mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Update operator list for AutocastCPU. Pull Request resolved: https://github.com/pytorch/pytorch/pull/68725 Approved by: https://github.com/frank-wei
135 lines
6.5 KiB
Python
135 lines
6.5 KiB
Python
# Owner(s): ["module: unknown"]
|
|
|
|
import collections
|
|
import torch
|
|
from torch.testing._internal.common_utils import TestCase, run_tests
|
|
from torch.testing._internal.autocast_test_lists import AutocastCPUTestLists
|
|
|
|
class TestAutocastCPU(TestCase):
|
|
def setUp(self):
|
|
super(TestAutocastCPU, self).setUp()
|
|
self.autocast_lists = AutocastCPUTestLists(torch.device('cpu'))
|
|
|
|
def tearDown(self):
|
|
del self.autocast_lists
|
|
super(TestAutocastCPU, self).tearDown()
|
|
|
|
def _run_autocast_outofplace(self, op, args, run_as_type, out_type=None, module=torch, add_kwargs=None):
|
|
# helper to cast args
|
|
def cast(val, to_type):
|
|
if isinstance(val, torch.Tensor):
|
|
return val.to(to_type) if val.is_floating_point() else val
|
|
elif isinstance(val, collections.abc.Iterable):
|
|
return type(val)(cast(v, to_type) for v in val)
|
|
else:
|
|
return val
|
|
|
|
if add_kwargs is None:
|
|
add_kwargs = {}
|
|
|
|
self.assertFalse(torch.is_autocast_cpu_enabled())
|
|
with torch.cpu.amp.autocast():
|
|
self.assertTrue(torch.is_autocast_cpu_enabled())
|
|
out_type = out_type if out_type is not None else run_as_type
|
|
output = output_method = None
|
|
|
|
# Try module.* variant, if requested:
|
|
if module is not None and hasattr(module, op):
|
|
output = getattr(module, op)(*args, **add_kwargs)
|
|
if isinstance(output, torch.Tensor):
|
|
self.assertTrue(out_type == output.dtype,
|
|
"autocast for torch.{} produced {}, should produce {}"
|
|
.format(op, output.dtype, out_type))
|
|
# Try Tensor.* variant:
|
|
if hasattr(torch.Tensor, op):
|
|
output_method = getattr(args[0], op)(*args[1:], **add_kwargs)
|
|
if isinstance(output_method, torch.Tensor):
|
|
self.assertTrue(out_type == output_method.dtype,
|
|
"autocast for torch.{} produced {}, should produce torch.{}"
|
|
.format(op, output_method.dtype, out_type))
|
|
|
|
self.assertTrue((output is not None) or (output_method is not None),
|
|
"{} not found as an attribute on either Tensor or the requested module {}".format(
|
|
op, module))
|
|
|
|
# Accounts for ops that return Tensors, iterables, and other non-Tensors.
|
|
# For example, lstm_cell returns a tuple and equal returns bool.
|
|
def compare(first, second):
|
|
if isinstance(first, torch.Tensor):
|
|
return torch.equal(first, second)
|
|
elif isinstance(first, collections.abc.Iterable):
|
|
return all(compare(f, s) for f, s in zip(first, second))
|
|
else:
|
|
return first == second
|
|
|
|
# If both torch.* and Tensor.* variants were found, check outputs are identical
|
|
if (output is not None) and (output_method is not None):
|
|
self.assertTrue(type(output) == type(output_method))
|
|
comparison = compare(output, output_method)
|
|
self.assertTrue(comparison, "torch.{0} result did not match Tensor.{0} result".format(op))
|
|
|
|
# Compare numerics to Python-side "autocasting" that (we expect) does the same thing
|
|
# as the C++-side autocasting, and should be bitwise accurate.
|
|
output_to_compare = output if output is not None else output_method
|
|
with torch.cpu.amp.autocast(enabled=False):
|
|
self.assertFalse(torch.is_autocast_cpu_enabled())
|
|
|
|
if module is not None and hasattr(module, op):
|
|
control = getattr(module, op)(*cast(args, run_as_type), **add_kwargs)
|
|
else:
|
|
control = getattr(args[0].to(run_as_type), op)(*cast(args[1:], run_as_type), **add_kwargs)
|
|
self.assertTrue(type(output_to_compare) == type(control))
|
|
comparison = compare(output_to_compare, control)
|
|
self.assertTrue(comparison, "torch.{} result did not match control".format(op))
|
|
self.assertTrue(torch.is_autocast_cpu_enabled())
|
|
self.assertFalse(torch.is_autocast_cpu_enabled())
|
|
|
|
def args_maybe_kwargs(self, op_with_args):
|
|
if len(op_with_args) == 2:
|
|
return op_with_args[0], op_with_args[1], {}
|
|
else:
|
|
return op_with_args[0], op_with_args[1], op_with_args[2]
|
|
|
|
def test_autocast_torch_expect_builtin_promote(self):
|
|
for op, args, out_type in self.autocast_lists.torch_expect_builtin_promote:
|
|
self._run_autocast_outofplace(op, args, torch.float32, out_type=out_type)
|
|
|
|
def test_autocast_methods_expect_builtin_promote(self):
|
|
for op, args, out_type in self.autocast_lists.methods_expect_builtin_promote:
|
|
self._run_autocast_outofplace(op, args, torch.float32, module=None, out_type=out_type)
|
|
|
|
def test_autocast_torch_bf16(self):
|
|
for op_with_args in self.autocast_lists.torch_bf16:
|
|
op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
|
|
self._run_autocast_outofplace(op, args, torch.bfloat16, add_kwargs=maybe_kwargs)
|
|
|
|
def test_autocast_nn_bf16(self):
|
|
for op_with_args in self.autocast_lists.nn_bf16:
|
|
op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
|
|
self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn, add_kwargs=maybe_kwargs)
|
|
|
|
def test_autocast_torch_fp32(self):
|
|
for op_with_args in self.autocast_lists.torch_fp32:
|
|
op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
|
|
self._run_autocast_outofplace(op, args, torch.float32, add_kwargs=maybe_kwargs)
|
|
|
|
def test_autocast_nn_fp32(self):
|
|
for op_with_args in self.autocast_lists.nn_fp32:
|
|
op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
|
|
self._run_autocast_outofplace(op, args, torch.float32, module=torch._C._nn, add_kwargs=maybe_kwargs)
|
|
|
|
def test_autocast_torch_need_autocast_promote(self):
|
|
for op, args in self.autocast_lists.torch_need_autocast_promote:
|
|
self._run_autocast_outofplace(op, args, torch.float32)
|
|
|
|
class TestTorchAutocast(TestCase):
|
|
def test_autocast_fast_dtype(self):
|
|
gpu_fast_dtype = torch.get_autocast_gpu_dtype()
|
|
cpu_fast_dtype = torch.get_autocast_cpu_dtype()
|
|
self.assertEqual(gpu_fast_dtype, torch.half)
|
|
self.assertEqual(cpu_fast_dtype, torch.bfloat16)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|