engine.h>
|
|
|
|
#include <torch/csrc/autograd/autograd.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/functions/basic_ops.h>
|
|
#include <torch/csrc/autograd/grad_mode.h>
|
|
#include <torch/csrc/autograd/anomaly_mode.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/utils/memory.h>
|
|
|
|
#include <ATen/DeviceGuard.h>
|
|
#include <ATen/ExpandUtils.h>
|
|
#include <ATen/Parallel.h>
|
|
#include <ATen/detail/CUDAHooksInterface.h>
|
|
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/core/Stream.h>
|
|
#include <c10/core/Event.h>
|
|
#include <c10/core/DeviceGuard.h>
|
|
#include <c10/util/irange.h>
|
|
#include <c10/util/Optional.h>
|
|
#include <c10/util/ThreadLocal.h>
|
|
#include <c10/core/StreamGuard.h>
|
|
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <condition_variable>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <set>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <unordered_set>
|
|
#include <typeinfo>
|
|
#include <sstream>
|
|
#include <queue>
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
namespace {
|
|
static bool in_bad_autograd_fork =
|
|
false; // True for children forked after engine's thread pool init
|
|
|
|
// Called in the forked child if engine's thread pool has already been
|
|
// initialized
|
|
static void forked_autograd_child() { in_bad_autograd_fork = true; }
|
|
|
|
// Should be called before unsafe for forks (thread pool) calls
|
|
static void track_bad_autograd_forks() {
|
|
#if !defined(WIN32)
|
|
static std::once_flag flag;
|
|
std::call_once(
|
|
flag, [&] { pthread_atfork(nullptr, nullptr, forked_autograd_child); });
|
|
#endif
|
|
}
|
|
|
|
inline bool should_run_in_cpu_ready_queue(c10::DeviceType device) {
|
|
if (device == c10::kCPU || device == c10::kMeta || device == c10::kLazy) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Threads spawned by the engine are assigned a 'worker_device' specifying
|
|
// what device they process work for. This variable is initialized at:
|
|
// 1. thread creation time for CUDA, XLA device threads, as they are
|
|
// spinning threads waiting for works on their device.
|
|
// 2. before the graph task execution for CPU threads, as for each
|
|
// backward call we use the caller thread to drive engine execution.
|
|
// This is used when handling reentrant backwards calls;
|
|
// See Note [Reentrant backwards]
|
|
static thread_local int worker_device = NO_DEVICE;
|
|
|
|
// This variable is true if ALL invocations in the stack of re-entrant engine
|
|
// invocations are imperative backwards. This special variable is needed for the
|
|
// gradient checkpointing feature only.
|
|
static thread_local bool checkpoint_valid = true;
|
|
|
|
// Number of nested reentrant backwards calls currently on this thread
|
|
static thread_local int current_depth = 0;
|
|
|
|
// For all device threads (i.e. CUDA, XLA), total_depth represents the total nested
|
|
// reentrant backwards depths over all device threads.
|
|
// For CPU devices, it is the total depth associated with the original backward call.
|
|
static thread_local int total_depth = 0;
|
|
|
|
// The current GraphTask being executed by this thread. This helps
|
|
// queue_callback() to find the target GraphTask to append final callbacks.
|
|
C10_DEFINE_TLS_static(std::shared_ptr<GraphTask>, tls_current_graph_task);
|
|
#define current_graph_task (tls_current_graph_task.get())
|
|
|
|
// Every autograd worker thread is associated with a ready queue, which specifies
|
|
// the stream of work of this thread to do. This shared_ptr is a thread_local
|
|
// pointer to each thread's ready_queue, and it should be initialized via the
|
|
// Engine::init_local_ready_queue() call in each corresponding thread before execution.
|
|
//
|
|
// The CUDA, XLA threads are shared among all invocations of backwards via
|
|
// device_ready_queues_, while the caller thread is dedicated to processing work for
|
|
// devices returning true in should_run_in_cpu_ready_queue (most notably the CPU device).
|
|
// So any given graph task maintains its own cpu_ready_queue_ where you should send work
|
|
// for it to be done.
|
|
//
|
|
// For reentrant backward calls, if we spawn new thread from the current thread
|
|
// because we reached the maximum depth, the new thread will just reuse the same
|
|
// ReadyQueue with the parent thread for performance improvement.
|
|
// see Note [Reentrant backwards] for more details.
|
|
C10_DEFINE_TLS_static(std::shared_ptr<ReadyQueue>, tls_local_ready_queue);
|
|
#define local_ready_queue (tls_local_ready_queue.get())
|
|
|
|
// Note [Reentrant backwards]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// To understand the reentrant backwards problem, we have to notice two
|
|
// aspects of how the autograd engine is implemented today:
|
|
//
|
|
// 1. When you call Engine::execute(), you want to block until
|
|
// differentiation finishes so that you can get the final result variables
|
|
// of the backwards pass.
|
|
//
|
|
// 2. The engine operates by having a single worker thread per work queue,
|
|
// and every work queue is pinned to a specific device where the
|
|
// operation is executed.
|
|
//
|
|
// The problem is, suppose that you call backward() inside of a worker
|
|
// thread. By property (1), we're supposed to block until the nested task
|
|
// finishes. However, by property (2), this worker thread is on the
|
|
// hook for processing the tasks assigned to it; we better not block,
|
|
// because then all of our backward executions (including the one we
|
|
// just started) will deadlock!
|
|
//
|
|
// We maintain a pool of threads waiting for work to do
|
|
// When a reentrant backwards call occurs, the current thread blocks
|
|
// and a thread from the pool is woken up to complete the blocking tasks and an
|
|
// any other tasks that would have been assigned to that worker. If there are no
|
|
// threads available, a new thread is spawned. The new thread will continue
|
|
// processing tasks from the same ReadyQueue as the parent worker
|
|
//
|
|
// When the GraphTask is finished, the parent worker thread that is waiting on
|
|
// the task is notified and the current thread returns to the pool.
|
|
|
|
// Note [Streaming backwards]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// On CUDA devices the autograd engine's device operations are run on the
|
|
// same stream that ran them in forward. This requires automatically
|
|
// syncing the streams so that function A finishes producing its
|
|
// output before function B consumes it.
|
|
//
|
|
// This synchronization occurs when outputs are placed into input buffers.
|
|
// The functions corresponding to input buffer positions have metadata
|
|
// recording their streams from forward, and during backward this
|
|
// data is used to sync the producer's stream with the consumer's.
|
|
//
|
|
// When a CUDA function is run either all its inputs were accumulated on the
|
|
// stream used to run the function OR the inputs are on different devices
|
|
// and the function is responsible for properly acquiring them.
|
|
//
|
|
// User-facing stream semantics of a backward() (or torch.autograd.grad())
|
|
// call with respect to surrounding ops are the same as for any other call.
|
|
// See "Stream semantics of backward passes" on
|
|
// https://pytorch.org/docs/stable/notes/cuda.html
|
|
//
|
|
// Internally, backward() runs ops (including leaf nodes) on side threads.
|
|
// And streams are thread local. So GraphTask achieves the above semantics by
|
|
// 1. remembering the current streams on all active CUDA devices
|
|
// in the user-facing thread (aka, the thread that called execute() to
|
|
// launch the GraphTask)
|
|
// 2. remembering the "leaf streams" (streams each backward leaf node ran on)
|
|
// 3. during exec_post_processing, for each leaf stream, sync the remembered
|
|
// current streams (on the leaf stream's device) with that
|
|
// leaf stream.
|
|
|
|
int NodeTask::getReentrantDepth() const {
|
|
std::shared_ptr<GraphTask> graph_task = base_.lock();
|
|
if (graph_task) {
|
|
return graph_task->reentrant_depth_;
|
|
} else {
|
|
// The graph task is no longer valid indicating an error. As a result, we
|
|
// try to move this to the front of the queue to ensure the autograd
|
|
// engine threads pick up this error soon.
|
|
return std::numeric_limits<int>::max();
|
|
}
|
|
}
|
|
|
|
CheckpointValidGuard::CheckpointValidGuard(const std::shared_ptr<const GraphTask>& graph_task) {
|
|
prev_checkpoint_valid_state = checkpoint_valid;
|
|
checkpoint_valid = graph_task->can_checkpoint() && prev_checkpoint_valid_state;
|
|
}
|
|
|
|
CheckpointValidGuard::~CheckpointValidGuard() {
|
|
checkpoint_valid = prev_checkpoint_valid_state;
|
|
}
|
|
|
|
auto ReadyQueue::push(NodeTask item, bool incrementOutstandingTasks) -> void {
|
|
{
|
|
// Lock mutex for writing to heap_
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
if (incrementOutstandingTasks) {
|
|
std::shared_ptr<GraphTask> graph_task = item.base_.lock();
|
|
TORCH_INTERNAL_ASSERT(graph_task, "GraphTask is no longer valid!");
|
|
++graph_task->outstanding_tasks_;
|
|
}
|
|
heap_.push(std::move(item));
|
|
}
|
|
not_empty_.notify_one();
|
|
}
|
|
|
|
auto ReadyQueue::pushShutdownTask() -> void {
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
heap_.push(NodeTask({}, nullptr, InputBuffer(0), true));
|
|
}
|
|
not_empty_.notify_one();
|
|
}
|
|
|
|
size_t ReadyQueue::size() const {
|
|
// Lock mutex for accesses to heap_
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
return heap_.size();
|
|
}
|
|
|
|
auto ReadyQueue::pop() -> NodeTask {
|
|
// Lock mutex for accesses to heap_
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
not_empty_.wait(lock, [this]{ return !heap_.empty(); });
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
auto task = std::move(const_cast<NodeTask&>(heap_.top())); heap_.pop();
|
|
return task;
|
|
}
|
|
|
|
bool ReadyQueue::empty() const {
|
|
// Lock mutex for accesses to heap_
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
return heap_.empty();
|
|
}
|
|
|
|
Engine::Engine() : max_recursion_depth_(MAX_DEPTH), non_reentrant_device_thread_count_(0) {}
|
|
|
|
Engine::~Engine() {
|
|
stop();
|
|
}
|
|
|
|
// Send shutdown tasks to all device_ready_queues_ if no backward tasks are running
|
|
// Even though readyQueue should be empty, shutdown tasks have the highest priority
|
|
void Engine::stop() {
|
|
if (stopped_) {
|
|
return;
|
|
}
|
|
stopped_ = true;
|
|
// Under some conditions, autograd threads can hang on shutdown
|
|
// Do not wait for them to shutdown indefinitely but rely on timeout
|
|
auto wait_duration_str = getenv("TORCH_AUTOGRAD_SHUTDOWN_WAIT_LIMIT");
|
|
if (!wait_duration_str) {
|
|
wait_duration_str = "10.0";
|
|
}
|
|
auto wait_duration = std::atof(wait_duration_str);
|
|
bool noBackward = true;
|
|
for (auto& queue: device_ready_queues_) {
|
|
noBackward = noBackward && queue->empty();
|
|
}
|
|
if (noBackward && wait_duration > 0.0f) {
|
|
for (auto& queue : device_ready_queues_) {
|
|
queue->pushShutdownTask();
|
|
}
|
|
// Do not wait for termination of global threads on Windows
|
|
// Because CRT terminates DLL threads before calling
|
|
// global object destructors
|
|
#if !defined(_WIN32) || defined(C10_USE_MSVC_STATIC_RUNTIME)
|
|
|
|
using namespace std::chrono_literals;
|
|
// Set a deadline for how long it is OK to wait device threads to shutdown
|
|
auto wait_deadline = std::chrono::steady_clock::now() + wait_duration * 1.0s;
|
|
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
|
|
while(non_reentrant_device_thread_count_.load() != 0) {
|
|
if (non_reentrant_device_thread_condvar_.wait_until(lk, wait_deadline) == std::cv_status::timeout) {
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
// Otherwise threads are leaked
|
|
}
|
|
|
|
void Engine::release_workers() {
|
|
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
|
|
non_reentrant_device_thread_count_.store(0);
|
|
non_reentrant_device_thread_condvar_.notify_one();
|
|
}
|
|
|
|
void Engine::increment_non_reentrant_thread_count() {
|
|
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
|
|
non_reentrant_device_thread_count_.fetch_add(1);
|
|
non_reentrant_device_thread_condvar_.notify_one();
|
|
}
|
|
|
|
void Engine::decrement_non_reentrant_thread_count() {
|
|
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
|
|
non_reentrant_device_thread_count_.fetch_sub(1);
|
|
non_reentrant_device_thread_condvar_.notify_one();
|
|
}
|
|
|
|
void Engine::thread_init(int device, const std::shared_ptr<ReadyQueue>& ready_queue, bool should_increment) {
|
|
if (should_increment) {
|
|
increment_non_reentrant_thread_count();
|
|
}
|
|
|
|
at::init_num_threads();
|
|
|
|
// Note [Allocating GPUs to autograd threads]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// What's our strategy here? Originally, the autograd engine was written
|
|
// with only CUDA in mind. We allocate one thread to handle all CPU
|
|
// operations, and a thread per CUDA device.
|
|
//
|
|
// But what if we have OTHER devices? There are two plausible
|
|
// strategies:
|
|
//
|
|
// - We can allocate threads equal to max(num_cuda_devices, num_xla_devices,
|
|
// ...) and colocate cuda device 0 with xla device 0
|
|
// - We can allocate threads equal to sum(num_cuda_devices, num_xla_devices,
|
|
// ...) keeping everyone separate.
|
|
//
|
|
// We don't have any good reason to prefer one or the other, so we've
|
|
// arbitrarily picked to colocate devices. Maybe the other approach is
|
|
// better.
|
|
set_device(device);
|
|
|
|
// initialize each device thread's thread local ready queue with the ready queue
|
|
// that is created before the thread initialization
|
|
init_local_ready_queue(ready_queue);
|
|
|
|
std::shared_ptr<GraphTask> graph_task = nullptr;
|
|
thread_main(graph_task);
|
|
if (should_increment) {
|
|
// Decrement the count during shutdown if we incremented earlier.
|
|
decrement_non_reentrant_thread_count();
|
|
}
|
|
}
|
|
|
|
GraphTaskGuard::GraphTaskGuard(std::shared_ptr<GraphTask> graph_task) {
|
|
last_graph_task_ = std::move(current_graph_task);
|
|
current_graph_task = std::move(graph_task);
|
|
}
|
|
GraphTaskGuard::~GraphTaskGuard() {
|
|
restore_current_graph_task();
|
|
}
|
|
|
|
void GraphTaskGuard::restore_current_graph_task() {
|
|
current_graph_task = std::move(last_graph_task_);
|
|
}
|
|
|
|
// NOTE: graph_tasks do not necessarily form a stack. Imagine this
|
|
// case:
|
|
//
|
|
// +----> Eval1
|
|
// Root
|
|
// +----> Eval2
|
|
//
|
|
// Once Root is executed, both Eval1 and Eval2 are added to the ready queue.
|
|
// Next, Eval1 is run and this causes the worker to enter thread_main again.
|
|
// Then, it pops the next task from the queue, but at this point it is Eval2.
|
|
// It enters thread_main once again, but now with graph_task of Eval2, which is
|
|
// completely unrelated to that of Eval1 (it's not a recursive call).
|
|
// It's all ok and is handled right now, but it should be accounted for
|
|
// in case this code is to be changed.
|
|
//
|
|
// thread_main is used by:
|
|
// 1). autograd threads for devices (i.e. CUDA, XLA)
|
|
// 2). the caller/owning thread of the backward call on CPU (sync mode)
|
|
// 3). Renetrant backward that invoked by either 1) or 2)
|
|
// The exit conditions are different for the above three cases.
|
|
// For 1), we are spinning on running the thread_main on device autograd
|
|
// threads throughout the Engine lifetime, thread_main will get
|
|
// terminated during Engine destruction by pushing shutdown tasks
|
|
// For 2), the owning thread of the backward call drives the thread_main
|
|
// synchronously until the graph_task of that owning thread is
|
|
// completed and exit the thread_main to continue executing the
|
|
// result of caller's code.
|
|
// For 3), the reentrant backward that invokes
|
|
// thread_main, either from 1) or 2), will not spin and will exit as
|
|
// long as graph_task is completed and notify the owning thread as
|
|
// needed.
|
|
auto Engine::thread_main(const std::shared_ptr<GraphTask>& graph_task) -> void {
|
|
// When graph_task is nullptr, this is a long running thread that processes
|
|
// tasks (ex: device threads). When graph_task is non-null (ex: reentrant
|
|
// backwards, user thread), this function is expected to exit once that
|
|
// graph_task complete.
|
|
|
|
#ifdef USE_ROCM
|
|
// Keep track of backward pass for rocblas.
|
|
at::ROCmBackwardPassGuard in_backward;
|
|
#endif
|
|
|
|
// local_ready_queue should already been initialized when we get into thread_main
|
|
TORCH_INTERNAL_ASSERT(local_ready_queue != nullptr);
|
|
while (graph_task == nullptr || !graph_task->future_result_->completed()) {
|
|
// local_graph_task represents the graph_task we retrieve from the queue.
|
|
// The outer graph_task represents the overall graph_task we need to execute
|
|
// for reentrant execution.
|
|
std::shared_ptr<GraphTask> local_graph_task;
|
|
{
|
|
// Scope this block of execution since NodeTask is not needed after this
|
|
// block and can be deallocated (release any references to grad tensors
|
|
// as part of inputs_).
|
|
NodeTask task = local_ready_queue->pop();
|
|
// This will only work if the worker is running a non backward task
|
|
// TODO Needs to be fixed this to work in all cases
|
|
if (task.isShutdownTask_) {
|
|
C10_LOG_API_USAGE_ONCE("torch.autograd.thread_shutdown");
|
|
break;
|
|
}
|
|
|
|
if (!(local_graph_task = task.base_.lock())) {
|
|
// GraphTask for function is no longer valid, skipping further
|
|
// execution.
|
|
continue;
|
|
}
|
|
|
|
if (task.fn_ && !local_graph_task->has_error_.load()) {
|
|
// Set the ThreadLocalState before calling the function.
|
|
// NB: The ThreadLocalStateGuard doesn't set the grad_mode because GraphTask
|
|
// always saves ThreadLocalState without grad_mode.
|
|
at::ThreadLocalStateGuard tls_guard(local_graph_task->thread_locals_);
|
|
c10::Warning::WarningHandlerGuard warnings_guard(&local_graph_task->warning_handler_);
|
|
|
|
try {
|
|
// The guard sets the thread_local current_graph_task on construction
|
|
// and restores it on exit. The current_graph_task variable helps
|
|
// queue_callback() to find the target GraphTask to append final
|
|
// callbacks.
|
|
GraphTaskGuard guard(local_graph_task);
|
|
NodeGuard ndguard(task.fn_);
|
|
{
|
|
RECORD_FUNCTION(
|
|
c10::str(
|
|
"autograd::engine::evaluate_function: ",
|
|
task.fn_.get()->name()),
|
|
c10::ArrayRef<const c10::IValue>());
|
|
evaluate_function(
|
|
local_graph_task,
|
|
task.fn_.get(),
|
|
task.inputs_,
|
|
local_graph_task->cpu_ready_queue_);
|
|
}
|
|
} catch (std::exception& e) {
|
|
thread_on_exception(local_graph_task, task.fn_, e);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Decrement the outstanding tasks.
|
|
--local_graph_task->outstanding_tasks_;
|
|
|
|
// Check if we've completed execution.
|
|
if (local_graph_task->completed()) {
|
|
local_graph_task->mark_as_completed_and_run_post_processing();
|
|
|
|
auto base_owner = local_graph_task->owner_;
|
|
// The current worker thread finish the graph_task, but the owning thread
|
|
// of the graph_task might be sleeping on pop() if it does not have work.
|
|
// So we need to send a dummy function task to the owning thread just to
|
|
// ensure that it's not sleeping, so that we can exit the thread_main.
|
|
// If it has work, it might see that graph_task->outstanding_tasks_ == 0
|
|
// before it gets to the task, but it's a no-op anyway.
|
|
//
|
|
// NB: This is not necessary if the current thread is the owning thread.
|
|
if (worker_device != base_owner) {
|
|
// Synchronize outstanding_tasks_ with queue mutex
|
|
std::atomic_thread_fence(std::memory_order_release);
|
|
ready_queue_by_index(local_graph_task->cpu_ready_queue_, base_owner)
|
|
->push(NodeTask(local_graph_task, nullptr, InputBuffer(0)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reentrant call will re-use the graph_task's owner thread ready_queue for
|
|
// queueing tasks (NOTE: this is not true in the async_mode of the engine).
|
|
// While we can create separate ready queue for each new reentrant
|
|
// thread, but sharing the same cpu_ready_queue with parent thread is a
|
|
// performance improvement and cuda thread still have to do the same thing.
|
|
void Engine::reentrant_thread_init() {
|
|
at::init_num_threads();
|
|
auto tp_shared = thread_pool_shared_;
|
|
while(true) {
|
|
std::unique_lock<std::mutex> lk(tp_shared->mutex_);
|
|
++thread_pool_shared_->num_workers_;
|
|
tp_shared->work_.wait(lk, [&tp_shared]{ return !tp_shared->graphtasks_queue_.empty();});
|
|
--thread_pool_shared_->num_workers_;
|
|
auto task = tp_shared->graphtasks_queue_.front();
|
|
tp_shared->graphtasks_queue_.pop();
|
|
lk.unlock();
|
|
std::shared_ptr<GraphTask> graph_task;
|
|
if (!(graph_task = task.lock())) {
|
|
LOG(INFO) << "GraphTask has expired, skipping reentrant execution";
|
|
continue;
|
|
}
|
|
set_device(graph_task->owner_);
|
|
// set the local_ready_queue to the ready queue on the graph_task->owner_ device
|
|
local_ready_queue = ready_queue_by_index(graph_task->cpu_ready_queue_, graph_task->owner_);
|
|
total_depth = graph_task->reentrant_depth_;
|
|
thread_main(graph_task);
|
|
}
|
|
}
|
|
|
|
void Engine::thread_on_exception(
|
|
std::shared_ptr<GraphTask> graph_task,
|
|
const std::shared_ptr<Node>& fn,
|
|
std::exception& e) {
|
|
graph_task->set_exception(std::current_exception(), fn);
|
|
}
|
|
|
|
bool GraphTask::completed() {
|
|
return outstanding_tasks_.load() == 0 ||
|
|
(exit_on_error_ && has_error_.load());
|
|
}
|
|
|
|
void GraphTask::mark_as_completed_and_run_post_processing() {
|
|
// Allow only one thread one attempt to process this logic.
|
|
if (future_completed_.exchange(true)) {
|
|
// Future is already marked complete, or being marked as such.
|
|
// In case the marking complete is only in progress, we add a
|
|
// wait() to guarantee the future is marked complete on exit.
|
|
future_result_->wait();
|
|
return;
|
|
}
|
|
|
|
try {
|
|
// Run post processing, before marking the future as complete.
|
|
// Drop lock prior to completing, to avoid holding across callbacks.
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
|
|
exec_post_processing();
|
|
std::vector<Variable> vars = std::move(captured_vars_);
|
|
|
|
// Need to unlock before we call markCompleted to avoid holding locks
|
|
// when the callbacks are called.
|
|
lock.unlock();
|
|
// NOLINTNEXTLINE(performance-move-const-arg)
|
|
future_result_->markCompleted(std::move(vars));
|
|
} catch (std::exception& e) {
|
|
future_result_->setErrorIfNeeded(std::current_exception());
|
|
}
|
|
}
|
|
|
|
void GraphTask::exec_post_processing() {
|
|
if (!not_ready_.empty()) {
|
|
throw std::runtime_error("could not compute gradients for some functions");
|
|
}
|
|
|
|
// set the thread_local current_graph_task_ as more callbacks can be installed
|
|
// by existing final callbacks.
|
|
GraphTaskGuard guard(shared_from_this());
|
|
// Lock mutex during each iteration for accessing final_callbacks.size()
|
|
// Unlocking is necessary, because the callback can register
|
|
// more callbacks (or they can be registered from other threads
|
|
// while it's waiting.
|
|
std::unique_lock<std::mutex> cb_lock(final_callbacks_lock_);
|
|
|
|
// caller_current_streams_ with nullopt entries removed
|
|
std::vector<c10::Stream> caller_current_streams_filtered;
|
|
|
|
// See Note [Streaming backwards].
|
|
// Syncs caller_current_stream with leaf streams, so final_callbacks may use
|
|
// any grad on its device's current stream.
|
|
if (leaf_streams.size() > 0) {
|
|
for (const auto& leaf_stream : leaf_streams) {
|
|
// stash_current_streams() stashed streams for all device IDs that already had a
|
|
// CUDA context before the GraphTask executed. For inactive devices, it stashed
|
|
// a c10::nullopt. I don't expect GraphTask's backward pass ran leaf nodes on
|
|
// any new devices, so the stashed streams should be enough.
|
|
// If leaf_stream.device_index() happens to be for a new device,
|
|
// operator* on the c10::nullopt should throw an error.
|
|
const auto caller_current_stream = *caller_current_streams_[leaf_stream.device_index()];
|
|
|
|
if (caller_current_stream != leaf_stream) {
|
|
auto event = c10::Event{c10::DeviceType::CUDA};
|
|
event.record(leaf_stream);
|
|
caller_current_stream.wait(event);
|
|
}
|
|
}
|
|
|
|
caller_current_streams_filtered.reserve(caller_current_streams_.size());
|
|
for (const auto& opt_stream : caller_current_streams_) {
|
|
if (opt_stream.has_value()) {
|
|
caller_current_streams_filtered.push_back(*opt_stream);
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// final_callbacks run on the per-device caller_current_streams (the ambient streams
|
|
// surrounding the user's call to backward()). This has two benefits:
|
|
// 1. caller_current_streams have been synced with leaf_streams, so callbacks may
|
|
// safely access any grad.
|
|
// 2. The callback's results can safely be used on (user-facing) caller_current_streams
|
|
// after backward().
|
|
c10::MultiStreamGuard g(caller_current_streams_filtered);
|
|
|
|
// Set the ThreadLocalState before calling the function.
|
|
// NB: The ThreadLocalStateGuard doesn't set the grad_mode because GraphTask
|
|
// always saves ThreadLocalState without grad_mode.
|
|
at::ThreadLocalStateGuard tls_guard(this->thread_locals_);
|
|
|
|
// WARNING: Don't use a range-for loop here because more callbacks may be
|
|
// added in between callback calls, so iterators may become invalidated.
|
|
// NOLINTNEXTLINE(modernize-loop-convert)
|
|
for (size_t i = 0; i < final_callbacks_.size(); ++i) {
|
|
cb_lock.unlock();
|
|
final_callbacks_[i]();
|
|
cb_lock.lock();
|
|
}
|
|
}
|
|
}
|
|
|
|
void GraphTask::set_exception_without_signal(const std::shared_ptr<Node>& fn) {
|
|
if (!has_error_.exchange(true)) {
|
|
if (AnomalyMode::is_enabled() && fn) {
|
|
fn->metadata()->print_stack(fn->name());
|
|
}
|
|
}
|
|
}
|
|
|
|
void GraphTask::set_exception(
|
|
std::exception_ptr eptr,
|
|
const std::shared_ptr<Node>& fn) {
|
|
set_exception_without_signal(fn);
|
|
if (!future_completed_.exchange(true)) {
|
|
// NOLINTNEXTLINE(performance-move-const-arg)
|
|
future_result_->setError(std::move(eptr));
|
|
}
|
|
}
|
|
|
|
static variable_list call_pre_hooks(Node& fn, variable_list inputs) {
|
|
for (const auto& hook : fn.pre_hooks()) {
|
|
inputs = (*hook)(inputs);
|
|
}
|
|
return inputs;
|
|
}
|
|
|
|
static variable_list call_post_hooks(Node& fn, variable_list outputs, const variable_list& inputs) {
|
|
for (const auto& hook : fn.post_hooks()) {
|
|
outputs = (*hook)(outputs, inputs);
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
void set_device(int device) {
|
|
// NB: We MUST NOT construct the guard for device CPU,
|
|
// as in some settings we compile with cuda, but
|
|
// have lazy stubs for CUDA functionality (so actually
|
|
// attempting to setup a guard(CPU_DEVICE) will cause an
|
|
// error, because it will still query cudaGetDevice).
|
|
//
|
|
// Don't use DeviceGuard here because its destructor may be called before the
|
|
// device is reset. This is fine because the device is thread local.
|
|
if (device != CPU_DEVICE) {
|
|
for(const auto i : c10::irange(static_cast<size_t>(c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES))) {
|
|
auto* impl = c10::impl::device_guard_impl_registry[i].load();
|
|
if (impl && device < impl->deviceCount()) {
|
|
impl->setDevice(at::Device(static_cast<c10::DeviceType>(i), device));
|
|
}
|
|
}
|
|
}
|
|
worker_device = device;
|
|
}
|
|
|
|
void validate_outputs(
|
|
const edge_list& edges,
|
|
variable_list& grads,
|
|
const std::function<std::string(const std::string&)>& format_error) {
|
|
if (grads.size() != edges.size()) {
|
|
std::stringstream ss;
|
|
ss << "invalid number of gradients - expected ";
|
|
ss << edges.size() << ", but got " << grads.size();
|
|
AT_ERROR(format_error(ss.str()));
|
|
}
|
|
for(const auto i : c10::irange(grads.size())) {
|
|
const auto& edge = edges[i];
|
|
if (!edge.is_valid()) continue;
|
|
|
|
const auto& metadata = edge.function->input_metadata(edge.input_nr);
|
|
auto& grad = grads[i];
|
|
if (!grad.defined()) {
|
|
// FIXME: TestJit.test_ge_optimized fails this assertion.
|
|
// std::stringstream ss;
|
|
// ss << "undefined gradient at index " << i;
|
|
// AT_ERROR(format_error(ss.str()));
|
|
continue;
|
|
}
|
|
if (!grad.sizes().equals(metadata.shape())) {
|
|
if (!at::is_expandable_to(metadata.shape(), grad.sizes())) {
|
|
std::stringstream ss;
|
|
ss << "invalid gradient at index " << i << " - got ";
|
|
ss << grad.sizes() << " but expected shape compatible with ";
|
|
ss << metadata.shape();
|
|
AT_ERROR(format_error(ss.str()));
|
|
}
|
|
grad = at::sum_to(std::move(grad), metadata.shape());
|
|
}
|
|
|
|
bool input_is_complex = isComplexType(c10::typeMetaToScalarType(metadata.options().dtype()));
|
|
bool grad_is_complex = isComplexType(grad.scalar_type());
|
|
|
|
TORCH_CHECK(isFloatingType(grad.scalar_type()) || (input_is_complex == grad_is_complex));
|
|
if (c10::typeMetaToScalarType(metadata.options().dtype()) != grad.scalar_type()) {
|
|
grad = grad.to(c10::typeMetaToScalarType(metadata.options().dtype()));
|
|
}
|
|
if (grad.dtype() != metadata.dtype()) {
|
|
std::stringstream ss;
|
|
ss << "invalid gradient at index " << i << " - expected dtype ";
|
|
ss << metadata.dtype() << " but got " << grad.dtype();
|
|
AT_ERROR(format_error(ss.str()));
|
|
}
|
|
if (grad.layout() != metadata.layout()) {
|
|
// TODO: Currently we only support (*, Sparse) combination for (tensor.layout(), tensor.grad.layout())
|
|
// In future, there will be an oppportunity to support more combinations of layouts if they are composable
|
|
// (example., operations like addition etc., are well defined between tensors of different layouts.),
|
|
// as well as all parts of autograd like AccumulateGrad correctly handle this.
|
|
// We allow grad to be Strided when metadata is SparseCsr
|
|
if (!grad.is_sparse() && !(grad.layout() == at::kStrided && metadata.layout() == at::kSparseCsr)) {
|
|
std::stringstream ss;
|
|
ss << "invalid gradient at index " << i << " - expected layout ";
|
|
ss << metadata.layout() << " but got " << grad.layout();
|
|
AT_ERROR(format_error(ss.str()));
|
|
}
|
|
}
|
|
|
|
if (grad.device() != metadata.device()) {
|
|
// quick hack for: https://github.com/pytorch/pytorch/issues/65016 but should be eventually removed
|
|
if (!(metadata.is_tensor_subclass() || grad.unsafeGetTensorImpl()->is_python_dispatch())) {
|
|
if (grad.dim() == 0) {
|
|
grad = grad.to(metadata.device());
|
|
} else {
|
|
std::stringstream ss;
|
|
ss << "invalid gradient at index " << i << " - expected device ";
|
|
ss << metadata.device() << " but got " << grad.device();
|
|
AT_ERROR(format_error(ss.str()));
|
|
}
|
|
}
|
|
}
|
|
// We should not build graph for Tensors that are not differentiable
|
|
TORCH_INTERNAL_ASSERT(isDifferentiableType(grad.scalar_type()));
|
|
}
|
|
}
|
|
|
|
static variable_list call_function(
|
|
std::shared_ptr<GraphTask>& graph_task,
|
|
Node* func,
|
|
InputBuffer& inputBuffer) {
|
|
CheckpointValidGuard cpvguard(graph_task);
|
|
auto& fn = *func;
|
|
auto inputs =
|
|
call_pre_hooks(fn, InputBuffer::variables(std::move(inputBuffer)));
|
|
|
|
if (!graph_task->keep_graph_) {
|
|
fn.will_release_variables();
|
|
}
|
|
|
|
const auto has_post_hooks = !fn.post_hooks().empty();
|
|
variable_list outputs;
|
|
|
|
if (has_post_hooks) {
|
|
// In functions/accumulate_grad.cpp, there is some logic to check the
|
|
// conditions under which the incoming gradient can be stolen directly
|
|
// (which elides a deep copy) instead of cloned. One of these conditions
|
|
// is that the incoming gradient's refcount must be 1 (nothing else is
|
|
// referencing the same data). Stashing inputs_copy here bumps the
|
|
// refcount, so if post hooks are employed, it's actually still ok for
|
|
// accumulate_grad.cpp to steal the gradient if the refcount is 2.
|
|
//
|
|
// "new_grad.use_count() <= 1 + !post_hooks().empty()" in
|
|
// accumulate_grad.cpp accounts for this, but also creates a silent
|
|
// dependency between engine.cpp (ie, this particular engine
|
|
// implementation) and accumulate_grad.cpp.
|
|
//
|
|
// If you change the logic here, make sure it's compatible with
|
|
// accumulate_grad.cpp.
|
|
auto inputs_copy = inputs;
|
|
outputs = fn(std::move(inputs_copy));
|
|
} else {
|
|
outputs = fn(std::move(inputs));
|
|
}
|
|
|
|
validate_outputs(fn.next_edges(), outputs, [&](const std::string& msg) {
|
|
std::ostringstream ss;
|
|
ss << "Function " << fn.name() << " returned an " << msg;
|
|
return ss.str();
|
|
});
|
|
|
|
if(has_post_hooks){
|
|
// NOLINTNEXTLINE(bugprone-use-after-move)
|
|
return call_post_hooks(fn, std::move(outputs), inputs);
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
void Engine::evaluate_function(
|
|
std::shared_ptr<GraphTask>& graph_task,
|
|
Node* func,
|
|
InputBuffer& inputs,
|
|
const std::shared_ptr<ReadyQueue>& cpu_ready_queue) {
|
|
// The InputBuffer::adds that supplied incoming grads took pains to
|
|
// ensure they're safe to consume in the context of the present
|
|
// func's stream (if applicable). So we guard onto that stream
|
|
// before working with the grads in any capacity.
|
|
const auto opt_parent_stream = (*func).stream(c10::DeviceType::CUDA);
|
|
c10::OptionalStreamGuard parent_stream_guard{opt_parent_stream};
|
|
|
|
// If exec_info_ is not empty, we have to instrument the execution
|
|
auto& exec_info_ = graph_task->exec_info_;
|
|
if (!exec_info_.empty()) {
|
|
auto& fn_info = exec_info_.at(func);
|
|
if (auto* capture_vec = fn_info.captures_.get()) {
|
|
// Lock mutex for writing to graph_task->captured_vars_.
|
|
std::lock_guard<std::mutex> lock(graph_task->mutex_);
|
|
for (const auto& capture : *capture_vec) {
|
|
auto& captured_grad = graph_task->captured_vars_[capture.output_idx_];
|
|
captured_grad = inputs[capture.input_idx_];
|
|
for (auto& hook : capture.hooks_) {
|
|
captured_grad = (*hook)(captured_grad);
|
|
}
|
|
if (opt_parent_stream) {
|
|
// No need to take graph_task->mutex_ here, we already hold it
|
|
graph_task->leaf_streams.emplace(*opt_parent_stream);
|
|
}
|
|
}
|
|
}
|
|
if (!fn_info.needed_) {
|
|
// Skip execution if we don't need to execute the function.
|
|
return;
|
|
}
|
|
}
|
|
|
|
auto outputs = call_function(graph_task, func, inputs);
|
|
|
|
auto& fn = *func;
|
|
if (!graph_task->keep_graph_) {
|
|
fn.release_variables();
|
|
}
|
|
|
|
int num_outputs = outputs.size();
|
|
if (num_outputs == 0) { // Note: doesn't acquire the mutex
|
|
// Records leaf stream (if applicable)
|
|
// See Note [Streaming backwards]
|
|
if (opt_parent_stream) {
|
|
std::lock_guard<std::mutex> lock(graph_task->mutex_);
|
|
graph_task->leaf_streams.emplace(*opt_parent_stream);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AnomalyMode::is_enabled()) {
|
|
AutoGradMode grad_mode(false);
|
|
for (const auto i : c10::irange(num_outputs)) {
|
|
auto& output = outputs[i];
|
|
at::OptionalDeviceGuard guard(device_of(output));
|
|
if (output.defined() && isnan(output).any().item<uint8_t>()) {
|
|
std::stringstream ss;
|
|
ss << "Function '" << fn.name() << "' returned nan values in its " << i << "th output.";
|
|
throw std::runtime_error(ss.str());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Lock mutex for the accesses to GraphTask dependencies_, not_ready_ and cpu_ready_queue_ below
|
|
std::lock_guard<std::mutex> lock(graph_task->mutex_);
|
|
for (const auto i : c10::irange(num_outputs)) {
|
|
auto& output = outputs[i];
|
|
const auto& next = fn.next_edge(i);
|
|
|
|
if (!next.is_valid()) continue;
|
|
|
|
// Check if the next function is ready to be computed
|
|
bool is_ready = false;
|
|
auto& dependencies = graph_task->dependencies_;
|
|
auto it = dependencies.find(next.function.get());
|
|
|
|
if (it == dependencies.end()) {
|
|
auto name = next.function->name();
|
|
throw std::runtime_error(std::string("dependency not found for ") + name);
|
|
} else if (--it->second == 0) {
|
|
dependencies.erase(it);
|
|
is_ready = true;
|
|
}
|
|
|
|
auto& not_ready = graph_task->not_ready_;
|
|
auto not_ready_it = not_ready.find(next.function.get());
|
|
if (not_ready_it == not_ready.end()) {
|
|
// Skip functions that aren't supposed to be executed
|
|
if (!exec_info_.empty()) {
|
|
auto it = exec_info_.find(next.function.get());
|
|
if (it == exec_info_.end() || !it->second.should_execute()) {
|
|
continue;
|
|
}
|
|
}
|
|
// No buffers have been allocated for the function
|
|
InputBuffer input_buffer(next.function->num_inputs());
|
|
|
|
// Accumulates into buffer
|
|
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
|
|
input_buffer.add(next.input_nr,
|
|
std::move(output),
|
|
opt_parent_stream,
|
|
opt_next_stream);
|
|
|
|
if (is_ready) {
|
|
auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
|
|
queue->push(
|
|
NodeTask(graph_task, next.function, std::move(input_buffer)));
|
|
} else {
|
|
not_ready.emplace(next.function.get(), std::move(input_buffer));
|
|
}
|
|
} else {
|
|
// The function already has a buffer
|
|
auto &input_buffer = not_ready_it->second;
|
|
|
|
// Accumulates into buffer
|
|
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
|
|
input_buffer.add(next.input_nr,
|
|
std::move(output),
|
|
opt_parent_stream,
|
|
opt_next_stream);
|
|
if (is_ready) {
|
|
auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
|
|
queue->push(
|
|
NodeTask(graph_task, next.function, std::move(input_buffer)));
|
|
not_ready.erase(not_ready_it);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline static uint64_t compute_min_topological_nr(const edge_list& outputs) {
|
|
// Computes the mininum topological number among all the outputs
|
|
if (outputs.empty()) {
|
|
return 0;
|
|
}
|
|
auto min_topo_nr = std::numeric_limits<uint64_t>::max();
|
|
for (auto & output_edge : outputs) {
|
|
auto topo_nr = output_edge.function.get()->topological_nr();
|
|
min_topo_nr = (min_topo_nr < topo_nr) ? min_topo_nr : topo_nr;
|
|
}
|
|
return min_topo_nr;
|
|
}
|
|
|
|
auto Engine::compute_dependencies(Node* root, GraphTask& task, uint64_t min_topo_nr) -> void {
|
|
// Computes the number of dependencies for each function which requires grad
|
|
std::unordered_set<Node*> seen;
|
|
std::vector<Node*> queue { root };
|
|
bool might_use_cuda = at::globalContext().hasCUDA();
|
|
bool will_use_cuda = false;
|
|
|
|
// Queue contains all nodes that will start propagating gradients.
|
|
// We no longer have to expand functions that don't require grad.
|
|
auto& dependencies = task.dependencies_;
|
|
while (!queue.empty()) {
|
|
auto fn = queue.back(); queue.pop_back();
|
|
if (fn->topological_nr() < min_topo_nr) {
|
|
continue;
|
|
}
|
|
if (might_use_cuda && !will_use_cuda) {
|
|
will_use_cuda = fn->stream(c10::DeviceType::CUDA).has_value();
|
|
}
|
|
for (const auto& edge : fn->next_edges()) {
|
|
if (auto next_ptr = edge.function.get()) {
|
|
dependencies[next_ptr] += 1;
|
|
const bool was_inserted = seen.insert(next_ptr).second;
|
|
if (was_inserted) queue.push_back(next_ptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (will_use_cuda) {
|
|
// Collects current streams for devices where this process has a context,
|
|
// so GraphTask::exec_post_processing can sync them with leaf_streams.
|
|
task.stash_current_streams();
|
|
}
|
|
}
|
|
|
|
auto Engine::execute(const edge_list& roots,
|
|
const variable_list& inputs,
|
|
bool keep_graph,
|
|
bool create_graph,
|
|
bool accumulate_grad,
|
|
const edge_list& outputs) -> variable_list {
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
validate_outputs(roots, const_cast<variable_list&>(inputs), [](const std::string& msg) {
|
|
return msg;
|
|
});
|
|
if (accumulate_grad && create_graph) {
|
|
TORCH_WARN_ONCE(
|
|
"Using backward() with create_graph=True will create a reference cycle "
|
|
"between the parameter and its gradient which can cause a memory leak. "
|
|
"We recommend using autograd.grad when creating the graph to avoid this. "
|
|
"If you have to use this function, make sure to reset the .grad fields of "
|
|
"your parameters to None after use to break the cycle and avoid the leak.");
|
|
}
|
|
|
|
// accumulate_grad is true if and only if the frontend call was to
|
|
// grad(), not backward(). grad() returns the sum of the gradients
|
|
// w.r.t. the inputs and thus needs the inputs to be present.
|
|
TORCH_CHECK_VALUE(accumulate_grad || !outputs.empty(),
|
|
"grad requires non-empty inputs.");
|
|
|
|
// A fresh first time Engine::execute call should start on the CPU device, initialize
|
|
// a new thread local ready queue on CPU or reuse the existing one (if there is one
|
|
// allocated already, i.e. consecutive backward calls, re-entrant backward calls),
|
|
// then memoize the local_ready_queue in GraphTask
|
|
init_local_ready_queue();
|
|
bool not_reentrant_backward_call = worker_device == NO_DEVICE;
|
|
|
|
auto graph_task = std::make_shared<GraphTask>(
|
|
/* keep_graph */ keep_graph,
|
|
/* create_graph */ create_graph,
|
|
/* depth */ not_reentrant_backward_call ? 0 : total_depth + 1,
|
|
/* cpu_ready_queue */ local_ready_queue);
|
|
|
|
// If we receive a single root, skip creating extra root node
|
|
bool skip_dummy_node = roots.size() == 1;
|
|
auto graph_root = skip_dummy_node ?
|
|
roots.at(0).function :
|
|
std::make_shared<GraphRoot>(roots, inputs);
|
|
|
|
auto min_topo_nr = compute_min_topological_nr(outputs);
|
|
// Now compute the dependencies for all executable functions
|
|
compute_dependencies(graph_root.get(), *graph_task, min_topo_nr);
|
|
|
|
if (!outputs.empty()) {
|
|
graph_task->init_to_execute(*graph_root, outputs, accumulate_grad, min_topo_nr);
|
|
}
|
|
|
|
// Queue the root
|
|
if (skip_dummy_node) {
|
|
InputBuffer input_buffer(roots.at(0).function->num_inputs());
|
|
auto input = inputs.at(0);
|
|
|
|
const auto input_stream = InputMetadata(input).stream();
|
|
const auto opt_next_stream = roots.at(0).function->stream(c10::DeviceType::CUDA);
|
|
input_buffer.add(roots.at(0).input_nr,
|
|
std::move(input),
|
|
input_stream,
|
|
opt_next_stream);
|
|
|
|
execute_with_graph_task(graph_task, graph_root, std::move(input_buffer));
|
|
} else {
|
|
execute_with_graph_task(graph_task, graph_root, InputBuffer(variable_list()));
|
|
}
|
|
// Avoid a refcount bump for the Future, since we check for refcount in
|
|
// DistEngine (see TORCH_INTERNAL_ASSERT(futureGrads.use_count() == 1)
|
|
// in dist_engine.cpp).
|
|
auto& fut = graph_task->future_result_;
|
|
fut->wait();
|
|
graph_task->warning_handler_.replay_warnings();
|
|
return fut->value().toTensorVector();
|
|
}
|
|
|
|
void Engine::initialize_device_threads_pool() {
|
|
TORCH_CHECK(!in_bad_autograd_fork,
|
|
"Unable to handle autograd's threading in combination with fork-based multiprocessing. "
|
|
"See https://github.com/pytorch/pytorch/wiki/Autograd-and-Fork");
|
|
std::call_once(start_device_threads_flag_, &Engine::start_device_threads, this);
|
|
}
|
|
|
|
c10::intrusive_ptr<at::ivalue::Future> Engine::execute_with_graph_task(
|
|
const std::shared_ptr<GraphTask>& graph_task,
|
|
std::shared_ptr<Node> graph_root,
|
|
InputBuffer&& input_buffer) {
|
|
initialize_device_threads_pool();
|
|
// Lock mutex for GraphTask.
|
|
std::unique_lock<std::mutex> lock(graph_task->mutex_);
|
|
|
|
auto queue = ready_queue(graph_task->cpu_ready_queue_, input_buffer.device());
|
|
|
|
// worker_device == NO_DEVICE it's a CPU thread and it's trying to drive the
|
|
// autograd engine with corresponding GraphTask, and its NOT a re-entrant call
|
|
if (worker_device == NO_DEVICE) {
|
|
// We set the worker_device to CPU_DEVICE only if worker_device was previously
|
|
// NO_DEVICE. Setting it to CPU afterwards allow us to detect whether this is
|
|
// a re-entrant call or not.
|
|
set_device(CPU_DEVICE);
|
|
|
|
// set the graph_task owner to the current device
|
|
graph_task->owner_ = worker_device;
|
|
|
|
// Now that all the non-thread safe fields of the graph_task have been populated,
|
|
// we can enqueue it.
|
|
queue->push(NodeTask(graph_task, std::move(graph_root), std::move(input_buffer)));
|
|
|
|
// The owning thread start to drive the engine execution for any CPU task that
|
|
// was just pushed or will be added later from other worker threads
|
|
lock.unlock();
|
|
thread_main(graph_task);
|
|
TORCH_INTERNAL_ASSERT(graph_task->future_result_->completed());
|
|
// reset the worker_device after the completion of the graph_task, this is so
|
|
// that the initial state of the engine remains the same across every backward()
|
|
// or grad() call, we don't need to reset local_ready_queue as we could possibly
|
|
// reuse it for new backward calls.
|
|
worker_device = NO_DEVICE;
|
|
} else {
|
|
// If worker_device is any devices (i.e. CPU, CUDA): this is a re-entrant
|
|
// backward call from that device.
|
|
graph_task->owner_ = worker_device;
|
|
|
|
// Now that all the non-thread safe fields of the graph_task have been populated,
|
|
// we can enqueue it.
|
|
queue->push(NodeTask(graph_task, std::move(graph_root), std::move(input_buffer)));
|
|
|
|
if (current_depth >= max_recursion_depth_) {
|
|
// See Note [Reentrant backwards]
|
|
// If reached the max depth, switch to a different thread
|
|
add_thread_pool_task(graph_task);
|
|
} else {
|
|
// Total depth needs to be updated only in this codepath, since it is
|
|
// not used in the block above (when we call add_thread_pool_task).
|
|
// In the codepath above, GraphTask.reentrant_depth_ is used to
|
|
// bootstrap total_depth in the other thread.
|
|
++total_depth;
|
|
|
|
// Get back to work while we wait for our new graph_task to
|
|
// complete!
|
|
++current_depth;
|
|
lock.unlock();
|
|
thread_main(graph_task);
|
|
--current_depth;
|
|
--total_depth;
|
|
|
|
// The graph task should have completed and the associated future should
|
|
// be marked completed as well since 'thread_main' above is a call
|
|
// blocking an autograd engine thread.
|
|
TORCH_INTERNAL_ASSERT(graph_task->future_result_->completed());
|
|
}
|
|
}
|
|
// graph_task_exec_post_processing is done when the Future is marked as
|
|
// completed in mark_as_completed_and_run_post_processing.
|
|
return graph_task->future_result_;
|
|
}
|
|
|
|
// note that when python is present, this base engine will be overriden
|
|
// with a PythonEngine. Because this typically happens before get_default_engine
|
|
// is called, this base engine will never be created.
|
|
Engine& Engine::get_base_engine() {
|
|
static Engine engine;
|
|
return engine;
|
|
}
|
|
|
|
std::atomic<EngineStub> engine_stub(Engine::get_base_engine);
|
|
|
|
void set_default_engine_stub(EngineStub stub) {
|
|
engine_stub.store(stub);
|
|
}
|
|
|
|
|
|
Engine& Engine::get_default_engine() {
|
|
return engine_stub.load()();
|
|
}
|
|
|
|
void Engine::queue_callback(std::function<void()> callback) {
|
|
TORCH_CHECK(
|
|
current_graph_task,
|
|
"Final callbacks can only be installed during backward pass.");
|
|
|
|
std::lock_guard<std::mutex> lock(current_graph_task->final_callbacks_lock_);
|
|
current_graph_task->final_callbacks_.emplace_back(std::move(callback));
|
|
}
|
|
|
|
bool Engine::is_checkpoint_valid() {
|
|
return checkpoint_valid;
|
|
}
|
|
|
|
void Engine::init_local_ready_queue(std::shared_ptr<ReadyQueue> ready_queue) {
|
|
if (ready_queue) {
|
|
// if ready_queue provided in the caller, use the caller's ready_queue to initialize local_ready_queue
|
|
local_ready_queue = std::move(ready_queue);
|
|
} else if (!local_ready_queue){
|
|
// otherwise if local_ready_queue not allocated, allocate a new ready_queue
|
|
local_ready_queue = std::make_shared<ReadyQueue>();
|
|
}
|
|
}
|
|
|
|
// CPU ready queue is per GraphTask, but CUDA device ready queues are shared across all graph tasks
|
|
auto Engine::ready_queue(std::shared_ptr<ReadyQueue> cpu_ready_queue, at::Device device) -> std::shared_ptr<ReadyQueue>{
|
|
if (should_run_in_cpu_ready_queue(device.type())) {
|
|
// return the cpu ready queue passed in
|
|
TORCH_INTERNAL_ASSERT(cpu_ready_queue);
|
|
return cpu_ready_queue;
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(0 <= device.index() && device.index() < static_cast<c10::DeviceIndex>(device_ready_queues_.size()));
|
|
// See Note [Allocating GPUs to autograd threads]
|
|
return device_ready_queues_.at(device.index());
|
|
}
|
|
}
|
|
|
|
auto Engine::ready_queue_by_index(std::shared_ptr<ReadyQueue> cpu_ready_queue, int device_index) -> std::shared_ptr<ReadyQueue> {
|
|
if (device_index == CPU_DEVICE) {
|
|
// return the cpu ready queue passed in
|
|
TORCH_INTERNAL_ASSERT(cpu_ready_queue);
|
|
return cpu_ready_queue;
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(0 <= device_index && device_index < static_cast<c10::DeviceIndex>(device_ready_queues_.size()));
|
|
// See Note [Allocating GPUs to autograd threads]
|
|
// NB: This function would become obsolete if we truly allocated a CPU thread
|
|
// per device, rather than colocate.
|
|
return device_ready_queues_.at(device_index);
|
|
}
|
|
}
|
|
|
|
auto Engine::start_device_threads() -> void {
|
|
// First always initialize the thread pool for re-entrant threads
|
|
thread_pool_shared_ = std::make_shared<ThreadPoolShared>();
|
|
|
|
// Second, create special threads for each non-CPU device
|
|
// See Note [Allocating GPUs to autograd threads]
|
|
c10::DeviceIndex num_devices = 0;
|
|
for (const auto& impl_atomic : c10::impl::device_guard_impl_registry) {
|
|
auto* impl = impl_atomic.load();
|
|
// Only record the number of devices for device that don't run on the
|
|
// cpu ready queue.
|
|
if (impl && !should_run_in_cpu_ready_queue(impl->type())) {
|
|
num_devices = std::max(num_devices, impl->deviceCount());
|
|
}
|
|
}
|
|
|
|
// If there are no device except cpu, no need to create worker threads
|
|
if (num_devices == 0) {
|
|
return;
|
|
}
|
|
|
|
// Since we're about to create threads, forking is not possible anymore
|
|
track_bad_autograd_forks();
|
|
|
|
// allocate one thread for every GPU device (but colocate GPUs of different
|
|
// types), and pre-allocate the device_ready_queues_ to ensure safe reading on it.
|
|
device_ready_queues_ = std::vector<std::shared_ptr<ReadyQueue>>(num_devices);
|
|
for (auto& queue : device_ready_queues_) {
|
|
queue = std::make_shared<ReadyQueue>();
|
|
}
|
|
|
|
for (const auto i : c10::irange(num_devices)) {
|
|
std::thread t(&Engine::thread_init, this, i, device_ready_queues_[i], true);
|
|
t.detach();
|
|
}
|
|
// Wait for the threads to start
|
|
{
|
|
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
|
|
while(non_reentrant_device_thread_count_.load() != static_cast<uint32_t>(num_devices)) {
|
|
non_reentrant_device_thread_condvar_.wait(lk);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Engine::add_thread_pool_task(const std::weak_ptr<GraphTask>& graph_task) {
|
|
std::unique_lock<std::mutex> lck(thread_pool_shared_->mutex_);
|
|
// There may already be some items on the graphtasks_queue_ added by other
|
|
// threads but not enough workers to get to the new task that will be
|
|
// added
|
|
bool create_thread = (thread_pool_shared_->num_workers_ <= thread_pool_shared_->graphtasks_queue_.size());
|
|
thread_pool_shared_->graphtasks_queue_.push(graph_task);
|
|
// Don't need to be holding the lock while actually creating the thread
|
|
lck.unlock();
|
|
if (create_thread) {
|
|
// If we're creating a new thread, forking is not allowed anymore
|
|
track_bad_autograd_forks();
|
|
std::thread t(&Engine::reentrant_thread_init, this);
|
|
t.detach();
|
|
}
|
|
// This works even if new thread is created because wait() will test the
|
|
// predicate before waiting
|
|
thread_pool_shared_->work_.notify_one();
|
|
}
|
|
|
|
// Remembers current streams on all devices where a context has been created.
|
|
// Only called if Engine::execute detects at least one node runs on a cuda stream.
|
|
void GraphTask::stash_current_streams() {
|
|
const auto guard = c10::impl::VirtualGuardImpl{c10::DeviceType::CUDA};
|
|
auto num_gpus = guard.deviceCount();
|
|
caller_current_streams_.resize(num_gpus);
|
|
if (num_gpus > 0) {
|
|
for (c10::DeviceIndex idx = 0; idx < num_gpus; idx++) {
|
|
#if defined(USE_ROCM) && (ROCM_VERSION < 50000)
|
|
// If the build targets ROCM, stash streams for all visible devices unconditionally, to work around
|
|
// https://github.com/pytorch/pytorch/issues/59750.
|
|
// TODO: Remove ROCM-specific behavior when https://github.com/pytorch/pytorch/issues/59750 is fixed.
|
|
if (true) {
|
|
#else
|
|
if (at::detail::getCUDAHooks().hasPrimaryContext(idx)) {
|
|
#endif
|
|
caller_current_streams_[idx] = guard.getStream({c10::DeviceType::CUDA, idx});
|
|
} else {
|
|
caller_current_streams_[idx] = c10::nullopt;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GraphTask::init_to_execute(Node& graph_root, const edge_list& outputs, bool accumulate_grad, uint64_t min_topo_nr) {
|
|
// Populates exec_info so nodes that should be executed have `exec_info[node].needed_ = true`
|
|
// Only nodes that have a path to any edge in `outputs` should be executed.
|
|
// The code below populates exec_info using recursion, but the actual code does this
|
|
// iteratively. Refer to the numbering to see how the actual code corresponds.
|
|
// A difference to note is that in the iterative version, when you are working with
|
|
// the current Node, you are reponsible to update your parent's is_needed after all your
|
|
// children have been updated.
|
|
//
|
|
// is_needed = {fn: True for fn in outputs} # (0)
|
|
// seen = {}
|
|
// def compute_is_needed(fn):
|
|
// for next_edge in fn.next_edges:
|
|
// child_fn = next_edge.fn
|
|
// if child_fn in seen and is_needed[child_fn]: # (1)
|
|
// is_needed[fn] = true
|
|
// else:
|
|
// seen.add(child_fn)
|
|
// if compute_is_needed(child_fn):
|
|
// is_needed[fn] = true # (2)
|
|
// # (3) exit for-loop
|
|
// return is_needed[fn]
|
|
// compute_is_needed(graph_root)
|
|
//
|
|
// NB: you might be wondering why we don't populate `seen` with outputs. We cannot
|
|
// because in the case where two outputs lie on the same path, we still need to explore past
|
|
// the first output or we would miss the nodes that are required to compute the second output.
|
|
int output_idx = 0;
|
|
for (auto & output_edge : outputs) {
|
|
// (0) `is_needed` above corresponds to `exec_info_[fn].needed_`
|
|
Node *output = output_edge.function.get();
|
|
auto & info = exec_info_[output];
|
|
if (accumulate_grad) {
|
|
// if called through `.backward()` we directly set `needed_` for all the outputs to true
|
|
info.needed_ = true;
|
|
} else {
|
|
// otherwise it is `.grad()` and we set exec_info[fn].captures_ instead
|
|
// In terms of populating the rest of exec_info though, you can basically
|
|
// think of this as the same as setting `needed_` is true directly.
|
|
if (!info.captures_) {
|
|
info.captures_ = make_unique<std::vector<ExecInfo::Capture>>();
|
|
}
|
|
info.captures_->emplace_back(output_edge.input_nr, output_idx++);
|
|
}
|
|
}
|
|
captured_vars_.resize(output_idx);
|
|
|
|
struct Frame {
|
|
Frame (Node *fn) : fn_(fn), next_next_fn_(0) {}
|
|
Node *fn_;
|
|
size_t next_next_fn_;
|
|
|
|
Node* get_next_fn() {
|
|
const auto & next = fn_->next_edges();
|
|
auto num_next = next.size();
|
|
while (next_next_fn_ < num_next) {
|
|
auto fn = next[next_next_fn_++].function.get();
|
|
if (fn) return fn;
|
|
}
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
auto nodeShouldExecute = [this](Node *fn) {
|
|
auto it = exec_info_.find(fn);
|
|
return it != exec_info_.end() && it->second.should_execute();
|
|
};
|
|
|
|
std::vector<Frame> stack;
|
|
std::unordered_set<Node*> seen;
|
|
stack.emplace_back(&graph_root);
|
|
exec_info_.emplace(stack.back().fn_, ExecInfo());
|
|
|
|
while (!stack.empty()) {
|
|
auto &frame = stack.back();
|
|
const auto fn = frame.fn_;
|
|
|
|
Node *child_fn = nullptr;
|
|
while((child_fn = frame.get_next_fn()) && !seen.emplace(child_fn).second) {
|
|
// (1) next child exists AND has already been seen
|
|
if (nodeShouldExecute(child_fn)) {
|
|
exec_info_[fn].needed_ = true;
|
|
}
|
|
}
|
|
|
|
if (child_fn) {
|
|
// (2) next child exists but has not been seen
|
|
if (child_fn->topological_nr() < min_topo_nr) {
|
|
// child created before the first output means this child cannot have
|
|
// an edge to output
|
|
continue;
|
|
}
|
|
stack.emplace_back(child_fn);
|
|
} else {
|
|
// (3) no next child exists for `fn` means its `needed` has already been
|
|
// finalized. pop stack and update parent
|
|
stack.pop_back();
|
|
if (nodeShouldExecute(fn) && !stack.empty()) {
|
|
exec_info_[stack.back().fn_].needed_ = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}} // namespace torch::autograd
|